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Abstract

During a burgeoning outbreak of a novel disease, public attention will ordinarily
expand as the severity of the outbreak expands—as infections multiply and news
reports accumulate. Such public attention will in turn reinforce tactics to control the
outbreak. In classical epidemiological models, effects of such tactics can be incorporated
in standard parameters of transmission, recovery, and mortality. Unfortunately, early in
an outbreak those individual parameters may be poorly known, hence corresponding
models can get lost in uncertainty. This makes it difficult to determine whether the
disease is spreading exponentially or logistically, or along another path. Examining
cases over time is also problematic, as a logistically growing infection that is leveling
off appears exponential in early phases. Here we report on the most basic mechanistic,
ecological model we can imagine, which can help distinguish growth that is and is
not under control. This approach did a satisfactory job predicting the final outcome
of the Ebola outbreak of 2014–15. The model’s two parameters were computable in
real time, well before the outcome was actually known. The first parameter is an
intrinsic rate of increase in cumulative deaths or reported cases. The second parameter
is related to the human social system and represents all tactics that combine to control
the outbreak. That parameter is coupled to the number of cumulative deaths or cases.
We examine the basic mechanisms operating in this model and show the predictions
made during the Ebola outbreak. We also consider how this basic model is performing
for the Covid-19 pandemic and highlight ecological models that align with popularly
discussed concepts such as flatten-the-curve, exponential growth, and inflection points
of curves.

Highlights

• We exhibit a macroscale model that includes a biological pathogen-growth factor
and an ecological social-response factor.

• All parameters in the model are designed to be measurable from publicly available
data.

• Early in the 2014–15 Ebola outbreak the model accurately predicted the final
number of deaths.

• The same model displays a low chance of 100,000 deaths or more in the United States
if strong measures continue and expand.
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I. Introduction

In September 2014, some Ebola modelers were allowing for worst-case scenarios, partly by
projecting continuing exponential growth [18], and later received discouraging coverage for
overestimating the outbreak [6]. The number of cases of Covid-19 are often considered

exponential as well, and this has major repercussions, for example, in communication to the public,
projecting morbidity and mortality, and evaluating effectiveness of control measures. However,
the early phase of logistic growth also appears exponential. How can the two be distinguished?

Rather than determining when the exponential part of a disease curve will “switch" to logistic,
we propose considering the more likely scenario that disease cases and other single populations
in nature never grow exponentially—that is without bound or carrying capacity—for long [7].
Although there is an early phase of logistic growth that appears “exponential-like" (and some
populations may actually grow exponentially or super-exponentially at times) the growth of an
epidemic is likely logistic throughout. The basic method presented here revealed that the spread of
Ebola in 2014–15 was logistic from early in the outbreak. That is, the rate of deaths were declining
relative to new deaths from the beginning, undoubtedly due to ever-increasing efforts at control.
From early in the outbreak, the method projected final deaths in the epicenter of western Africa to
be the order of 10,000 (Figure 1C), which is close to how the outbreak developed.

What will the same method say about Covid-19?

II. Models

A model is just a simplified view of something more complex. One of the early disease models
was by William Farr, who collected data on smallpox deaths in the 19th century [17] and found
the time course had the shape of a Gaussian curve. That became known as Farr’s Law and is still
referenced today [20]. It is entirely phenomenological, meaning that it simplifies the description of
the phenomenon, rather than proposing a simplified mechanism underlying the phenomenon, as
a mechanistic model does.

Ideally, a mechanistic model provides (1) a simplified view of a complex system, and
(2) glimpses into the future of the system based on measurements from the past and present. To
accomplish the second point, a mechanistic model must have dynamical variables and parameters
that can be measured. If it is overly mechanistic—if it contains elements that cannot be readily
determined early in the outbreak of a novel disease—it may help understand the conceptual
dynamics of a system, but cannot be used for projections of the system into the future. Even basic
epidemiological models, such as the common SIR model (Appendix I), are overly mechanistic in
that way. Of course, for a conceptual understanding of disease transmission, this representation
is used because new infections in susceptible individuals are caused by individuals previously
infected, so the development of the disease depends on both of those numbers. However, without
medical tests able to detect infections, the number infected will not be known, hence the trans-
mission parameters such as rates of infection, recovery, and death will not be known. Thus it
can be difficult or impossible to accurately project the course of the outbreak using a classical
model with multiple unknown parameters [9]. In addition, early in the epidemic, individual
variation in transmission and behavior may have outsized effects, making them even more difficult
to parameterize. Therefore, simpler views are needed.

Here we apply a simpler view based on the unified models of ecology [15]. In their most
basic form applied to epidemiology, these contain (1) a biological parameter, r, related to the
infectivity of the pathogen, and (2) an ecological parameter, s, related to interactions among the
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hosts. Whether the hosts are crops or other plants, wild or domestic animals, or humans, the
ecological factor is essentially an interactive or social factor, which becomes most prominent in
human responses to serious diseases.

In this paper we are using macroscale models, which amalgamate all the individuals of a
category into a single number representing that category, such as the total number of deaths
at a given time. In contrast, microscale models [10], such as agent-based models, keep track of
individuals, thus allowing variations among individuals. Microscale models can handle genetic
variation within groups, variation in infectivity among individuals, such as super-spreaders
in disease, and other finer details. A macroscale model is often a few lines of computer code
(Figure 5), whereas a microscale model can be many thousands of lines of code, and therefore not
always helpful early in an epidemic when many details remain unknown.

However, a macroscale model will not tell how many hospital beds are needed in specific
locations, in which specific regions within a country outbreaks will occur first, or what specific
measures should be taken to combat a disease. What it can tell is the magnitude and timing
of the problem, to help inform all the conflicting requirements to combat an expanding disease
while keeping a society functioning. It also tells if a complex microscale model is in the right
ballpark. To be believed, we propose that a complex microscale model should be paired with a
corresponding transparent, empirically based macroscale model, whose output the microscale
model matches when its internal conditions are sufficiently simplified.

With respect to Ebola in 2014, the number of infections early in the outbreak was not accurately
known. But deaths occurred in a fraction of those infected and could be tracked as a more
definitive measure. When properly rescaled, the cumulative number of deaths can be a proxy
in particular models for the primary dynamical variable, the number of infections (Appendix I).
Moreover, in a dread disease like Ebola, the cumulative number of deaths affects society’s view of
the seriousness of the outbreak, and hence the number of deaths feeds back into efforts to control
the disease. Cumulative deaths thus becomes a primary dynamical variable in its own right, and
secondarily a proxy for the number of infections at a fixed average time in the past.

How can cumulative deaths be a variable in a dynamical system, when prior deaths do not
directly cause new deaths? This is because at the early stage of an epidemic when the growth
rate appears approximately exponential, the cumulative number of deaths is mathematically
the integral of the current number of deaths, and for the exponential function those two are
proportional (Appendix I).

We create our macroscale model as a simplified SIR model. Early in the course of a rapidly
spreading outbreak of infectious disease, the fraction of the population infected is low, which
simplifies the dynamics and reduces the number of parameters needed to estimate the ultimate
size and duration of the outbreak, and thereby help determine the level of human effort needed to
control it. In such situations the standard SIR model can be greatly reduced to a related but rather
different “rsN" model, which is amenable to modeling and data fitting, even early in the course of
an outbreak, because its parameters can be known. It is the simplest form of a density-dependent
ecological model, motivated by a general model for growth of an ecological population as a
function of its density (Equation 1 of Figure 2, [12]). Truncating on the right of the equal sign
to terms of first order creates the two-parameter rsN model (Equation 2 of Figure 2). With its
two-parameter structure, its differential form has an explicit solution as a function of time, shown
as Equation 3 of Figure 2.
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Figure 1: Early projections of the Ebola outbreak of 2014–2015. Red and gray dots mark empirical estimates of
cumulative deaths from who sources as the outbreak proceeded. The red dots were used to generate the
projections, the gray dots to judge accuracy. Solid curves show various projections. (A) Deaths were
accelerating when we started tracking the outbreak as part of a classroom exercise, though at a decelerating
relative rate. The blue curve is the best-fit projection based on doubling times among the red dots—in other
words, estimating the exponential growth. The green curve is the best fit for logistic growth. The blue and
green curves seem quite similar, but they have dramatically different outcomes rather quickly. (B) The same
data shown as percentage change in deaths versus total deaths. The red dots from early in the epidemic reveal
a downward slant. The green line is a regression line that follows this trend, whereas the blue line is the
mean through the red points. Using the mean generates exponential growth, and using the slope generates
logistic growth. Despite much noise in the early data, the green regression line successfully projected the
outcome. Looking at the data points, a downward blip began between four and five thousand deaths, and
then an upward super-exponential blip arose, followed by another downward and smaller upward blip before
settling down (traced in orange as a curve smoothed from the data). Curiously, this roughly matches the
theoretical pattern illustrated in Appendix II. (C) Early projections and the actual course of the outbreak.
Blue is an exponential projection from the red dots at the beginning of the outbreak, corresponding roughly to
other early estimates of an emerging pandemic. This is the same curve as in Part A but extended forward in
time. Green is the logistic projection from the rsN model on Oct 12, 2014, again based only on the red dots.
Gray dots show the actual course of the outbreak, in reasonable correspondence with the theoretical projection
in green. 4
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Figure 2: One-dimensional unified equations of ecology. Equation 1: General polynomial form for any one-dimensional
ecological dynamics. Equation 2: Basic rsN form applied here. Equation 3: Explicit solution to the differential
form of Equation 2. Technically, ∆N and ∆t apply to finite intervals that arise in actual data, whereas dN
and dt refer to the differential equation models’ smoothing of them. For the purposes of this paper the two
notations can be considered interchangeable.

The term to the left of the equal sign in Equation 2 of Figure 2 represents the relative growth
in the number of individuals included in variable N. The two terms to the right of the equal sign
in the same equation, r + sN, represent an exponential growth rate, r, plus a modification to that
rate, sN, varying as the density N varies. We consider s to be an ecological interaction parameter,
related to the effect of the pathogen and the human response to the pathogen. We consider r to
be a biological parameter, related to the intrinsic properties of the disease and its spread when
conditions are ideal for it ([14], [15]).

Under the conditions that prevail at an early time t, N is small and all the terms involving N
on the right of Equations 1 and 2 of Figure 2 are insignificant, leaving the intrinsic rate r as the
dominant parameter. Likewise, if the s term is zero, density has no effect at all. In those cases
Equations 2 and 3 represent exponential growth, with a fixed doubling time ln 2/r that does not
change as the outbreak proceeds.

If s is negative, then Equations 2 and 3 of Figure 2 represent logistic growth, which on an
N versus t graph approaches a horizontal asymptote that is called the carrying capacity. The
equivalent in epidemiology would be prevalence of an endemic infection if N records cases, or
no further deaths from the disease if N records deaths. On the other hand, if s is positive, then
Equation 2 represents what is called “orthologistic" growth, so named because on an N versus t
graph it approaches a vertical asymptote, orthogonal to that of the logistic equation, indicating a
time before which the equation no longer applies and a different equation comes into play ([15]).

We should note that in ecological circles the logistic equation is sometimes thought of as
non-mechanistic. That comes in part because it usually has not been written in per-capita form,
but in a quadratic form to the right of the equal sign, which does not separate the biological from
the social components.

For data in the Ebola outbreak, we used time points and number of deaths, but cases could
also be used if accurate data were available. We then calculate (1) intervals of time, ∆t, between
successive observations, (2) the cumulative number of deaths, N(t), at each time, and (3) the
increment in number of deaths for each period, ∆N (Appendix III).

We plotted the results on a graph where the vertical axis shows the relative growth rate—that
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Figure 3: Comparing the fit of logistic and exponential growth for Ebola 2014–15, viewed three ways. The left column
illustrates logistic growth, and the right column illustrates exponential growth. The red dots were used to
generate the projections, the gray dots to judge accuracy. The first row is population size N versus time t, the
second row is population growth rate ∆N/∆t versus population size N. The third row is per-capita growth
rate 1/N ∆N/∆t versus population size N.

is, the per-capita growth rate 1/N ∆N/∆t. The horizontal axis shows deaths (or cases) thus far, N
(Figure 3E, F). Because Equation 2 of Figure 2 is linear to the right of the equals sign, we then
fitted a line to those data. This line has three valuable properties. First and most important, its
horizontal intercept estimates the number of deaths that will have occurred, if the fitted parameters
reasonably represent reality, when the outbreak would finally be subdued. Before the time of
that intercept, expanding efforts to control the disease will have driven the effective value of the
basic reproductive number, R0 [1], below 1. Second, its intercept with the vertical axis shows the
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intrinsic growth rate r—the rate of increase in deaths relative to the number of deaths. Finally,
its slope represents the strength of the social response, s. On such axes, exponential growth
(r > 0, s = 0) appears as a horizontal curve (Figure 3F), logistic growth (r > 0, s < 0) appears as
a downward sloping curve (Figure 3E), and orthologistic growth (s > 0) appears as an upward
sloping curve (not shown). Orthologistic growth can appear in microbes or other organisms that
have a mutualistic relationship with the host [4]. Thus plots on such axes distinguish among
three important classes of ecological dynamics, even when the differences are subtle and cannot
be readily perceived in most other ways of examining the data, such as trying to track doubling
times.

As a closing point on models, it is interesting that Farr’s law, which is entirely phenomenologi-
cal, can be recast into a mechanistic form. In the present Covid-19 pandemic, fitting cumulative
Gaussian curves to the data for cumulative deaths [19] parallels what Farr did for monthly deaths.
However, a cumulative Gaussian curve is essentially indistinguishable numerically from a properly
parameterized logistic curve [3], and therefore what Farr did, and what has been done subse-
quently, can be considered to be fitting the r and s parameters of a mechanistic ecological model,
using Gaussian curves as surrogates. The µ and σ of the cumulative Gaussian curve map over to r
and s of the logistic curve, and hence in this sense Farr’s method has been mechanistic all along.

III. Lessons from Ebola

The first step we followed to project the Ebola outbreak of 2014–15, as an ongoing exercise in
classes on ecology of infectious disease, was to plot the cumulative number of deaths as a function
of time. Figure 1A shows that curve as it appeared in October 2014. It appears to be exponential,
and indeed an exponential curve (blue) fits with R2 > 0.99. However, we expected that if the
number of deaths N would continue to increase, more and more international effort would be
placed on combating the outbreak. Therefore, the social parameter, s, should be negative, even
though the value or even the presence of s is not clear from the cumulative curve of Figure 1A.

We included no values before August, 2014, because some of those values were reportedly
computed and we did not want to mix two models together—the model to compute the early
estimates and the model we were creating. We started with about ten weeks of data to project the
remainder of the outbreak.

When the resulting per-capita values, 1/N ∆N/∆t, were plotted against deaths, N, as in Figure
1B, amidst all the noise, a trend appeared. The first projection we obtained in class, in October
2014, was the order of 10,000 deaths (intersection of the solid green line in Figure 1B with the
horizontal axis). Because of the considerable noise in the early data, the projection was quite
uncertain. However, the probability that it would be an order of magnitude or more higher than
10,000 deaths seemed low.

The next step was to take the estimates of r and s obtained by the process of Figure 1B and use
them as starting points for a nonlinear fit of Equation 3 of Figure 2, the solution to the differential
form of Equation 2. That results in a slight refinement of the estimates of r and s. We then used
Equation 3 to project and track the outbreak as time passed. Figure 1C shows that result. The blue
curve shows an exponential increase in deaths based on fitting a horizontal line through three
months of points in Figure 1B. The green curve shows that the projection we made in October
2014, assuming that the parameter s had meaning in representing an ongoing response to the
outbreak. The red dots represent the data we use to make both of our projections, and the grey
dots are the actual data available as the outbreak ran its course.

For a few weeks the actual data could not distinguish the curves, but within a month it was
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becoming clear that there could be merit in the more modest projections of logistic growth. This
was, by the way, a source of considerable motivation for students in the class, who began to realize
they would be able to project such a complex thing as the course of a disease outbreak using the
basic ecological tools they had been learning, as well as a source of cautious hope that a global
pandemic might not actually develop for Ebola, due to the increasing efforts we could tell were
happening in the world by looking at the steadily negative value of s.

IV. Application to Covid-19

We are now following the same steps outlined above to model Covid-19. Just as with Ebola, we
chose to use cumulative deaths available daily by country for this model [13], [8], [19] although the
CDC acknowledges that deaths from Covid-19 may be underestimated [5]. We found theoretically
that including discrete regions or countries can result in temporary periods of orthologistic growth
moderated by subsequent periods of logistic growth (Appendix II). To model that calls for a
metapopulation model [16], or possibly a spatially explicit model with a fat-tailed distribution
for dispersal, but there would not be enough information to parameterize such a model at the
beginning of the spread, and indeed some of the important dispersal events are intrinsically
stochastic. But as shown in Appendix II, a disease spreading sub-exponentially within each
region, and spreading sub-exponentially from region to region, can leave a signature of periodic
super-exponential growth across all regions, even as the disease is moderating in all regions.
Indeed, such a signature appears to be present in the Ebola data (Figure 1B).

China is an illustrative case because of its mature epidemic. The slope, s, of a regression line
fitted to 1/N ∆N/∆t versus N was negative, indicating logistic growth, since at least early February
(Figure 7). For example, a regression line through points on days 25 (mid-February) to the present
projects final deaths to be above 3000. This can also be calculated by −r/s. Other countries, for
example Spain and Italy, also have a negative s term, indicating that the epidemic may be coming
under control even as deaths accumulate (Figure 7). However their curves recently appear to be
turning horizontal, indicating a departure from the logistic curve and corresponding control of
the epidemic.

Assuming the signature of logistic growth for the US epidemic is meaningful, the regression
line through daily per-capita death rates between late March and mid April in the US projects
a range of potential deaths. The choice of data points to include in the regression line is as
yet unsystematic, so it is more useful to examine ranges of final deaths. Figure 4 shows linear
regressions run through random subsets of the data points shown as dots. A histogram for final
deaths in the US is shown in Figure 4.

V. Signatures of growth

After extracting estimates of r and s from regression lines shown in Figure 7, the parameters can
be used in other ecological population growth models. Figure 8 shows three examinations of
population growth comparing China and the US. Panels (A) and (B) are cumulative deaths, N,
over time in days. Days begin from January 22 ([13], [8]). Sample simulation code appears in
Figure 5.

Panels (E) and (F) of Figure 8 depict population growth rate, ∆N/∆t, versus population size,
N. That is, the number of reported deaths per day versus the cumulative number of deaths. The
theoretical logistic growth plotted on these axes is a second-order curve with horizontal intercepts
where new deaths per day is zero. The blue line is the inflection point of the curve and corresponds
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Figure 4: (Top) Projections of total deaths from Covid-19 in the US. The intercept of the green regression lines with
the horizontal axis is a possible outcome for the US, but the waves in the data points above and below the
regression line suggest the outcome is uncertain. The regression lines were drawn through a random subset
of the filled dots. (Bottom) Histogram of the projected outcomes in the figure above. The figures were made
from an application we created, publicly available at z.umn.edu/covid-19-rsn to examine up-to-date versions
of the graphs shown here, which are necessarily frozen at the time of this writing.

with the horizontal line in panels (A) and (B).
At the inflection point of a logistic curve (see also blue lines in Figure 3A, C, E), the population

growth rate ∆N/∆t is at its peak. That is, the number of new cases (or deaths) per unit time is at
its maximum. In the theoretical form, the inflection point corresponds to half the carrying capacity.
The inflection point does not indicate a change in growth pattern, say from exponential (Figure
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Figure 5: Simulating an rsN model. With r of 0.1 and s of −0.0001, the simulated outbreak stabilizes at 1000 deaths,
equal to −r/s. This generic pseudocode uses the Euler method to create two graphs, one showing the number
of deaths as a function of time, due to the r term, and a second showing a steady decrease in the relative
rate of deaths, due to social efforts advancing to combat the disease, encoded in the sN term. There are more
sophisticated methods than Euler’s, but with the present speed of computers, and with small enough time
steps, the basic Euler’s method suffices for most needs.

3B) to logistic growth (Figure 3A). Instead, in this representation the epidemic growth has been
logistic all along, so the approximate location of the inflection point can be estimated early on,
assuming consistent conditions. There are two steps to calculating the theoretical peak population
growth rate, ∆N/∆t, or the inflection point of the logistic curve. Find the carrying capacity, K,
where the regression line in the 1/N ∆N/∆t versus N graph crosses the horizontal axis. This can
also be calculated as −r/s. Next divide that value for K in half, −(r/s)/2.

Panels (C) and (D) of Figure 8 depict population growth rate, ∆N/∆t, versus time in days. This
is the number of reported deaths per day over time. The familiar phrase “flattening the curve"
applies to this graph. The blue line is analogous to the blue lines in the other panels of Figure 8; it
is the time where ∆N/∆t is theoretically at a maximum. After the time indicated by the blue line,
if the r and s are accurate, the daily number of deaths will decrease.

VI. Overcoming an epidemic

William Foege, who helped orchestrate the complete elimination of smallpox from human popula-
tions in the world, explains that we can conquer disease because we evolve more rapidly than the
pathogens do [11]. That may seem surprising and impossible, but he points out that pathogens
are restricted to adapt biologically, whereas we can adapt socially and technologically much more
rapidly than that. Thus we overcome.

In order to overcome and eliminate a deadly disease from a region in a finite time, the
proportional rate of deaths for that region must reach zero in a finite time, as shown globally
for Ebola-14 in Figure 1, or as China has approached for Covid-19 in Figure 7, or in the green
theoretical curve of Figure 6. Many countries appear to be on such paths now, but some instead
show straight-line increases in cumulative number of deaths when plotted against time [2]. A
straight-line increase in cumulative number of deaths, or equivalently cumulative number of cases,
indicates that control measures are in place in the country, but that those control measures may not
be sufficiently advancing with time. The corresponding curve has a hyperbolic shape (red curve
in Figure 6). If that continues, the disease may become endemic, as so many diseases have become
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throughout the course of history—embedded in the population at some average prevalence, often
with periodic outbreaks.

The message here is that for a disease to be conquered, efforts to control it must be continually
increasing. They can start with measures to reduce the spread of the disease, such as social
distancing and facemasks in the case of Covid-19, and expand to increasing numbers of hospital
beds as needs continue, and to methods to help people recover, but must continue to vaccines to
further reduce the spread, possibly to drugs to reduce susceptibility or infectivity, and to continual
quests for antimicrobials to cure those infected. Relaxing on the pursuit of new efforts of control
may not result in the green line in Figure 6.

Figure 6: Signatures of growth for possible control measures. Exponential expansion of an epidemic can result from
no special efforts to control a disease (blue line), linear expansion can result from fixed efforts (red curve),
whereas ever-increasing efforts are called for to extinguish the disease (green line, touching the horizontal
axis in a finite time).

VII. Discussion

The rsN method has at least two major benefits. Exponential population growth is often linearized
by plotting it on a log scale. However logarithmic lines may not be broadly intuitive and they do
not offer a glimpse of mechanism, as per-capita growth rate does. Second, modelers know that
exponential growth is never possible over the long-term [7]; the curve will eventually level out.

We should ask why a basic formulation like the rsN model should work. As a model is
refined—with more parameters, deeper mechanisms, and greater spatial resolution—at least three
uncertainties come into play.

A. Model errors. There may be uncertainties in the deeper mechanisms that are added to the more
complex model, so that the mechanisms do not precisely mimic the dynamics of the actual
system being modeled. For example, the process might be modeled as either density-dependent
or frequency-dependent transmission, when in fact the actual transmission may be a blend of
those two.

B. Data errors. Data required to parameterize a more complex model may not be available or
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accurate. For example, as mentioned, the actual prevalence in a model of a disease with an
asymptomatic phase cannot be known unless an assay for the infection is widely available.
With more and more parameters in a model, statistical variance in estimates of the parameters
can add up to overwhelm the model. This is related to the statistical property that the variance
of a sum is the sum of all the individual variances.

C. Sampling errors. Finer resolution in a model will reduce the number of data points observed for
each category, eventually to a level where inevitable statistical errors in sampling can combine
with nonlinearities in the model to make an estimation of the parameters intractable and to
thereby produce erroneous results.

The first two of these uncertainties involve science in constructing the model and determining its
correctness, and in understanding where the data being gathered may not completely represent the
process being modeled. The third of these is purely statistical, given a model and its parameters.
For any specific case, it is possible to use statistical partitioning into multiple simulations to see
how subdivisions of the model, for example into smaller and smaller geographic regions, might
introduce errors in more complex models that are not inherent in simpler ones.

Finally, the projections of the number of US deaths from Covid-19 we present here are
considerably smaller than some other estimates that have been projected. However, that must not
be taken as a reason to relax efforts to subdue the spread. On the contrary, it is evidence that the
expanding measures are working, and they are visible as a negative s term in the model. Relaxing
the measures as deaths increase, or as time passes, before the disease is subdued, will change the
value of the s term and increase the projections offered here. The cumulative number of deaths
can approach a limit, −r/s, when measures continue to expand. If measures don’t continue in
this way, these projections from real data will not hold. Continuing future applications of this
model using deaths can reflect, with some delay, when measures represented by s are not keeping
pace with what is needed.
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Figure 7: Per-capita death rate 1/N ∆N/∆t versus deaths N reported from Covid-19 in some countries with the highest
death tolls as of the date of this writing. Day 1 is January 22, 2020, in each panel. One sample regression
line indicates a possible trend for each country. A horizontal regression line indicates exponential-like growth
of the disease and a negative slope indicates logistic growth. Data above the curve as it approaches the axis
indicate growth departing from logistic.
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Figure 8: A progression of plots comparing Covid-19 deaths in US and China. Panels (A) and (B) depict deaths, N,
over time in days. Day 1 is January 22, 2020 in each panel. A horizontal blue line indicates one possible
inflection point where ∆N/∆t is at a theoretical maximum, which is at half of projected equilibrium N.
Panels (C) and (D) depict population death rates, ∆N/∆t, versus time. The blue line depicts the theoretical
time at which population death rates, ∆N/∆t, are at maximum using a likely r and s value. In the time
following the blue line, deaths per day are projected to decrease, indicating a “flattening of the curve."
Panels (E) and (F) depict population death rates, ∆N/∆t, versus deaths, N. The blue line indicates the same
maximum ∆N/∆t.
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Appendix I. Cumulative deaths as a dynamical variable

Using the cumulative number of deaths as a dynamical variable may seem unwarranted because
past deaths do not feed forward to cause new infections. This appendix explains why this actually
is warranted, and doing so is useful because deaths are one of the few variables that can be
estimated with a degree of accuracy early in an outbreak.

Figure 9: Proportionality of infections and cumulative deaths

Equation 1. The starting point is an SIR epidemiological model, augmented here to also track
deaths. S = S(t) is the number of individuals in the population at time t who are susceptible
to the disease, I = I(t) is the number infected, R = R(t) the number once infected but now
recovered, and N = N(t) the number who have died. Both R and N cumulative values, with flows
in but not out of the categories. Parameter β is the infectivity, γ the rate of recovery, and α the rate
of death from the disease. The values of most of those parameters and variables cannot be known
accurately at the beginning of an outbreak. Functions gi(t) represent other population processes
such as births, deaths, or migration.

Equation 2. The central part reduces to an I model. Suppose that a new outbreak begins with
a single infection and spreads from low levels based on its transmission parameters. Suppose
also that most of a large population is susceptible, so that the term S/(S+I+R) is essentially 1.
Further suppose that the disease spreads rapidly relative to ordinary population processes such as
births, so that population changes embedded in functions gi(t) will be negligible. In that case the
SIR model reduces to an I model that is approximately dependent only on the infectivity β, the
recovery rate γ, and the death rate α. This reduced equation has an explicit solution I(t), which
appears to the right of the arrow. The multiplicative constant of integration is unity because the
number of infections at t=0 is 1.

Equation 3. The total number of deaths, N, accumulates in proportion to the number of infections.
The number of infections has an explicit solution and the differential equation for the number of
deaths has an explicit solution too. That solution appears to the right of the arrow. The term ‘−1’
is a constant of integration arising because the number of deaths at t=0 is 0.
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Equation 4. The relative rate of change in infections, dI/dt (left part of Equation 2) divided by I
(right part of Equation 2, integrated), which is r = β − γ − α.

Equation 5. The relative rate of change in cumulative deaths is dN/dt (left part of Equation 3)
divided by N (right part of Equation 3, integrated), which is approximately r = β − γ − α.

In all of the equations above, adjusting β downward represents efforts to control the spread of
the disease, such as isolation and face masks in the present pandemic. Adjusting α downward
represents better care to reduce mortality, for example increasing the abundance of respirators in
hospitals. Adjusting γ upward also represents better care, helping those infected recover more
quickly. It can also represent antibiotics that can cure individual already infected. However,
vaccination is not provided for in SIR Equation 1. That would be handled by an additional
term −κS in dS/dt and +κS in dR/dt, directly connecting the susceptible S category to the R
category—R then meaning resistant rather than recovered.

In summary, because cumulative deaths N grow in close proportion to the number of present
infections I, we may construct a dynamical system based on cumulative deaths that represents the
dynamics of the SIR system when the proportion of susceptible is high, as in the early stages of
an outbreak. It can be shown by simulation that this extends beyond the early phases and to more
general conditions, as illustrated in this paper.
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Appendix II. Sub- and super-exponential growth

The observed relative rate of spread across a region or around the globe can oscillate, sometimes
apparently spreading faster than exponentially and appearing to be out of control, while at other
times spreading slower than exponentially and appearing to be moderating. Part of this can be
due to new regions becoming infected that differ in their degrees of unpreparedness for such an
event. Another part, however, can simply be intrinsic to the dynamics of a spreading pandemic.
This appendix illustrates numerically how the latter can arise. It is related to the general topic of
ecological metapopulation models [16].

Suppose that when an infection reaches a new region, it starts to spread through the region at a
decreasing rate, because of increasing care in local neighborhood interactions and other means, as
happens in Equations 2 and 3 with a negative s. Further suppose that sometime during its spread
through a region, some infected members carry it to different regions, through long-distance
interaction such as travel by air or rail.

The data table below starts with a single infected region, column C01, that grows logistically
from a single infection ultimately to 1000 infections, but about halfway through the expansion, it
seeds two other uninfected regions, columns C02 and C03, within which the infection also starts
spreading logistically. Later the three now-infected regions each seed one uninfected region on
average, now making six total infected regions. Later still the six now-infected regions each seed
less than one new region each. Thus the spread between regions is slowing, from 2 new regions for
each infected region to 1 new region to about 0.8, and the rate of spread within each region is also
continually moderating following logistic dynamics. Nonetheless, across all regions combined, the
disease can grow faster than exponentially at times, as it is subsiding (Figure 10).

Figure 10: Local growth and regional spread graphically. (A) From the right-most column of 11, representing all
regions combined, the expansion appears to be exponential. It is not, even though an exponential curve
through the data fits with R2 > 0.99, (B) The same data graphed as a per capita growth rate, revealing the
curve in Part A as sub-exponential, though with a signature of repeated blips of super-exponential and sub-
exponential growth. (See Figures 7 and 1B for similar signatures in actual data from Ebola (2014–15) and
Covid-19).
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Figure 11: Local growth and regional spread of a fictional disease.
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Appendix III. Early data for Ebola (2014–15)

Figure 12: Early data for Ebola (2014–15)
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