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Abstract

The SIR (‘susceptible-infectious-recovered’) formulation is used to uncover the generic
spread mechanisms observed by COVID-19 dynamics globally, especially in the early
phases of infectious spread. During this early period, potential controls were not
effectively put in place or enforced in many countries. Hence, the early phases of
COVID-19 spread in countries where controls were weak offer a unique perspective on
the ensemble-behavior of COVID-19 basic reproduction number Ro. The work here
shows that there is global convergence (i.e. across many nations) to an uncontrolled
Ro = 4.5 that describes the early time spread of COVID-19. This value is in agreement
with independent estimates from other sources reviewed here and adds to the growing
consensus that the early estimate of Ro = 2.2 adopted by the World Health
Organization is low. A reconciliation between power-law and exponential growth
predictions is also featured within the confines of the SIR formulation. Implications for
evaluating potential control strategies from this uncontrolled Ro are briefly discussed in
the context of the maximum possible infected fraction of the population (needed for
assessing health care capacity) and mortality (especially in the USA given diverging
projections). Model results indicate that if intervention measures still result in Ro > 2.7
within 49 days after first infection, intervention is unlikely to be effective in general for
COVID-19. Current optimistic projections place mortality figures in the USA in the
range of 100,000 fatalities. For fatalities to be confined to 100,000 requires a reduction
in Ro from 4.5 to 2.7 within 17 days of first infection assuming a mortality rate of 3.4%.

Introduction 1

A heated dispute about the effectiveness versus risk of smallpox inoculation was playing 2

out in eighteenth-century France, which was to launch the use of mathematical models 3
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in epidemiology. This dispute moved inoculation from the domain of philosophy, 4

religion, and disjointed trials plagued by high uncertainty into a debate about 5

mathematical models - put forth by Daniel Bernoulli (in 1766) and Jean-Baptiste le 6

Rond D’Alembert (in 1761), both dealing with competing risks of death and 7

interpretation of trials [1]. Since then, the mathematical description of infectious 8

diseases continues to draw significant attention from researchers and practitioners in 9

governments and health agencies alike. Even news agencies are now seeking out 10

explanations to models so as to offer advice and clarity to their audiences during the 11

(near-continuous) coverage of the spread of COVID-19 [2]. The prospect of using 12

mathematical models in conjunction with data is succinctly summarized by the Nobel 13

laureate Ronald Ross, whose 1916 abstract [3] enlightens the role of mathematics in 14

epidemiology today. A quotation from this abstract below, which foreshadows the 15

requirements and challenges for mathematical models to describe emerging epidemics 16

such as COVID-19 [4, 5], needs no further elaboration: 17

It is somewhat surprising that so little mathematical work should have been 18

done on the subject of epidemics, and, indeed, on the distribution of diseases 19

in general. Not only is the theme of immediate importance to humanity, but 20

it is one which is fundamentally connected with numbers, while vast masses 21

of statistics have long been awaiting proper examination. But, more than 22

this, many and indeed the principal problems of epidemiology on which 23

preventive measures largely depend, such as the rate of infection, the 24

frequency of outbreaks, and the loss of immunity, can scarcely ever be 25

resolved by any other methods than those of mathematical analysis. 26

The classic susceptible-infectious-recovered (SIR) paradigm, initiated in the late 27

1920s [6], now provides a mathematical framework that describes the core transmission 28

dynamics of a range of human diseases [7–12], including COVID-19 [13]. A key 29

parameter in the SIR paradigm is the basic reproduction number (Ro). The Ro is 30

defined by the average number of secondary cases arising from a typical primary case in 31

an entirely susceptible population of size So [14–16]. The usefulness of Ro and 32

uncertainty in its estimation are not a subject of debate, as reviewed elsewhere [17], and 33

therefore are not further discussed here. 34

In the analysis herein, the SIR model is used to uncover generic spread mechanisms 35

observed by COVID-19 dynamics globally, especially in the early phases of infectious 36

spread. During this early period, potential controls were not effectively put in place or 37

enforced in many countries around the world despite early warning signals from China, 38

Iran, and later on, Italy. Hence, the early phases of COVID-19 spread in many countries 39

where controls were weak offer a unique perspective on the ensemble-behavior of 40

COVID-19 Ro. The analysis shows that there is global convergence (i.e. across many 41

nations) to an uncontrolled Ro = 4.5 for COVID-19 describing early times spread. The 42

implications for evaluating potential control strategies from this reference Ro are briefly 43

discussed in the context of mortality and maximum infections. 44

Theory 45

Definitions and Nomenclature 46

Mathematical models of disease spread assume that a population within a compartment 47

(e.g., city, region, country) can be subdivided into a set of distinct classes [11]. The SIR 48

model classifies individuals in the compartment as one of three classes: susceptible (S), 49

infectious (I), and recovered or removed (R). Infectious individuals spread the disease 50

to susceptible and remain in the infectious class for a given period of time known as the 51
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infectious period before moving into the recovered (or removed) class. Individuals in the 52

recovered class are assumed to be immune for an extended period (or removed from the 53

population). For the total population N = S + I +R, the dynamical system describing 54

the SIR equations are given as 55

dS

dt
= −

(
β
I

N

)
S (1) 56

dI

dt
= +

(
β
I

N

)
S − γI (2) 57

dR

dt
= +γI, (3) 58

where λ(I) = β(I/N) is known as the force of infection and coefficients β and γ must 59

be externally supplied. Moreover, this system requires the specification of 3 initial 60

conditions S(0), I(0), and R(0). For COVID-19, it is assumed that R(0) = 0 and 61

I(0) << S(0). For the initial conditions selected here, N = S(0) + I(0) +R(0) ≈ S(0), 62

which is labeled So for consistency with the SIR literature. The basis of the latter 63

assumption is that the number of deceased individuals is << N . The dynamical system 64

in equation (3) has only one equilibrium point: I = 0 for any S and R, which is a 65

disease-free stable equilibrium. The SIR model makes a number of assumptions, 66

including a closed system with no changes in natural births or natural deaths occurring 67

during the short-lived outbreak. The infection is assumed to have negligible latent 68

period so that an individual becomes infectious when infected. Disease transmission 69

occurs through individual-to-individual contact directly (skin-to-skin), indirectly 70

(skin-infected surfaces), or airborne (pathogens transmitted through air by small 71

particles after coughing or sneezing). Recovering from infection is also assumed to 72

confer long-term immunity, yet to be verified for COVID-19. The most objectionable 73

assumption in SIR dynamics is the use of the mass-action principle. As with all 74

compartment models, mass action assumes that the rate of encounter between I and S 75

is proportional to their product. For this assumption to hold, it requires that members 76

of I and S be uniformly distributed in the space of the compartment [18]. Individuals – 77

unlike molecules in an ideal solution within a closed container – do not mix 78

homogeneously. At minimum, the use of the mass action principle serves as a reference 79

model to compare more detailed mechanisms or explore data. 80

The parameters γ and β encode the main properties of the epidemics and the 81

population response to it. The γ = 1/D is generally interpreted as the inverse of the 82

mean recovery time D. The D varies with the nature of the disease and the recovery 83

from it which depends on the medical facilities and resources available. For COVID-19, 84

the best information on the speed of recovery comes from a World Health Organization 85

study examining more than 55000 cases in China [19]. They found that for mild illness, 86

the time from the onset of symptoms to natural recovery is, on average, 14 days. This 87

estimate was also supported in other published studies (e.g., [20]), though as much as 88

6-8 weeks were recorded for severe infections. Because I is dominated by mild cases 89

thus far, D = 14 d is selected here. 90

With this assumption, the remaining model parameter β must be determined 91

empirically or from separate studies. The β reflects the multiplicative effect of two 92

factors: (1) the transmissibility of the infectious disease (= Tr) or the probability of 93

disease transmission after an encounter between a susceptible and an infected and (2) 94

the number of contacts per unit time k each infected individual has with susceptibles. 95

Hence, β = k Tr. Factors such as hand-washing and sanitizing reduce Tr whereas social 96

distancing, self-isolation, and closure of public spaces reduce k. It is evident that dI/dt 97

will be positive (outbreak) or negative (epidemic contained) depending on the sign of 98

(β(S/So)− γ), which is one of the main reasons the basic reproduction number is sought. 99
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The basic reproduction number 100

As earlier stated, the average rate of recovery is set to γ = 1/D. Given the value of D 101

(in days), the probability that an individual remains infected in an infinitesimal time 102

period δτ is 1− γ(δτ). Therefore, the probability that this individual remains infected 103

for an amount of time τ is limδτ→0(1− γδτ)τ/(δτ) = exp (−γτ). In other words, τ , the 104

time that an infected individual remains infected, is exponentially distributed with an 105

average of D = 1/γ. 106

In a compartmental model such as the SIR, every individual is susceptible and the 107

average number of susceptibles that encounter an infected individual over a period τ is 108

simply β τ . It follows that the average number of new infections caused by an infected 109

individual, which is the basic reproduction number Ro, is given by [21] 110

Ro = β

∫ ∞
0

τ p(τ)dτ = β γ

∫ ∞
0

τe−γτdτ = β/γ, (4)

where the γ after the second equality is to normalize p(τ). 111

While the compartmental SIR model, in use here, assumes an exponentially 112

distributed recovery time and a heavily peaked distribution of encounters with all So 113

individuals, the Poisson random graph SIR model assumes a heavily peaked recovery 114

time of D = 1/γ and a Poisson distributed number of encounters for each 115

individual [22], both more realistic assumptions. However, it can be shown that the 116

dynamics of a discrete-time SIR compartmental model (Reed-Frost model) and the SIR 117

on a Poisson random graph are the same [23]. Because of the aforementioned 118

correspondence, the use of the tractable compartmental SIR model as a proxy to the 119

more complex social network SIR model may be justified here. 120

Early-times dynamics of the SIR system 121

An illustration of the canonical SIR dynamics during an epidemic is shown in Figure 1, 122

where the SIR dynamics is solved here for S(t), I(t), and R(t) when setting Ro = 4.5, 123

γ = (1/14) d−1 and S(0) = 100, 000. For small γt (dimensionless time), the fraction of 124

susceptibles S(t)/So does not deviate appreciably from unity as seen from Figure 1. For 125

such early times, I(t) can be made non-dimensional by So and decoupled from S(t) 126

using the approximation 127

1

γ

di

dt
≈ i (Ro − 1) , (5) 128

where i = I/So is the dimensionless fraction of infected individuals and Ro = β/γ as 129

before. When Ro > 1, di/dt > 0 leading to an epidemic or, conversely, a containment of 130

the disease. The solution of equation (5) is an exponential function 131

I(t)/I(0) = exp [(Ro − 1) γt] also shown in Figure 1. 132

The Ro may be determined by regressing log(i) against t, and the slope of this 133

regression determines Ro when γ can be separately estimated. More sophisticated 134

fitting procedures can also be conducted on sampled I(t) versus t. A major limitation to 135

this exercise is that I(t) at early times, often determined from reported confirmed cases, 136

is uncertain and depends on testing frequency that may vary in time as I increases. An 137

alternative is to regress di/dt upon i at early times to detect the highest slope, which 138

can then be used to infer Ro. This approach is also featured in Figure 1, which 139

illustrates that the SIR dynamics exhibit rapid deviations from a linear di/dt with i set 140

by early times thereby underestimating Ro (for a given γ). Evidently, inference of Ro 141

requires estimates of early time slope, which cannot be easily detected in practice. 142

A non-conventional approach is to present confirmed infection data using a 143

double-log representation of di/dt versus i, which is also featured in Figure 1. This 144
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Fig 1. Phase space and temporal trends of the SIR model. Top left: S(t),
I(t), R(t) normalized by So as a function of dimensionless time γt with So = 100, 000,
γ = (1/14) d−1, and Ro = 4.5. Top right: i = I/So in dimensionless time γt for early
times γt < 1 revealing strictly exponential growth (dashed) and deviations from
exponential (SIR solution). Bottom: (Soγ)−1dI/dt with I(t)/So in linear (left) and
double-log (right) representations. The dashed line is (Ro − 1) where Ro = 4.5. Declines
from the dashed line reflect the incipient point where I(t) deviates appreciably from
exponential growth. Note how the early-time slope (Ro − 1) is emphasized in the
double-log representation.

presentation has a number of advantages and limitations in the analysis of COVID-19 145

discussed elsewhere [24]. The main advantage is that the early time slope (= Ro − 1) 146

persists over much of the graph. A significant decline in di/dt is also required before 147

‘registering’ a drop in such a representation. This insensitivity to moderate declines in 148

di/dt from its initial value may be advantageous in Ro estimates. The other main 149

limitation, which is inherent to all such analyses, is shifts in testing frequency at high i, 150

and thus the increase in confirmed cases due to expanded testing. It is to be noted that 151

a log-log representation will be more robust to these shifts, because the overall graph 152

will be biased by the initial slope prior to the initialization of expanded testing. Such 153

bias should lead to increases in di/dt versus i, not declines from the initial slope 154

(Ro − 1) that can be detected. As later shown, such an increase has been noted in 155

several data sets. 156

With this representation, it is now shown that initial inaction to COVID-19 across 157

many countries around the globe allowed an ensemble estimate of the uncontrolled Ro. 158

Because Ro is likely to be at maximum when no action to COVID-19 are implemented 159

early on, a maximum theoretical ‘boundary-line’ can then be derived to describe the 160

spread of COVID-19 for large So (on log-log representation). This boundary-line 161

analysis can then be used as a logical reference to assess whether measures to reduce β 162

are effective. 163
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Fig 2. Comparison between (1/So)(dI/dt) and I/So for 57 countries. The
dashed line is (Ro − 1)γ, where Ro = 4.5, and γ = (1/14)d−1. Negative deviations from
the dashed line reflect deviations from exponential.

Results and Discussion 164

Estimating an early-time Ro 165

The same log-log scheme featured in Figure 1 is now applied to the global data set 166

supplied by the European Center for Disease Prevention and Control (ECDPC). The 167

data source provides daily confirmed infections I(t) and deaths reported for each 168

country. The population of each country, used to estimate So (i.e. all members are 169

susceptible), was obtained from the 2018 United Nations census and provided as part of 170

the ECDPC data base. While daily data are supplied, not all countries report 171

consistently on a daily I(t). For this reason, daily data on infections were smoothed 172

with a 7 day block-average and dI/dt was estimated from the smoothed data. The 173

results show a global convergence to Ro = 4.5 from early time-analysis in Figure 2. 174

Examples for specific countries are also featured in Figure 3 illustrating the same early 175

slope patterns. Mindful of all the pitfalls in determining Ro [17], the global estimate 176

here of Ro = 4.5 is roughly commensurate with other entirely independent estimates for 177

COVID-19. The most recent update from the China study suggests an Ro = 4.1 [25] 178

whereas for France, the most recent estimate for early times is Ro = 4.9 [26]. The 179

initially reported and the much cited Ro = 2.2 value [4] from Wuhan, China appears to 180

be low [27]. A more elaborate estimate of Ro based on case reports, incubation periods, 181

high-resolution real-time human travel data, infection data combined with agent-based 182

mathematical models result in Ro = 4.7− 6.6 [27]. Other studies report values between 183

3.3 and 6.6 [28]. It must be emphasized that the Ro determined here reflects 184

‘country-scale’ early times assuming the entire country population to be So, 185

γ = (1/14)d−1 and does not accommodate any early measures enacted to reduce β or 186

increase γ, which were undertaken in China [13]. 187

Sub-national dynamics and interventions 188

The same analysis performed for World countries is now applied at a sub-national level, 189

considering Upper Tier Local Authorities (UTLAs) in the UK and provinces in Italy 190

(Fig. 4). Results show a higher variability than country-level data (as expected) but the 191

theoretical ‘boundary-line’ of Ro = 4.5 is shown to hold also at finer spatial scales. 192

Cases reported at the beginning of April, demonstrate that UK regions are at an early 193
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Fig 3. Same as Figure 2 but for sample countries. Top left: the United States
of America (US), the United Kingdom (UK), and Canada (CA); bottom left: Belgium
(BE), Germany (DE), the Netherlands (NL); top right: Italy (IT), Spain (ES), and
France (FR); bottom right: Australia (AU), New Zealand (NZ), and South Africa (ZA).

phase of the epidemics (with more ramp-up in testing as later discussed), while Italian 194

provinces are approaching the peak of infections due to strict interventions put in place 195

by national authorities. 196

To consider the impact of interventions - which have direct effects on local scale 197

dynamics [13] - the SIR model can be solved with a time-varying Ro that decreases 198

from the initial uncontrolled value of 4.5 to, e.g. Ro = 1.1 after 2/γ days. To this 199

purpose, the Ro is expressed as a logistic function 200

Ro(t) = Ro,c +
Ro,u −Ro,c

1 + exp(kc(t− t50))
, (6)

where Ro,c and Ro,u are the ‘controlled’ and ‘uncontrolled’ values of Ro (set to 4.5), kc 201

is the steepness of the intervention curve and t50 is the time when 202

Ro(t) = (Ro,c +Ro,u)/2. Model results accounting for different intervention scenarios 203

(Fig. 5) resemble the trends observed in the Italian provinces with the timing and 204

magnitude of Ro reductions shifting the linear relation down and decreasing the 205

maximum fraction of infected individuals. Such jumps are smoothed over at the 206

national level where a clear deviation from exponential is observed (Fig. 3). 207

An alternative hypothesis: power-law vs exponential 208

Whether these results are suggestive of a global convergence to an uncontrolled Ro = 4.5 209

or to some other dimensionless property must not be overlooked. A linear relation on a 210

log-log representation may also be indicative of power-law solutions at early times, 211

already documented in a number of studies for COVID-19 [29,30]. In fact, published 212

analysis of infection data from the top 25 affected countries reveals approximate 213

power-law behavior of the form I ∼ ta (or log(i) = a log(t) + b) with two different 214

growth patterns [29]: steady power law growth with moderate scaling exponents (i.e., 215

a =3-5) or explosive power law growth with dramatic scaling exponents (i.e., a =8-11). 216
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Fig 4. Same as Figure 2 but for sample UTLAs in the UK (top left) and
provinces in Italy (bottom left). Selected UTLAs and provinces are shown in the
top right and bottom right panels, respectively.

Within the confines of the SIR dynamical system framework here, we ask: what are 217

the necessary modifications to obtain power-law solutions at early times? Such a 218

solution, while not unique, may be possible by revising the force of infection as 219

λ(I) = β(I/N)m. The original SIR model is recovered when m=1. For this non-linear 220

force of infection, the SIR system becomes 221

dS

dt
= −β

(
I

N

)m
S (7) 222

dI

dt
= +β

(
I

N

)m
S − γI (8) 223

dR

dt
= +γI. (9) 224

This revision ensures that the total population maintains its constant value N ≈ So 225

here. The early times dynamics (i.e. S(t) ≈ So) for the non-dimensional infection 226

compartment i = I/So are now governed by 227

1

γ

di

dt
= +

β

γ
(i)

m − i. (10) 228

When m < 1, maintaining a definition of Ro = β/γ > 1 (epidemic), and noting that 229

i << 1, the first term on the right-hand side of equation (10) is much larger than the 230

second term. In fact, to obtain a maximum exponent enveloping the early-time relation 231

between di/dt and i, the linear term can be dropped so that di/dt ≈ βim (only a 232

growth phase). On a log-log representation, log(di/dt) = m log(i) + log(β). A constant 233

slope such as those featured in Figures 2 and 3 may simply be estimates of m instead of 234

Ro. The initial conjecture is that a power-law solution emerges from the modified SIR 235

dynamics when m < 1. However, the slope here (= 3.5) actually exceeds unity 236
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Fig 5. Modeled (1/So)(dI/dt) as a function of I/So when considering a
time-varying Ro(t). Five scenarios are illustrated (inset): no intervention (red) with
Ro = 4.5 set to its uncontrolled value, Ro,c = 1.1 (epidemic near containment) and
kc = 0.7 (blue), Ro,c = 1.1 and kc = 0.15 (magenta), Ro,c = 2.5 (typical of countries
with strong initial intervention) and kc = 0.7 (green). The other parameters of the
logistic functions are Ro,u = 4.5 and t50 = 1.5/γ.

contradicting this revised analysis. This finding supports the view that a global 237

convergence to an uncontrolled Ro = 4.5 is a more likely explanation than a power-law 238

alternative arising from a non-linear force of infection in an SIR framework. To be clear, 239

there are other causes for power-law solutions (e.g. a stochastic β as discussed 240

elsewhere [31]), but those fall outside the domain of deterministic SIR approaches 241

adopted here. Nonetheless, and as a bridge between the studies reporting power-law 242

growth in time for I and the modified SIR here, a relation between m and a is sought. 243

The solution to equation 10 can be expressed as 244

i(t) =
(
i(0)1−m + β(1−m)t

)1/(1−m)
, (11) 245

which is a power-law in t. For dimensionless time γt >> (i(0)1−m/[Ro(1−m)], 246

i(t) ∼ t1/(1−m) (m < 1). It directly follows that m = (a− 1)/a¡1 (as expected), where 247

a > 1 is determined by regressing early-times log(i) versus log(t). Reported a for what 248

has been termed as ’explosive’ cases such as the US, UK Canada, Russia, among 249

others [29] all yield an a > 8 (with the US a > 16). Such high a simply confirms that 250

m ≈ 1 (and without much variations), and the early time SIR dynamics does describe 251

reasonably those cases. For low a values, termed as ’steady’, the mean a ≈ 4.8), and 252

thus yields an m ≈ 0.8, still not too far from unity. The shortcoming of analyzing I(t) 253

upon t is that absolute figures of I(t) are sensitive to increased COVID-19 testing in 254

time, which is considered next. 255

Impact of testing ramp-up 256

A further explanation of early-time deviation from the SIR model (noted in several data 257

sets here) may be time-dependent ramp-up of testing, which reveals existing infections 258

at a rate faster than the infection spread. This hypothesis can be implemented in the 259

SIR model considering the temporal dynamics of the testing capacity, f . Assuming the 260

maximum fraction of individuals that can be tested is f = 1 and testing capacity grows 261

at a rate k, independent of I, gives, f(t) = 1− exp (kt). Therefore, the apparent 262

number of infections, ia, initially grows according to the superposition of the infectious 263
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spread rate and testing capacity increase rate, i.e., exp [(R0 − 1 + k)t] and 264

log (dia/dt) ∼ (R0 − 1 + k) log (ia). Therefore, the log-log slope will be initially greater 265

than (R0 − 1) while the rate of testing increases and then converge to (R0 − 1) 266

asymptotically as testing reaches steady-state. Indeed, this effect is widely observed in 267

the global and smaller-scale data, indicating that the imprint of testing ramp-up fully 268

dissipates (at least at the country scale) and the observed convergent slope remains a 269

robust indicator of the early phases of virus dynamics. 270

Size of the epidemic 271

The maximum infections Imax (where dI/dt = 0) can be derived as a function of So and 272

Ro by first dividing the budgets of dS/dt and dI/dt, solving the resulting equation, and 273

noting that dI/dt = 0 when S(t)/So = γ/β at Imax to yield 274

Imax
So

= 1− 1

Ro
[1 + log(Ro)] . (12) 275

Variations of Imax/So versus Ro are featured in Figure 6 276
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Fig 6. Relation between maximum infection fraction Imax/So and Ro.

For Ro = 4.5, Imax/So = 0.44, which is much higher than values obtained for the 277

common cold or the flu (Ro = 2− 3) or influenza (Ro = 1.4− 2.8). The most significant 278

use of Ro is an estimate of the size of the epidemic. The total fraction of infected 279

individuals may be inferred from 1− S(∞)/S(0), where 280

S(∞)/S(0) = 1−R(∞)/S(0) > 0 because I(∞) = 0. The relation between S(t) and 281

R(t) can be derived 282

dS

dR
= −β

γ

S

So
, (13) 283

which when integrated between t = 0 and t =∞ yields, 284

log

[
S(∞)

S(0)

]
= Ro

(
S(∞)

S(0)
− 1

)
. (14) 285

The solution requires solving a transcendental equation for S(∞)/So, which can be 286

achieved numerically. For pre-specified Ro, the total fraction of infected individuals is 287
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shown in Figure 7. With such a high Ro = 4.5, some 98% of the population will be 288

infected. When mortality is assumed to be some fraction of the total infected 289

individuals, then the mortality fraction is αm[1− S(∞)/S(0)]. 290
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Fig 7. Relation between total infection fraction 1− S(∞)/So and Ro.

As of March 5, 2020, global mortality estimates from COVID-19 by the World 291

Health Organization (WHO) are at αm = 3.4% virtually identical to the current USA 292

value (as of April 8, 2020; Confirmed cases = 428,901 and Mortality = 14,600). For the 293

USA, now the epicenter of COVID-19, we ask how much Ro should be reduced by 294

deliberate intervention to maintain mortality below a certain threshold size Mo. With 295

S(0) = 327M, we determine how much Ro should be reduced as a function of Mo 296

assuming αm = 3.4%. These results are featured in Figure 8 and suggest that to 297

maintain mortality below 1 million, Ro < 1.15, a factor of 4 reduction over its 298

uncontrolled value. 299

A natural extension of this exercise is to consider temporal changes in Ro following 300

the logistic form in equation 6. The maximum number of infected Imax at time t and 301

cumulative number of infections R(∞) ≈ R(γt ≈ 14) can be made to vary as the slope 302

kc and t50 are changed (equation 6). A larger kc signifies more rapid enforcement of 303

intervention policies and a larger t50 represents later enforcement. To provide a physical 304

meaning for kc, we define tfo as the time after first infection at which Ro is fo% of the 305

way through its total decline from Ro,u to Ro,c. With these definitions, 306

tfo = t50 + log[fo/(1− fo)]/kc. An obvious choice for Ro,u = 4.5, the global average 307

when no intervention is enforced. A logical choice for fo = 80% and is consistent with 308

the point at which the logistic function enters the ’flattening phase’. We choose 309

Ro,c = 1.0 to represent the most optimistic scenario of a near-containment by 310

intervention. For reference, the South Korea data suggests that early intervention, even 311

when rapidly enforced shortly after the outbreak, resulted in Ro = 1.5 [32]. The 312

effectiveness of interventions and any delays can now be converted to mortality and 313

severity by varying t50 and t80 on R(γt ≈ 14) and Imax as shown in figure 9. These 314

figures present how R(γt ≈ 14), a number connected to the cumulative number of 315

fatalities, and Imax, a number representing the degree to which existing resources (i.e., 316

hospital beds will be overwhelmed), are contained for only a restricted envelope of speed 317

and timeliness of policy enforcement. The results in Figure 9 indicate that if Ro > 2.7 318

within t = 3.5/γ (about 49 d here), a > 10% reductions relative to So in Imax or R(∞) 319
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Back to the discussion about US mortality from COVID-19, current optimistic 321

projections place that figure in the range of 100,000 fatalities [33]. One implication from 322

figure 9 is that if Ro failed to decrease to at least 2.7 by 49 days after first infection, 8 323

million people are expected to die with an assumed constant mortality rate of 3.4%. For 324

mortality to be confined to 100,000, then a reduction of Ro from 4.5 to 2.7 must be 325

achieved within 17 days of first infection. 326

Last, it is to be noted that the fraction of individuals that must be immune (either 327

through vaccination or recovery from prior COVID-19 infections) must exceed the herd 328

immune threshold (HIT), which is given by 329

pc = 1− 1

Ro
= 0.78. (15) 330

This estimate of HIT sets the limit on the immune population needed to overcome 331

another COVID-19 pandemic (assuming a global constant Ro = 4.5 and no 332

intervention). Should immunity from prior COVID-19 infections be transient, this 333

estimate then sets the upper bound on the fraction of population that must be 334

vaccinated and the vaccine needed in the future. 335

Conclusion 336

The work here has shown a global convergence of Ro = 4.5 when no deliberate 337

intervention was taken for COVID-19. This Ro was shown to describe reasonably the 338

maximum initial exponential growth rate of COVID-19 (=(Ro − 1)γ, where 339

γ = (1/14)d−1) in many countries that did not initiate preventive measures within 340

γt = 2. The findings here further supports the growing consensus that the initial 341

Ro = 2.2 estimate from Wuhan, China are low. The value of Ro = 4.5 is much more in 342

line with other estimates (Ro = 4− 6) derived from far more complex models. The 343

critical herd immunity level that must be reached is 78% to ensure COVID-19 does not 344

become an epidemic again. This estimate sets a maximum limit on the vaccination 345

required. For the USA, our results show that to maintain death figures below 1M , the 346

deliberate measures to be taken must reduce uncontrolled Ro by a factor of 4. 347

Data availability 348

Daily confirmed COVID-19 infections in World countries are available at 349

https://www.ecdc.europa.eu/en/publications-data/ 350

download-todays-data-geographic-distribution-covid-19-cases-worldwide 351

(accessed on 08/04/2020). The dataset includes population estimates for each country 352

as obtained from the 2018 United Nations census. Reported cases for UTLAs in the UK 353

and provinces in Italy were obtained from https: 354

//www.gov.uk/government/publications/covid-19-track-coronavirus-cases 355

(accessed on 09/04/2020) and https://github.com/pcm-dpc/COVID-19 (accessed on 356

09/04/2020), respectively. Population counts for UTLAs and Italian provinces are 357

available at https://www.ons.gov.uk/peoplepopulationandcommunity/ 358

populationandmigration/populationestimates/datasets/ 359

populationestimatesforukenglandandwalesscotlandandnorthernireland 360

(accessed on 04/04/2020) and 361

http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1 (accessed on 362

03/04/2020), respectively. 363
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