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 2 

Abstract 25 

 26 

Background: Epidemiological data from the COVID-19 pandemic has 27 

demonstrated variability in attack rates by age, and country-to-country 28 

variability in case fatality ratio (CFR). 29 

Objective: To use direct and indirect standardization for insights into the 30 

impact of age-specific under-reporting on between-country variability in CFR, 31 

and apparent size of COVID-19 epidemics. 32 

Design: Post-hoc secondary data analysis (“case studies”), and mathematical 33 

modeling. 34 

Setting: China, global. 35 

Interventions: None. 36 

Measurements: Data were extracted from a sentinel epidemiological study by 37 

the Chinese Center for Disease Control (CCDC) that describes attack rates and 38 

CFR for COVID-19 in China prior to February 12, 2020.  Standardized 39 

morbidity ratios (SMR) were used to impute missing cases and adjust CFR.  40 

Age-specific attack rates and CFR were applied to different countries with 41 

differing age structures (Italy, Japan, Indonesia, and Egypt), in order to 42 

generate estimates for CFR, apparent epidemic size, and time to outbreak 43 

recognition for identical age-specific attack rates. 44 

Results: SMR demonstrated that 50-70% of cases were likely missed during the 45 

Chinese epidemic. Adjustment for under-recognition of younger cases decreased 46 

CFR from 2.4% to 0.8% (assuming 50% case ascertainment in older 47 

individuals).  Standardizing the Chinese epidemic to countries with older 48 

populations (Italy, and Japan) resulted in larger apparent epidemic sizes, higher 49 
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 3 

CFR and earlier outbreak recognition.  The opposite effect was demonstrated for 50 

countries with younger populations (Indonesia, and Egypt). 51 

Limitations:  Secondary data analysis based on a single country at an early 52 

stage of the COVID-19 pandemic, with no attempt to incorporate second order 53 

effects (ICU saturation) on CFR. 54 

Conclusion: Direct and indirect standardization are simple tools that provide 55 

key insights into between-country variation in the apparent size and severity of 56 

COVID-19 epidemics. 57 

 58 

Funding: The research was supported by a grant to DNF from the Canadian Institutes  59 

for Health Research (2019 COVID-19 rapid researching funding OV4-170360).  60 
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 4 

Introduction 62 

 63 

Knowledge and understanding related to COVID-19 are evolving rapidly, thanks 64 

in no small part to outstanding epidemiological work done under challenging 65 

conditions in recent months (1). A report on 44,672 confirmed COVID-19 cases 66 

from mainland China helped delineate early understanding of the outbreak’s 67 

epidemiology. More recent mathematical models help fill in some of the 68 

informational gaps, by inferring the underlying processes, including the 69 

occurrence of “silent”, unrecognized infections, that must have driven this 70 

epidemic (2). Modeling is an important tool for understanding epidemic 71 

processes, but disease modeling expertise is not universally available. A much 72 

more basic epidemiological tool (standardization) (3, 4) can be used to provide 73 

important insights into both seen and unseen aspects of epidemics, and to 74 

project the likely characteristics and impacts of the same epidemic process, if it 75 

were to unfold in other populations. 76 

 77 

We were struck by the absence of reported COVID-19 cases in younger 78 

individuals in early reports from China. A pandemic disease is defined by the 79 

novelty of the pathogen and absence of population-level immunity, such that all 80 

age groups in a population should be equally susceptible to infection. Inasmuch 81 

as more severe cases are more likely to be recognized, the under-recognition of 82 

disease in younger individuals serves as a metric for differential disease severity 83 

by age, and also provides important information that can be used to adjust case 84 

fatality ratios for likely under-reporting. Furthermore, simple approaches to 85 

quantify under-reporting can inform public health prevention strategies, 86 
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 5 

because if unrecognized cases are extremely common, control methods that 87 

focus on identification of cases, isolation and quarantine alone are likely to fail. 88 

 89 

We sought to use simple epidemiological tools, such as direct and indirect 90 

standardization (i.e., calculation of standardized morbidity ratios) to gain 91 

insights into likely disease under-reporting and case fatality in mainland China. 92 

We then applied these insights to infer likely differences in disease severity 93 

(based on CFR), and detection of epidemics occurring in countries outside 94 

mainland China. 95 

 96 
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Methods 98 

 99 

Data Sources 100 

 101 

COVID-19 case counts by age were based on confirmed cases, by age, reported 102 

in (5). 2020 country population projections for China by age were obtained from 103 

the United Nations using the UNWPP package in R (6, 7). While the Chinese 104 

COVID-19 epidemic was centered on the province of Hubei, the epidemic rapidly 105 

spread to involve all Chinese provinces. Therefore, we used the total Chinese 106 

population data by age to calculate age-specific cumulative incidence over the 107 

initial 9 weeks of the epidemic. We used these initial observations to perform all 108 

subsequent analyses. 109 

  110 

Standardized Morbidity Ratios 111 

 112 

We calculated overall cumulative incidence per 100,000 population in the 66-113 

days from December 8, 2019 (the date of onset in the first recognized human 114 

COVID-19 case) to February 11, 2020 (8). Crude and age-specific cumulative 115 

incidence were calculated as the ratio of case numbers to population size. 116 

Standardized morbidity ratios (SMR) were then calculated as 100 x (observed 117 

cases/expected cases) where expected cases are the product of crude 118 

cumulative incidence and the population size of a given age group (4). 119 

 120 

 121 
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 7 

Under-Ascertainment of Younger Cases and Implications for Case-Fatality 123 

 124 

Given that COVID-19 is an emerging communicable disease and there is no pre-125 

existing immunity in the population, attack rates should be similar across age 126 

groups, or possibly even higher in children due to their more intense contact 127 

structure (9). The elevated SMR in older age groups, combined with their higher 128 

case fatality, is suggestive of increased case ascertainment in this group due to 129 

greater clinical severity. Indeed, when active case finding has been performed 130 

for pediatric cases, attack rates in younger groups have been similar to those in 131 

the older age groups. We examined a series of “case studies” where incidence in 132 

older individuals (age > 59) was assumed to be measured accurately, and 133 

cumulative incidence in older individuals was then applied to younger age 134 

groups to generate estimates of the fraction of cases under-ascertained in these 135 

age groups. We then revised the expected case fatality proportions based on 136 

case counts adjusted for likely under-reporting in younger individuals. 137 

 138 

Population Standardization, Case Fatality and Observed Outbreak Size 139 

 140 

We evaluated the anticipated size, timing, and impact of an epidemic with 141 

identical age-specific cumulative incidence and case fatality as observed in 142 

China but applied to four countries outside of China. We standardized to 143 

countries and areas with older age than China (Japan, Italy) and younger age 144 

(Indonesia, Egypt) as a means of isolating the impact of age structure on 145 

outbreak characteristics. While somewhat arbitrary, these regions have all 146 

either been impacted by COVID-19 to some degree (Japan, and Italy) (10-12); 147 
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 8 

have had large numbers of exported cases without large national epidemics 148 

(Egypt)(13); or have been notable for the relatively limited number of cases 149 

identified notwithstanding close links to China (Indonesia) (14). 150 

 151 

Since China’s large population size results in a far larger epidemic for a given 152 

incidence, we used a ratio-of-ratio approach. The ratio of population in the 153 

other, comparator country (PO) to the Chinese population (PC) was defined as RP 154 

= PO/PC. The ratio of the observed epidemic size in the other, comparator 155 

country (E0) to observed Chinese epidemic size (EC) was defined as RE = EO/EC. 156 

The ratio of ratios was thus RE/RP, and can be interpreted as the relative 157 

apparent outbreak size when an outbreak with identical age-specific attack 158 

rates occurs in a population with an age-structure that differs from that of 159 

China. 160 

 161 

Age Structure and Outbreak Detection 162 

 163 

We estimated the incidence of observed infection among susceptible older 164 

individuals (age > 59) in the Chinese population required for the observed 165 

epidemic to have taken place over 66 days using the relation  = -ln(1-P)/t. This 166 

hazard was then applied to 1) the Chinese population, and 2) the populations of 167 

the other four “case study” countries, over a 66-day period under the 168 

assumption that the most severe illness would be seen in those aged > 59 years. 169 

We modeled time to observation of deaths by modeling time to symptoms, 170 

severe pneumonia, ICU admission, and death using parameter estimates 171 

presented in Table 1, assuming exponential failure time.  172 
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 9 

 173 

Results 174 

 175 

Based on data in (8), the crude cumulative incidence of observed COVID-19 in 176 

mainland China up until February 11, 2020 was 3.1 per 100,000. By contrast, 177 

cumulative incidence in those aged > 59 years was 5.6 per 100,000. Age-178 

specific cumulative incidence and SMR by age are presented in Table 2 and 179 

Supplementary Figure 1. It can be seen that SMR for age groups < 50 was 180 

substantially lower than that in older age groups and most deaths were also 181 

observed in older age groups (Table 2). When we assumed complete or near 182 

complete ascertainment of cases in individuals aged >59, and adjusted 183 

incidence in younger age groups accordingly, the adjusted CFR fell, and was 184 

0.8% if we assume that only 50% of older cases were ascertained (Figure 1). 185 

Even if all cases were ascertained in older individuals, it was estimated that 186 

46% of total cases were missed; if only 50% of older cases were ascertained it 187 

was estimated that 75% of cases were missed (Figure 1). 188 

 189 

When the Chinese epidemic was age-standardized using population pyramids 190 

from other countries, standardization to younger populations (Indonesia, Egypt 191 

and Iran) markedly reduced CFR, while adjustment to older countries or regions 192 

(Japan, Italy) elevated CFR (Table 3). The ratio-of-ratios, RE/RP, was less than 1 193 

for countries with younger populations, but greater than 1 for countries with 194 

older populations. In other words, apparent epidemics, adjusted for population 195 

size, would be expected to be smaller in countries with younger populations 196 
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 10 

(shorter life expectancy) than in those with older populations (increased life 197 

expectancy), even with identical age-specific attack rates. 198 

 199 

When we simulated the mainland China epidemic in other countries, we found 200 

that at any threshold of deaths required for outbreak detection, outbreaks 201 

would be detected more quickly in countries with high life expectancy, and 202 

more slowly in those with low life expectancy (Figure 2 and Online Appendix 203 

(https://art-bd.shinyapps.io/time_to_outbreak_detection/). 204 

 205 

  206 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 14, 2020. .https://doi.org/10.1101/2020.04.09.20059832doi: medRxiv preprint 

https://art-bd.shinyapps.io/time_to_outbreak_detection/
https://doi.org/10.1101/2020.04.09.20059832
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Discussion 207 

 208 

As the COVID-19 pandemic has expanded its reach, the role of unrecognized 209 

infection has received increased scrutiny (2, 15). While individuals with 210 

unrecognized infection may be important in the epidemic’s spread, those with 211 

more severe illness are more likely to be recognized clinically, and more likely to 212 

be referred for virological testing, a practice which the age distribution of 213 

identified cases in China early in the pandemic, foretold (8). 214 

 215 

Age-related increases in severity, which may be confounded by increasing 216 

prevalence of chronic medical conditions with age, are now well described in 217 

countries outside China (16, 17). Greater recognition of individuals with more 218 

severe illness, and undercounting of those with mild infection, is likely to inflate 219 

apparent case fatality. While serological testing will ultimately help determine 220 

the true infection fatality ratio for COVID-19, estimates of undercounting may 221 

be derived if it is assumed that all in the population, regardless of age, are 222 

equally vulnerable to infection. We demonstrate such an approach in this 223 

paper. 224 

 225 

The key driver of pandemic disease is a fully susceptible population; novel 226 

pathogens have higher reproduction numbers when they first emerge but the 227 

number drops once some proportion of the population has become immune 228 

(18). This leads to very high attack rates early in a pandemic. Furthermore, 229 

vulnerability to infection should be equally distributed across the population, 230 

with incidence expected to be highest in children, who have the highest rates 231 
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 12 

and intensity of person-to-person contact. As such, an absence of pediatric 232 

cases in national reporting data represents an index of under-reporting rather 233 

than immunity to infection and can be used as a means of quickly adjusting 234 

models for under-reported fractions through simple, easily applied methods 235 

such as direct and indirect standardization, which we employ here. Bayesian 236 

methods provide a more computationally intensive and more technically 237 

challenging approach to the same problem (2).  238 

 239 

The extraordinary case-fatality in the COVID-19 pandemic (as high as 10-12% 240 

in Spain and Italy as of April 3, 2020) (19), also underscores the unusual 241 

epidemiology of pandemics, since with endemic diseases (and some pandemics, 242 

such as the 2009 (H1N1) influenza A pandemic) early life immune experience 243 

protects those who would be vulnerable to severe disease conditional on 244 

infection (i.e., older individuals), while permitting infection of younger 245 

individuals less likely to experience severe disease (20). While case-fatality is 246 

driven at least in part by the extent of testing, standardizing these epidemics to 247 

different populations (in effect, letting an identical epidemic run out in a 248 

different population) allows us to see that demographic structure alone can 249 

explain many between country differences in apparent epidemic size and case 250 

fatality. Adjusting for population size, identical epidemics will appear larger and 251 

more severe in “older” countries (like those in Western Europe) and smaller and 252 

milder in “younger” countries (like Egypt, and Indonesia). 253 

 254 

A key limitation of this work is that much of the work focusses on an epidemic 255 

in a single country, at an early point in the COVID-19 pandemic. Indeed, the 256 
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observable case-fatality in China now approximates 4%, rather than 2.4% as 257 

reported earlier, which is likely to reflect lags between clinical onset and death 258 

from COVID-19, especially in individuals who receive intensive care with 259 

mechanical ventilation. We have, furthermore, not attempted to incorporate 260 

second order effects, such as the resulting rapid saturation of ICU resources, 261 

with resultant upwards inflection in case fatality, in countries with older 262 

populations (e.g. Italy). Such effects may be operative in the devastating COVID-263 

19 epidemics in Western Europe, which have CFR well beyond what our 264 

standardization of the Chinese epidemic data would predict. 265 

 266 

In conclusion, we find that standardization, both direct and indirect, provides a 267 

simple, widely understood toolbox for explaining and understanding several of 268 

the unusual features of COVID-19, including under-representation of pediatric 269 

cases and geographic variability in apparent epidemic size and severity 270 

(measured as CFR). While we are living in frightening and emotionally charged 271 

times, we suggest that demographic variation, rather than misrepresentation 272 

(21, 22), is likely to explain much of the between-country variability seen in the 273 

current pandemic. 274 

  275 
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Figure Legends 276 

 277 

Figure 1.  Case Fatality and Fraction of Cases Missed Under Varying 278 

Assumptions of Reporting Completeness in Older Individuals. 279 

Estimates of the fraction of cases missed in the population as a whole (black 280 

solid curve), and true case-fatality ratio (CFR) (black dashed curve), as a 281 

function of the fraction of cases missed in older adults who are assumed to be 282 

ascertained with the greatest accuracy.  Decreasing case ascertainment in older 283 

adults implies an even higher fraction of cases are missed in the population as 284 

a whole, and CFR is lower than observed. 285 

 286 

Figure 2. Model Describing Differential Time To Recognition of COVID-19 287 

Outbreaks in Countries with Different Age Structures. 288 

 289 

Outbreaks with identical age-specific attack rates, and otherwise identical 290 

characteristics, were simulated in countries with intermediate (China), old 291 

(Italy) and young (Indonesia) populations.  It can be seen that for any threshold 292 

of deaths that must be exceeded for an outbreak to be recognized, older 293 

countries will be identified before younger countries.  Model details are as 294 

described in the text. 295 

 296 

Supplementary Figure 1.  Observed Cumulative Incidence, Deaths and 297 

Standardized Morbidity Ratios for Mainland China COVID-19 Epidemic. 298 

Figure is a graphical representation of data presented in Table 2.  SMR are 299 

estimated as 100 x observed incidence divided by expected incidence, which in 300 
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the context of a pandemic is approximately equal in all age groups, or 301 

somewhat higher in younger individuals. 302 

  303 
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Table 1. Parameters Used for Time-To-Death Estimates 

Parameter Estimate Reference 

Proportions   

 Severe pneumonia 0.15 (23) 

 ICU requirement with severe 

pneumonia 

0.20 (23) 

 Death in ICU 0.62 (24) 

Average duration (days)   

 Incubation period 6 (25) 

 Time from onset to 

hospitalization 

7 (26) 

 Time from hospitalization to 

ICU 

3 (26) 

 Time from ICU admission to 

death 

25 (25) 

Force of infection () 8.44 x 10-7 Calculated based 

on (5). 

 

NOTE: ICU, intensive care unit. 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 14, 2020. .https://doi.org/10.1101/2020.04.09.20059832doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.09.20059832
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Epidemiological Characteristics of China’s COVID-19 Epidemic to February 11, 2020. 

 

 

NOTE: SMR, standardized morbidity ratio. 

*per 100,000 population. 

 
 

Age 

Group 

Cases Deaths Case 

Fatality 

Population 

(millions) 

Cumulative Incidence* SMR 

0-9 416 0 0 170.7 0.24 7.9 

10-19 549 1 0.002 166.6 0.33 10.6 

20-29 3619 7 0.002 185.1 1.95 63.0 

30-39 7600 18 0.002 228.8 3.32 107.0 

40-49 8571 38 0.004 216.1 3.97 127.8 

50-59 10008 130 0.013 222.2 4.50 145.1 

60-69 8583 309 0.036 151.7 5.66 182.3 

70-79 3918 312 0.080 71.5 5.48 176.6 

80+ 1408 208 0.148 26.6 5.29 170.4 
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Table 3: Direct Standardization of Mainland China’s COVID-19 Epidemic 

to Other Countries and Regions 

 

 

NOTE: CFR, case fatality ratio. 

*Compared to Mainland China. 

 

 

 

 

 
 
 
 
 
 
 
 

 
 

Country/Region Country-

Standardized 

CFR (%) 

Epidemic 

Size Ratio 

(RE)* 

Population 

Size Ratio 

(RP)* 

 RE/RP 

Mainland China 2.3 --- ---  --- 

Egypt 1.6 0.05 0.07  0.69 

Indonesia 1.7 0.15 0.19  0.81 

Italy 3.9 0.05 0.04  1.15 

Japan 4.4 0.10 0.09  1.18 
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