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Background: The coronavirus disease 2019 (COVID-19) pan-
demic challenges hospital leaders to make time-sensitive, critical
decisions about clinical operations and resource allocations.

Objective: To estimate the timing of surges in clinical demand
and the best- and worst-case scenarios of local COVID-19-
induced strain on hospital capacity, and thus inform clinical op-
erations and staffing demands and identify when hospital capac-
ity would be saturated.

Design: Monte Carlo simulation instantiation of a susceptible,
infected, removed (SIR) model with a 1-day cycle.

Setting: 3 hospitals in an academic health system.
Patients: All people living in the greater Philadelphia region.

Measurements: The COVID-19 Hospital Impact Model (CHIME)
(http://penn-chime.phl.io) SIR model was used to estimate the
time from 23 March 2020 until hospital capacity would probably
be exceeded, and the intensity of the surge, including for inten-
sive care unit (ICU) beds and ventilators.

Results: Using patients with COVID-19 alone, CHIME estimated
that it would be 31 to 53 days before demand exceeds existing

hospital capacity. In best- and worst-case scenarios of surges in
the number of patients with COVID-19, the needed total capac-
ity for hospital beds would reach 3131 to 12 650 across the 3
hospitals, including 338 to 1608 ICU beds and 118 to 599
ventilators.

Limitations: Model parameters were taken directly or derived
from published data across heterogeneous populations and
practice environments and from the health system's historical
data. CHIME does not incorporate more transition states to
model infection severity, social networks to model transmission
dynamics, or geographic information to account for spatial pat-
terns of human interaction.

Conclusion: Publicly available and designed for hospital oper-
ations leaders, this modeling tool can inform preparations for
capacity strain during the early days of a pandemic.

Primary Funding Source: University of Pennsylvania Health
System and the Palliative and Advanced lliness Research Center.
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As of 23 March 2020, more than 350 000 cases of
coronavirus disease 2019 (COVID-19) and 15 000
deaths had been reported worldwide. Most of these
deaths are attributable to the virulence of severe acute
respiratory syndrome-coronavirus-2 (SARS-CoV-2), the
virus that causes COVID-19, but some may have been
due to pandemic-associated surges that strain hospital
capacity, defined as the ability of a hospital to deliver
high-quality care to all who need it at a given time (1).
In addition, underresourced health systems pose a
threat not just to patient care, but also to the safety and
well-being of health care workers. Thus, clinical opera-
tions leaders face significant uncertainty in making op-
timal decisions about staffing, bed expansions, ventila-
tor purchase and repurposing, testing resources and
strategies, personal protective equipment, elective pro-
cedures, visitation rules, and other resources.

Routine variations in capacity strain alter care pro-
cesses and some clinical outcomes in the emergency
department, hospital wards, and intensive care unit
(ICU) (2-9). However, pandemic-induced strains on ca-
pacity far exceed levels observed during peaks in rou-
tine demand, requiring new frameworks to guide hos-
pital investments in and allocations of resources to
prevent grave consequences of strain.

To guide these decisions, the University of Pennsyl-
vania Health System (UPHS) developed the COVID-19
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Hospital Impact Model for Epidemics (CHIME), a suscep-
tible, infected, removed (SIR) model. Borrowing from
prior epidemiologic theory, CHIME predicts future
population-level estimates of people who begin as sus-
ceptible and then may become infected, and removed
(that is, either recovered and assumed to be immune or
dead). Here, we report the operational dilemmas faced
by our healthcare system leadership that motivated the
construction of CHIME, the methods and assumptions be-
hind the implementation of this SIR model, and how the
interface was crafted and used to empower health system
leaders to make decisions based on different scenarios
under varying assumptions. The CHIME model and inter-
face are available for public use (http://penn-chime.phl
.io), and we describe how we will prospectively assess its
performance in informing hospital capacity planning for
the current and future epidemics.

See also:

Web-Only
Supplement
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Table 1. Model Parameters, Ranges, and Data Sources

Base Case Data Source

Value (Range)

Model Parameters

Fixed parameters

Population of Philadelphia metropolitan area, n 4119 405 Reference 19
Hospital market share, %* 15 Internal data
Currently hospitalized patients, n 13 Internal data
Currently known regional infections, n 157 Reference 20

Varying parameters
Doubling time, d 6 References 10, 15
Hospitalization (95% Cl), % 2.5(1-5.1) Reference 21; internal data
Hospitalized patients requiring ICU care (95% Cl), % 16 (5-26) References 16-18
ICU patients requiring mechanical ventilation (95% Cl), % 46 (30-90) References 10, 16, 17

Median hospital length of stay (95% ClI), d 12 (10-14) References 16, 17; internal data

Median duration of ICU stay (95% Cl), d 8(6-12) Reference 16; internal estimate based on patients with ARDS
Percentage of ICU stay on mechanical ventilation (95% Cl) 75 (60-90) Internal estimate based on patients with ARDS

Median recovery time (IQR), d 14 (10-18) References 16, 22

ARDS = acute respiratory distress syndrome; ICU = intensive care unit.
* Market share accounts for the expected proportion of the population served by the 3 downtown hospitals located in Philadelphia in the University

of Pennsylvania Health System.

METHODS

We developed CHIME to forecast the course of
COVID-19 in our region. In brief, SIR models provide
insights into the dynamics of future disease spread in a
population on the basis of currently observed local pa-
rameters, such as prevalence and doubling time. Be-
cause epidemic dynamics are sensitive to quarantine
policies, testing availability, and other local factors, we
constructed an interface to enable users to understand
how variations in these parameters affect case projec-
tions. Although informed by similar explorations of ep-
idemic trajectories in other settings worldwide (10-13),
our CHIME tool was explicitly designed to be usable by
and responsive to the needs of clinical operations leaders.
Exploring local epidemic scenarios over a range of as-
sumptions provided upper and lower bounds for pre-
dicted demands on health system capacity, as well as the
time available to prepare to meet those demands.

We began by projecting the COVID-19 -related de-
mand for total hospital beds, ICU beds, and ventilators
(for invasive mechanical ventilation for patients with ex-
pected acute respiratory distress syndrome), and the
time to exceed current inpatient capacity in our health
system's 3 hospitals located within Philadelphia. These
3 hospitals vary in size, resource-intensity, and training
program integration. We could not reliably estimate
the extent to which such policies as canceling elective
admissions and surgeries would reduce demand among
patients with other indications for hospitalization, so we
chose to model demand only among patients with
COVID-19. Thus, all model estimates underestimate the
total demand for hospital resources.

Seeking to inform decisions around staffing, non-
urgent clinical operations, and investment in additional
resources, our health system executives raised time-
sensitive operational questions to the Penn Medicine
Predictive Healthcare team. Through an iterative pro-
cess of model development by data scientists, use by
operations leaders, and model refinement in response
to use needs and local data, we created an interactive,
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Web-based tool to display the projected epidemic
course and clinical demand across a broad range of
assumptions about triage and disease spread.

Study Motivation and Process

To predict the expected volume and acuity, and
when to expect it for hospital executives, data scientists
started with publicly available epidemiologic data on
COVID-19 and supplemented this with UPHS-specific
clinical outcomes data derived from existing analytic
data sets of similar acute respiratory failure populations
over the past 6 years at multiple Penn hospitals. Clini-
cians and clinician-researchers provided the model de-
velopers on the data science team with insight into the
model inputs and assumptions most subject to varia-
tion or inaccuracy and provided adequate ranges of
plausible estimates. Through a series of discussions
and iterative development of the Web-based tool,
CHIME was developed to be as simple as possible
while providing actionable information for high-stakes
decisions in preparing for the expected COVID-19 ep-
idemic in our region.

Epidemic Model

The SIR model is a compartmental approach to ep-
idemic spread that represents a population of individ-
uals who transition from susceptible, to infected, to re-
moved (recovered and immune or deceased) states
(14). By specifying values of initial disease prevalence,
population size, time to recovery, and transmission
rate, the SIR model makes deterministic predictions
about the number of future infections over time. First,
on the basis of published case series from China and
other regions reporting on the clinical course of ob-
served patients early in the epidemic (15-18) and local
information about the regional population (Table 1)
served at the 3 hospitals in our health system, we used
the SIR framework to model the number and rate of
infections in the regional population. Next, we ex-
tended these projections of the total number of cases
to estimate the proportion of patients with COVID-19
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who would require hospital resources (hospitalizations,
ICU care, invasive mechanical ventilation). We then
conducted a Monte Carlo simulation instantiation of an
SIR model with a 1-day cycle with 1000 draws from
probability distributions of model parameters. The Sup-
plement (available at Annals.org) provides the details
of the equations and parameters underlying the CHIME
SIR model.

Although other approaches to epidemic modeling
exist, SIR was chosen for simplicity and speed of de-
ployment. Given substantial uncertainty regarding in-
put parameters for more complicated models and the
need to communicate and iterate rapidly with decision
makers, we opted not to incorporate more transition
states to model infection severity, social networks to
model transmission dynamics, or geographic informa-
tion to account for spatial patterns of human interac-
tion. We recognize that these approaches could offer
greater fidelity to known epidemic dynamics but would
have come at the cost of slower development, be less
clinically intuitive or interpretable, and have greater un-
certainty in model inputs.

Outcomes

The primary outputs of the CHIME model are the
total counts of expected demand for hospital beds, ICU
beds, and ventilators over time at the 3UPHS hospitals
in Philadelphia for patients with COVID-19. Secondary
outcomes derived from the CHIME model outputs in-
cluded the number of new admissions each day, the
time until demand would exceed current capacity, the
time until peak demand, the time spent above current
capacity, and the proportion of simulations in each sce-
nario in which capacity was exceeded. We used aggre-
gate counts of existing capacity across the 3 hospitals
to accommodate anticipated resource allocation and
patient diversions between hospitals (18). Current ca-
pacity across the 3 hospitals was defined as 1045 hos-
pital beds, 253 ICU beds, and 183 ventilators, on the
basis of internal estimates.

Model Parameters

In the absence of robust historical data on the
transmission dynamics of SARS-CoV-2, we surveyed the
available literature to identify likely ranges of SIR model
parameters (Table 1 ). Table 1 of the Supplement (avail-
able at Annals.org) reports further details on these pa-
rameters, their ranges, and their distributions. In the
base-case analysis, we sampled from continuous distri-
butions for all parameters with a fixed doubling time of
6 days (T4 = 6), consistent with estimated observed
rates of spread elsewhere (10, 15, 23). We generated
95% Cls by taking the 2.5% and 97.5% percentile esti-
mates from 1000 simulations to account for uncertainty
in the forecasts. All simulations and analyses were con-
ducted by using Python, version 3.7.6 (24), and R, ver-
sion 3.6.1 (25).

Sensitivity Analyses

To understand how the doubling time would affect
hospital capacity directly, we varied key assumptions
about the doubling time in sensitivity analyses. Specifi-
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cally, we repeated the primary analysis across the
range of doubling times reported in the literature, from
a best-case scenario (Ty= 10; for example, South Ko-
rea) and to a worst-case scenario (T, = 2; for example,
ltaly) to examine their effect on the time until peak clin-
ical demand and the duration of time spent above ex-
isting capacity of the 3 hospitals. We conducted a sep-
arate sensitivity analysis to estimate peak simultaneous
ventilator demand by varying the proportion of cases
requiring invasive mechanical ventilation to simulate
how the local age distribution in the Philadelphia re-
gion might affect capacity strain (17).

Forecasting Comparisons

For cross-validation with other models, we com-
pared the predictions from CHIME with those from
other COVID-19-specific epidemic forecasting tools
(12, 13). Although the interfaces, input variables, and
underlying models varied in each case, we attempted
to replicate the inputs from our base case as closely as
possible. We compared these models' forecasts for the
time to the peak number of infections and the number
of people infected at the peak.

Role of the Funding Source

This study was funded by UPHS and the Palliative
and Advanced lliness Research Center. It did not meet
the definition of human subjects research. The authors,
who are employed by or work within the funding
sources, conducted the study independently, and the
decision to submit the manuscript for publication was
theirs alone.

RESULTS

In the base case, the model projected the needed
capacity for hospitalization would reach a peak of 4467
(95% Cl, 1738 to 8966) patients with COVID-19 across
the 3 hospitals, with 487 (Cl, 116 to 1106) patients re-
quiring ICU beds and 170 (Cl, 45 to 632) patients re-
quiring ventilators (Figure 1). At the peak of incident
cases, the model projected 386 (Cl, 160 to 776) total
hospital admissions per day, with 61 (Cl, 15 to 131)
admissions requiring ICU care and 28 (Cl, 7 to 93) ad-
missions requiring ventilators (Figure 1 of the Supple-
ment, available at Annals.org). The time until peak hos-
pitalizations in the base case was 56 days (Cl, 48 to 62
days) and ranged from 20 days (Cl, 18 to 22 days) to 73
days (Cl, 75 to 99 days) in the worst and best cases,
respectively.

In the worst-case scenario (T4 = 2 days), the peak
simultaneous demand across the 3 hospitals was
12 650 (Cl, 5072 to 25 348) total occupied hospital
beds, including 1608 (Cl, 386 to 3596) ICU beds and
599 (Cl, 161 to 2130) ventilators (Figure 1). In this sce-
nario, we estimated a 100% probability of exceeding
current capacity for total hospital beds, ICU beds, and
ventilators due only to patients with COVID-19.

In the best-case scenario (Ty = 10 days), the peak
simultaneous demand across the 3 hospitals was 3131
(Cl, 908 to 4707) total occupied hospital beds, includ-
ing 338 (Cl, 60 to 576) ICU beds and 118 (Cl, 23 to 327)
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Figure 1. Projected daily total hospital census (top),
intensive care unit ICU census (middle), and patients
requiring invasive mechanical ventilation (bottom) for
patients with COVID-19.
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ventilators (Figure 1). Even in this best-case scenario,
CHIME estimated a 99.6%, 40%, and 10% probability of
exceeding current capacity for total hospital beds, ICU
beds, and ventilators, respectively—again, only from pa-
tients with COVID-19.

In the base case, our health system had a 50%
chance of exceeding our full ventilator capacity due to
patients with COVID-19 (Figure 2). Across the range of
doubling times, however, the time until ventilator ca-
pacity would be exceeded was 16 days (Cl, 11 to 21
days) in the worst-case scenario and was unlikely to oc-
cur in the best-case scenario. CHIME estimated similar
trajectories for the times until the capacities of hospital
(Figure 2 of the Supplement, available at Annals.org)
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and ICU beds (Figure 3 of the Supplement, available at
Annals.org) were exceeded.

In the base case, the expected duration of time
over which current capacity would be exceeded was 44
days (Cl, 20 to 60 days) for hospital beds, 32 days (Cl, 7
to 53 days) for ICU beds, and 23 days (Cl, 8 to 66 days)
for ventilators in those 50% of simulations where capac-
ity was exceeded (Figure 2).

In varying the proportion of patients who would ulti-
mately require invasive mechanical ventilation, we identi-
fied a nearly 6-fold difference in the expected peak simul-
taneous demand for ventilators (Figure 3). In a scenario in
which all patients in the ICU with COVID-19 required in-
vasive mechanical ventilation, the peak simultaneous de-
mand would exceed 1200 ventilators.

Cross-Model Comparisons

The total number of infected cases in the region
peaked at 63 days in the CHIME base case, compared
with 62 days in the Goh model (13) and at 116 days in
the Hill model (12). Despite limitations in the other
model interfaces that prevented precise reproduction
of CHIME's input parameters, similar starting values led
to forecasted peak case counts of 125 498 (Goh model,
75% of CHIME estimate) and 106 584 (Hill model, 64%
of CHIME estimate) compared with the predicted
CHIME peak of 166 268 cases (Table 2 of the Supple-
ment, available at Annals.org). Counts of the suscepti-
ble, infected, and removed populations over time are
reported in Figure 4 of the Supplement (available at
Annals.org).

DIScUSSION

We found that an SIR model could be used to make
short-term projections about hospital capacity strain
early in the course of an epidemic. With close collabo-
ration between the clinical and operational leaders of
our health system and data science team, we were able
to rapidly explore a range of scenarios based on pub-
lished data from other regions of the world. Indeed,
only 2 days passed from the time at which operations
leaders requested “projections” to the time at which we
had a flexible, user-friendly interface to provide best-
and worst-case estimates in real time.

The rapid development and data visualizations
provided by CHIME to estimate clinical needs for pa-
tients with COVID-19 directly informed our health sys-
tem's planning for its 3 city-based hospitals in several
ways (Table 2). First, the model projections provided
support for financially, operationally, and logistically
challenging decisions, such as reducing elective sur-
geries and declining outside transfers, well before our
system was actually strained. Such early action is clearly
superior for pandemic preparedness and response, but
absent such projections, may only have been recognized
in hindsight. In addition, these projections helped gener-
ate consensus among clinical leaders that these difficult
decisions were prudent.

Second, because the projections painted an ex-
treme picture, even without considering clinical needs
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Figure 2. Results of sensitivity analysis.
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unrelated to COVID-19, we were motivated to expand
surge planning and to explore novel options for build-
ing capacity, including unconventional care spaces.
Specific surge planning stages that were informed by

Figure 3. Peak simultaneous demand for ventilators
depending on the epidemic doubling time and the
percentage of patients with COVID-19 in the intensive
care unit (ICU) requiring invasive mechanical ventilation.
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the model outputs included decreasing current acute
care volume (non-COVID-19 and COVID-19) by keep-
ing patients who were less sick out of the hospital and
canceling elective surgeries and admissions; dedicat-
ing units to COVID-19-only (cohort) care; personal pro-
tective and ventilator equipment conservation and ac-
quisition; expanding ICU care into ICU-like care spaces
(such as operating rooms); expanding ICU care into
wards; expanding ward care into unused clinical spaces
(for example, newly built but not yet opened hospital
floors and a previously closed wing of our long-term
acute care hospital); expanding ward care into ward-
like care spaces (dialysis and apheresis units); doubling
single rooms; expanding ICU and ward care into non-
care spaces (such as building lobbies); reserving off-
site rooms, such as hotels, for front-line clinicians; and
establishing COVID-19-specific triage units in the
emergency department.

Third, on the basis of these projections, our health
system successfully petitioned the Pennsylvania gov-
ernment for a waiver from its prohibition on continued
operation of construction companies. An additional
hospital tower under construction was planned for
completion in 15 months, but because construction has
been allowed to continue around the clock, 119 new
hospital beds will become usable during the projected
surge. In short, we anticipate that the epidemic insights
gained from CHIME will save many lives by turning
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Table 2. Overview of Operational Questions, Relevant Modeling Output, and Subsequent Decisions

Operational Question

Actionable
Model Output

Resultant Decision

How many hospital beds, ICU beds, and Figure 1
ventilators will be required at peak demand?
How much time do we have to prepare until Figure 2

current capacity is exceeded?

When should we stop accepting outside hospital
transfers and patients requiring ECMO?

Figures 1 and 2

Rushed construction in new hospital building to create 119
additional hospital beds

Immediate hospital policies to conserve personal
protective equipment and guide purchase of additional
ventilators and associated respiratory supplies (including
home ventilators and safer helmets for noninvasive
ventilation)

The model results facilitated justification and buy-in for
difficult decisions, such as canceling elective surgeries
and declining some outside hospital transfers

Hospital leaders continue to reassess this policy each day
on the basis of daily in-house counts of patients with
COVID-19 and the updated CHIME forecasts

CHIME = COVID-19 Hospital Impact Model; COVID-19 = coronavirus disease 2019; ECMO = extracorporeal membrane oxygenation; ICU =

intensive care unit.

vague scenarios of overwhelming clinical demand into
actionable estimates of strain, permitting our health
system leaders to prepare, react, and respond.

The CHIME-forecasted peak occurred at nearly the
same day as that of the Goh model, but much earlier
than the Hill model, and included a much larger num-
ber of infections than both models. Possible reasons for
these differences include the impossibility of aligning
input parameters exactly across models, and the fact
that both external models incorporated an additional
transition state 'E to describe exposed populations who
were not yet symptomatic and separate states to account
for differential severity of infection. Thus, generating esti-
mates using multiple models may help clinical leaders
properly account for uncertainty in all forecasts.

Our study has limitations. First, the SIR model itself
is a simplified epidemic model that does not account
for the structure of contact networks and resultant
transmission. This may be particularly important in the
case of COVID-19, because of rapidly shifting regional
policies on physical distancing, school and university
closures, cancellation of public gatherings, and shelter-
in-place advisories. Although we could not account for
these dynamics directly in the model itself, differences
in rates of interpersonal contact and disease transmis-
sion attributable to physical distancing policies were in-
directly modeled through the broad range of doubling
times used in our sensitivity analyses. In particular, the
mass action mixing assumption in CHIME, in which all
members of the population are assumed to mix homo-
geneously with each other, may overestimate the final
size of the epidemic (26) as well as produce a steeper
decline in cases after peak (27).

Second, this model accounted for hospital demand
due only to patients with COVID-19 presenting to 3
hospitals in our health system. Modeling only the needs
for patients with COVID-19 would cause these projec-
tions to underestimate the total true demand on health
system resources. However, other phenomena may
cause our approach to over- or underestimate the true
demand, including the possibility of different regional
outbreaks of COVID-19, varying demand for non-
COVID-19-related hospital services with elimination of
elective cases, and disruption of usual outpatient care
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for patients with acute and chronic illnesses. We also
expect that the role of suburban hospitals may change
as they manage local cases of COVID-19 in less densely
populated areas or serve as a reservoir of ICU capacity
as regionalization policies seek to offload strain from
urban hospitals. These uncertainties will be incorpo-
rated into subsequent versions of CHIME as epidemic
patterns and local care practices emerge in the coming
weeks.

Third, model parameters were sampled from distri-
butions that were fit from published data across heter-
ogeneous populations and hospitals, and thus may not
correspond to those found in Philadelphia or any other
region. We did, however, explore the full range of pub-
lished parameters through simulation and provided es-
timates of uncertainty to guide decision making. We
will also continue to use data that accrue on the local
level to inform iterative model revisions. In addition, we
plan to validate the model projections presented here
to inform hospital planning strategies in the event of
future epidemics. Each day, we will update time-
varying parameters, such as the number of cases re-
ported by the Pennsylvania Department of Health and
the number of infected patients within our health sys-
tem, to make predictions about future hospital demand
at 7-, 14-, 28-, and 56-day time horizons. As we monitor
the epidemic progress in real time, including expected
changes in the doubling time, we will then assess the
performance of these predictions for hospital, ICU bed,
and ventilator demand, at each week by using the
mean-squared error.

Fourth, the model does not distinguish between
patients who have recovered from COVID-19 infection
and those who died of it. Although this distinction
probably has only a small impact on forecasting short-
term hospital needs, it may have considerable impor-
tance for forecasting post-acute care needs, future
hospital needs, and overall population health. Thus,
CHIME should not be used for estimating the latter
types of needs. As more data are gathered on the dy-
namics of the COVID-19 epidemic, it will become more
feasible to parameterize increasingly complex models
to account for immunity, exposure periods, and death
(28-30).
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In conclusion, an SIR epidemic model can be
quickly parameterized on the basis of early published
case series and adapted to local population character-
istics to inform hospital planning for epidemic-related
surges in need for hospital capacity. Close collabora-
tions between hospital operational leaders and data
scientists can yield visualization tools to explore a range
of scenarios, balancing tradeoffs between model com-
plexity, interpretability, and actionable interventions.
Further work is needed to prospectively validate this
model and to further refine analytic approaches that
inform planning strategies for future epidemics.
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