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Abstract

In this paper, we try to identify the parameters for two elementary epidemic models,
the so-called SI- and SIS-models, via non-linear regression using data of the COVID-19
pandemic. This is done based on the data for the number of daily infections. Studying
the history of predictions made, we attempt to estimate their reliability concerning the
future course of the epidemic. We validate this procedure using data for the case numbers
in China and South Korea. Then we apply it in order to find predictions for Germany,
Italy and the United States. The results are encouraging, but no final judgment on the
validity of the procedure can yet be made.
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1 Introduction

In most countries, social distancing measures are in effect now in order to fight the COVID-
19 pandemic. Considering the serious effects of these measures on the affected societies
and the ensuing political discussions on their intensity and duration, it would be highly
desirable to be able to make modeling based predictions on the future timeline of the
epidemic, as long as the measures are upheld. Of course, many attempts are made in
this direction. However, most of them require very detailed data that are laborious and
time-consuming to generate.

In this work, we try to study the possibility to base predictions on data sets readily
available, namely the number of reported infections. We are aware, that these numbers
depend strongly on the intensity of testing done in the various countries and the reliability
of the reported numbers. In this work we presume that there is a factor, country-specific,
but constant in time, between the reported and the actual number of cases. If this
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2 2 An elementary model

assumption were valid, the total number of infected individuals would be off by this very
factor. However, other parameters, like the point in time when the peak in the numbers
of daily infections would occur, or the following rate of decay of these numbers, would
not be affected.

This is an updated version of the preprint [2]. The following changes have been made:

We use now the the number of daily infections averaged over seven days. This eliminates
the observed effects of periodic delays in reporting of cases and leads to much more
regular data, thus that local minimization can be used for parameter identification. We
abandoned the use of accumulated cases as done in [2], since these data proved very
insensitive to variation of the model parameters.

It turned out, that often the decrease in the number of daily infections after the peak is
slower than the increase observed before. This effect can be captured nicely by extending
the SI-model employed in [2] to the so-called SIS-model. This also allows a preliminary
judgment of the effectiveness of the social distancing measures taken.

Since a prominent decrease in the number of daily infections can be observed in some
countries now, we can use these data to perform a post-analysis of the reliability of the
predictions made based on the procedure presented in this paper.

Finally, we would like to stress, that we intend this work to be the starting point of a
discussion and maybe further research. By no means, having a background in engineering
and not in virology or epidemiology, we are claiming any medical expertise. The paper
should be rather seen as a general exercise in modeling and interpretation of data.

2 An elementary model

Our aim is to model a situation where social distancing measures are in effect, as currently
is the case in most countries. This means, that only a small portion of the population
is affected, which is well but not completely isolated from the rest. As starting point,
we refer to the SIS-compartmental model, see [5], compare also the SIR-compartmental
model, [4]. It is defined by the differential equations

Ṡ = −αSI + ωS, İ = αSI − ωI. (1)

Here I(t) is the number of individuals in the infectious population and S(t) denotes the
number of individuals in the susceptible population, in our case those who can get infected
because they are not protected by social distancing. The parameter α is related to the
effective reproduction number by

Reff = NTinf α, (2)
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where N is the initially susceptible population and Tinf is the time period during which an
individual is infectious. For Sars-Cov-2, no definite value for Tinf has yet been reported.
The parameter ω defined in our case the rate of exchange of individuals between the
contained part of the population and the rest. Hence, it can be considered a measure of
the effectiveness of the social distancing.

The system of ordinary differential equations given by Eqs. (1) possesses the closed form
solution

S(t) = a
ebt0

ebt0 + ebt
+ c, I(t) = a

ebt

ebt0 + ebt
, (3)

where

α =
b

a
, ω =

bc

a
. (4)

Note that parameter a does not correspond to a in [2]. Obviously, we have

N = a+ c = S(t) + I(t). (5)

The instant given by t0 marks in some sense the peak of the epidemic, defined by

S(t0) =
a

2
+ c, I(t0) =

a

2
. (6)

We have the initial conditions

S(−∞) = N, I(−∞) = 0, (7)

and the limiting values
S(∞) = c, I(∞) = a. (8)

For the purpose of parameter identification, we need the cumulative number of infected
individuals Ic, defined as

İc = αSI. (9)

Substitution of Eqs. (3) and (4) into Eq. (9) gives

İcum
a,b,c,t0

(t) = ab
ebt0ebt

(ebt0 + ebt)2 + bc
ebt

ebt0 + ebt
, (10)

and

Icum
a,b,c,t0

(t) = a
ebt

ebt0 + ebt
+ c log(ebt0 + ebt)− bct0. (11)

3 Parameter identification

We determine the three parameters of our model via non-linear regression. The data
taken from the worldometer web page, [1], which essentially uses the data from the Johns
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4 3 Parameter identification

Hopkins University Center for Systems Science and Engineering (JHU CCSE). For the
parameter identification done in this paper, we have used the available data up to including
Apr. 20, 2020. The data are provided in form of lists {(t1, I1), . . . , (tNdata

, INdata
)} for the

total number of infections up to day ti, and {(t1,∆I1), . . . , (tNdata
,∆INdata

)} for the number
of daily infections. Time is measured in days, starting on Jan. 1, 2020. Hence, t = 1 d
corresponds to Jan. 1, t = 32 d to Feb. 1, t = 61 d to Mar. 1, 2020, and so on. Obviously,
we have

Ii =
i∑

j=1

∆Ij. (12)

In [2] we employed the number of total infections as well for parameter identification.
However, we noticed that this leads to rather ill-conditioned problems giving results with
little predictive power. So we did not pursue this approach anymore.

In order to achieve stable parameter identification, we use 7-day averages of the data,
eliminating periodic oscillations caused by delays in data reporting. The n-day average
is given as

∆Ind
i =

1

n

i+(n−1)/2∑
j=i−(n−1)/2

∆Ij, (13)

for n odd. As an example, we show the result of this procedure for the data concerning
South Korea and Germany in Fig. 1. Note that the lists of averaged data are shorter by
three days at their beginning and end.

Figure 1: Daily cases ∆Ii in black and 7-day averages ∆I7d
i in red, South Korea left,

Germany right.

The model function corresponding to the averaged data over an interval ∆t is given by

İcum,∆t
a,b,c,t0

(t) =
1

∆t

∫ t+ 1
2

∆t

t− 1
2

∆t

İcum
a,b,c,t0

(t̄)dt̄ =
1

∆t

(
Icum
a,b,c,t0

(t+ ∆t/2)− Icum
a,b,c,t0

(t−∆t/2)
)
. (14)

In order to identify the model parameters, let us define the error e7d(a, b, c, t0) with respect
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to 7-day averages of daily cases by

e7d(a, b, c, t0)2 =

Ndata−6∑
i=1

(
İcum,7d
a,b,c,t0

(ti)−∆I7d
i

)2

, (15)

the data norm

n2
7d =

Ndata−6∑
i=1

(
∆I7d

i

)2
, (16)

and the relative error

e7d,rel(a, b, c, t0) =
e7d(a, b, c, t0)

n7d

. (17)

Finally, we find the parameters a, b, c, t0 by minimizing the errors. However, it turns
out, that the determination of parameter c is rather ill-posed during stages of the epi-
demic, when the number of daily infections is still on the rise. This effect often leads to
overly pessimistic predictions. Our solution to this problem is to reduce the SIS-model
to the so-called SI-model during this stage, setting c = 0. Thus, we are performing two
minimization procedures:

{a0, b0, t00} = argmin
{
e7d(a, b, 0, t0)2

∣∣ a, b, t0 }, (18)

{a1, b1, c1, t10} = argmin
{
e7d(a, b, c, t0)2

∣∣ a, b, c, t0 }. (19)

Minimization is done using the computer algebra system Mathematica, [3]. For our pur-
poses, the local minimization algorithm given by the FindMinimum function, which uses
a version of an Newton-Raphson procedure, works fine. Attention has to be given, though,
to choosing appropriate initial values for the parameters in order to achieve convergence.

Both parameter identification procedures given in Eqs. (18) and (19) are performed every
time. Then the parameter set {a1, b1, c1, t10} will be preferred over {a0, b0, t00} as soon as
it returns a significantly smaller error defined as

e7d(a1, b1, c1, t10) <
1

2
e7d(a0, b0, 0, t00). (20)

4 Results

In Figs. 2 to 6, the 7-day averages of the numbers of daily cases (left) and the non-averaged
numbers of total cases (right) are plotted versus time in days. The corresponding data
are shown in blue color.

In Fig. 2 and Fig. 3 the data for China and South Korea are displayed. Both countries
can be considered to be in a late stage of the epidemic and the data are matched well by
the model. In Figs. 4, 5 and 6, the corresponding graphs are plotted for Germany, Italy
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6 4 Results

and the United States. These countries can be considered to be in earlier stages of the
epidemic. In these cases, the modeling agrees very well with the data, too. Interestingly,
a prominent decline in daily cases is predicted for Germany, while for Italy and the United
States, the daily cases are predicted to remain at a high level. However, we would rather
argue, that this means, that a reliable prediction is not possible from the data at this
stage.

Figure 2: China, left: 7-day average of daily cases, İcum,7d
a,b,c,t0

(t) (magenta) versus data ∆I7d
i

(blue), right: total cases (Icum
a,b,c,t0

(t) (magenta) versus data Ii (blue).

Figure 3: South Korea, left: 7-day average of daily cases, İcum,7d
a,b,c,t0

(t) (magenta) versus data

∆I7d
i (blue), right: total cases (Icum

a,b,c,t0
(t) (magenta) versus data Ii (blue).

Figure 4: Germany, left: 7-day average of daily cases, İcum,7d
a,b,c,t0

(t) (magenta) versus data

∆I7d
i (blue), right: total cases (Icum

a,b,c,t0
(t) (magenta) versus data Ii (blue).
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Figure 5: Italy, left: 7-day average of daily cases, İcum,7d
a,b,c,t0

(t) (magenta) versus data ∆I7d
i

(blue), right: total cases (Icum
a,b,c,t0

(t) (magenta) versus data Ii (blue).

Figure 6: United States, left: 7-day average of daily cases, İcum,7d
a,b,c,t0

(t) (magenta) versus

data ∆I7d
i (blue), right: total cases (Icum

a,b,c,t0
(t) (magenta) versus data Ii (blue).

Some key data provided by the model are given in Table 1.

a b c t0 e7d,rel

China 81970 0.22 0 40.0 0.20
South Korea 7225 0.37 195 60.5 0.09
Germany 155134 0.15 0 90.7 0.09
Italy 82430 0.19 17956 90.7 0.03
United States 251413 0.22 129713 91.1 0.02

Table 1: values of key parameters on Apr. 20, 2020

5 Reliability of predictions

Let us attempt a post-analysis here. In Figs. 7, 9, 11, 13, and 15, we show the development
of the identified model parameters a, b, c, t0 over time. And in Figs. 8, 10, 12, 14, and
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8 5 Reliability of predictions

16, the model results obtained at several instances in time a displayed versus the 7-day
averaged numbers of daily infections. Black dots indicate the specific instances in time.
Hence, the available data have been employed up to this point.

For China (Figs. 7, 8), it can be seen that the model parameters remain constant after t =
56d. This coincides with the point where the model starts to agree with the data. Before
this instance, the number of infections is either under- or overestimated. Unfortunately,
we have to state low predictivity here.

For South Korea (Figs. 9, 10), the model parameters vary only a little after t = 78d.
Once again, this coincides with the point where the model starts to agree with the data.
However, in comparison to China, this instant is reached earlier in time, though in the
declining phase of the epidemic.

For Germany (Figs. 11, 12), we have converged parameters past t = 95d. We can see, that
we have reliable predictions shortly after the peak in the number of daily infections. The
predictions are on the optimistic side with respect to the total duration of the epidemic.

An interesting development of the predictions can be observed for Italy (Figs. 13, 14).
At first, the parameters behave similarly as in the case of Germany and the predictions
appear to converge. Then, however, the parameter c jumps suddenly to a finite value,
because the number of daily infections declines slower than expected. At the moment, it
can not be said at which level this number will stabilize.

For the United States (Figs. 15, 16), the parameter c fluctuates between zero and a finite
value, indicating a very dynamic course of the epidemic. No reliable predictions can be
made yet.
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Figure 7: China, model parameters a (upper left), b (upper right), c (lower left), t0 (lower
right) versus time in days.

Figure 8: China, timeline of predictions of daily infections, 7-day averaged data in
black,model predictions in red, black dots mark the point in time up to which data have
been used.
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10 5 Reliability of predictions

Figure 9: South Korea, model parameters a (upper left), b (upper right), c (lower left),
t0 (lower right) versus time in days.

Figure 10: South Korea, timeline of predictions of daily infections, 7-day averaged data
in black,model predictions in red, black dots mark the point in time up to which data
have been used.
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Figure 11: Germany, model parameters a (upper left), b (upper right), c (lower left), t0
(lower right) versus time in days.

Figure 12: Germany, timeline of predictions of daily infections, 7-day averaged data in
black,model predictions in red, black dots mark the point in time up to which data have
been used.
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12 5 Reliability of predictions

Figure 13: Italy, model parameters a (upper left), b (upper right), c (lower left), t0 (lower
right) versus time in days.

Figure 14: Italy, timeline of predictions of daily infections, 7-day averaged data in
black,model predictions in red, black dots mark the point in time up to which data have
been used.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2020. .https://doi.org/10.1101/2020.04.07.20056937doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.07.20056937
http://creativecommons.org/licenses/by-nc/4.0/


13

Figure 15: United States, model parameters a (upper left), b (upper right), c (lower left),
t0 (lower right) versus time in days.

Figure 16: United States, timeline of predictions of daily infections, 7-day averaged data
in black,model predictions in red, black dots mark the point in time up to which data
have been used.
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14 References

6 Conclusion

We have identified the parameters in an elementary epidemic model via non-linear re-
gression using data of the covid-19 pandemic. Furthermore, we have attempted to get an
insight into the reliability of predictions based on this procedure by observing the time-
line of the parameters calculated. Our results indicate, that this approach might work.
However, reliable predictions seem to be possible after the peak of the number of daily
infections has already been reached. For earlier predictions, a better understanding of the
internal mechanisms of the epidemic is probably required. This has to go along with the
availability of more detailed data than just the plain numbers of daily infections.
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