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Efficient sample pooling strategies for
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Sample pooling of CoViD-19 PCR tests has been recently pro-
posed as a low cost alternative to individual tests. We show that
sample pooling is efficient as long as the fraction of the pop-
ulation infected is relatively small. Fisher information theory
suggests a rule of thumb that for low infection rates p, pooling
2/p samples is close to optimal. We present a simple strategy for
survey design when not even a ballpark estimate of the infection
rate is available.
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Introduction
As the CoViD-19 pandemic sweeps through the planet, data
gathering is desperately needed for understanding the spread
of the disease, the fraction of the population infected, and the
case fatality rate (CFR) and infection fatality rate (IFR) for
each age group (1–3). In most countries, only symptomatic
individuals are tested referred by their attending physicians
due to the scarcity of tests.The bottleneck is the expense and
availability of the PCR test kits for the SARS-CoV-2 virus.
Yet, massive surveys could make a big impact on decisions
about influencing the behavior of the populace to mitigate
the effects of the pandemic in a non-pharmaceutical fashion,
such as invoking a general or partial lock down.
Sample pooling, carried out as mixing of samples, e.g.,
saliva, from several individuals, provides a cost effective so-
lution for massive testing of the population at large. Recently,
a protocol has been developed for sample pooling for CoViD-
19 tests (4, 5). In addition, a group proposes to test the whole
population of Hungary in batches of 15-64(6). Sample pool-
ing has been considered since World War II. for a wide va-
riety of applications, (e.g., 7, 8, and references therein). In
these notes we perform the fundamental calculations to sup-
port the design of efficient surveys with pooled samples.

The Fisher information of pooled sampling
We introduce a simple model to quantify the aim of a CoViD-
19 survey: in a particular age bracket, let’s assume that a
fraction p of the population is infected. We want to measure
this fraction. The fraction of the population not infected is
q = 1−p. Let us assume that in our survey we pool the sam-
ples of n persons. For such a test to be negative, the probabil-
ity is P− = qn, and consequently, the probability that the test
yields a positive result is P+ = 1−qn. As a consequence, af-
ter N measurements, the probability of finding N+ positive

and N− results is

P (N+|q) =
(

N

N+

)
(1− qn)N+qnN− , (1)

where N = N+ + N− by definition. This formula assumes
the independence of each test from each, and neglects any
correlations between each pool (e.g. when families are tested
in one pool, there results are more likely to be positive or neg-
ative together). For intuitive picture, the formula is equivalent
to coin tossing, assuming the probability of heads is qn.
We wish to use Bayesian inference to extract the information
the data has on q (and therefore p = 1− q). Using Bayes’
theorem, the likelihood of q is

P (q|N+) = P (N+|q)P (q)/C, (2)

where C is normalization of the probability distribution. We
can use a non-informative prior on q between [0,1], and ab-
sorb that constant into C. The above function can be used
for numerical analysis of data. If several different pools have
been used, the likelihood functions simply multiply. Maxi-
mizing the log likelihood will yield the most likely value of
q, and the confidence intervals can be determined the stan-
dard way.
Some analytical results can be obtained as well. The most
likely value of q can be found taking the derivative of the log
likelihood

∂ logP (q|N+)
∂q

= N+
qn−1nqn−1 + N−n

q
. (3)

Equating the above equation with zero yields qn = N−/N is
expected. The second derivative of the log likelihood is the
curvature

∂2 logP (q|N+)
∂q2 =−n−1+ qn

(1− qn)2 nN+qn−2− N−n

q2 . (4)

Taking the negative expectation value yields the Fisher infor-
mation matrix:

F = n2Nqn−2

1− qn
. (5)

The variance of the measurement is 1/
√

F . For n = 1 we
recover the standard result of F = N/q(1− q).

Optimization
For a given amount of resources allowing N tests total, the
Fisher information can be maximized for n if we have a pre-
conception about q. Taking the derivative of the previous
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n q
64 97.5%
32 95%
16 90%
8 82%
4 67%
2 45%

Table 1. Optimal batch size for pooling as a function of q = 1 −p expressed as a
percentage for convenience.

equation according to n

∂F

∂n
= nNqn−2

(1− qn)2 (2−2qn+n logq). (6)

Equating the above with zero, the equation in the parenthe-
sis has to be solved numerically. Since it depends only on
qn, a universal solution is qn = 0.203188. Table 1 contains
the values of q for practical values of sampling pooling for
CoViD-19.

Conclusions and Discussion
To measure the infection rate in a particular age bracket, sam-
ples should be pooled based on the results of Table 1. For
final results, the a full maximum likelihood analysis of the
data is recommended.
If there is no reasonable estimate of the infection rate is avail-
able to guide the design of the pooled survey, one case start
with large pool, i.e. n = 64. If after N tests, all measure-
ments are positive, it means that the infection rate is too large
for this pool. If N = N+, the most likely value for q = 0,
therefore Eq. 5 cannot be used to estimate confidence inter-
vals. In that case the likelihood function is (1− qn)N , and
one has to integrate it directly to obtain a confidence inter-
val for q. This can be done numerically, as an example, as-
suming that 10 measurements produced positive results with
n = 64 sampling, there is a 94% chance that q ≤ 0.9, i.e. one
should try n = 16 next. Thus a simple strategy would be to
determine the optimal pooling rate with preliminary measure-
ments of higher pooling rate than necessary, and design the
survey with the closest rate found in Table 1. Note also that
when the rates are low, individuals can be pinpointed with a
binary search with logn extra measurements, but when the
infection rate is high, individual measurements are more effi-
cient (5).
Note that realistic protocols realising the idea will have false
positives and negatives. These should be calibrated and taken
into account when an actual measurement is translated into
IFRs. These issues are straightforward fold into the likeli-
hood function in a forward Bayesian analysis, as proposed
here. On the other hand, the conclusions are robust enough
to be useful for survey design.
Note that pooled sampling has other applications, such as
testing for infection on a regular schedule in a group of peo-
ple, e.g., health care workers on the same shift.
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