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Abstract 
One of the challenges in the current COVID-19 crisis is the time and cost of performing tests 

especially for large-scale population surveillance. Since, the probability of testing positive in large 

population studies is expected to be small (<15%), therefore, most of the test outcomes will be 

negative. Here, we propose the use of agglomerative sampling which can prune out multiple 

negative cases in a single test by intelligently combining samples from different individuals. The 

proposed scheme builds on the assumption that samples from the population may not be 

independent of each other. Our simulation results show that the proposed sampling strategy can 

significantly increase testing capacity under resource constraints: on average, a saving of ~40% 

tests can be expected assuming a positive test probability of 10% across the given samples. The 

proposed scheme can also be used in conjunction with heuristic or Machine Learning guided 

clustering for improving the efficiency of large-scale testing further. The code for generating the 

simulation results for this work is available here: https://github.com/foxtrotmike/AS.  

 

1. Introduction 
Effective large scale testing and contact tracing have been successfully used in a number of 

countries for controlling the spread of the SARS-CoV-2 virus (CoV-2) which causes COVID-19 

disease [1]. However, in resource-limited settings, it may not be feasible to do large scale testing 

unless the efficiency of existing tests is improved in terms of number of tests required for a given 

number of samples. In this short paper, we discuss a computer-science inspired divide and conquer 

strategy based on pooling samples from multiple individuals that can improve test efficiency by a 

significant amount under a minimalistic set of assumptions.  

2. Methods 

2.1 Assumptions 

Given a set of 𝑁 individuals to be tested for CoV-2, the number of tests 𝑇 required for identifying 

positive individuals can be reduced from 𝑁 by considering the fact that the probability of testing 

positive 𝑝 is small (say, 𝑝 = 0.1) and individual test results are typically not independent of each 

other (e.g., members in the same household or people in contact with each other or other CoV-2 

infected individuals can have dependencies in their test results). In this work, we propose a divide 

and conquer agglomerative sampling strategy that is built on these ideas and can be used to reduce 

 
1 Corresponding Author: fayyazminhas [AT] warwick [dot] ac [dot] uk 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted April 14, 2020. . https://doi.org/10.1101/2020.04.13.039792doi: bioRxiv preprint 

https://github.com/foxtrotmike/AS
https://doi.org/10.1101/2020.04.13.039792
http://creativecommons.org/licenses/by-nc-nd/4.0/


the number of tests. Before delving into the details of the method, we present a list of assumptions 

underlying the proposed method: 

1. Pooling: Samples of multiple individuals can be combined or mixed into a single “bag” which can 

be tested by a single test such that: 

a. The test produces a positive outcome if any of the samples in the bag is positive 

b. The test produces negative outcome if none of the samples in the bag is positive 

c. Testing in bags does not change the error rate of the test being used 

2. Multiplicity: Multiple samples can be taken from a single individual or a single sample from an 

individual can be divided further 

3. Rarity: The probability of testing positive is small (𝑝 < 0.2) 

It can be expected that these assumptions are satisfied by a number of current tests for CoV-2 

infection such as the quantitative RT-PCR and serological (antibody) testing [2].  

2.2 Algorithm Description 

Consider a set of 𝑁 individuals 𝑆 = {1,2, … , 𝑁} to be tested for CoV-2 infection. Assume that the 

(originally unknown) test result of each of the 𝑁 individuals is given by 𝑦𝑖 ⊂ {0,1}, 𝑖 = 1 … 𝑁. 

Without loss of generality or introducing any limitations in the model, assume that for each 

individual, we are also given a set of d-features 𝑥𝑖 ∈ 𝑅𝑑  (such as frailty, age, gender, contact with 

known or suspected CoV-2 infected patients, geographical location, symptoms, family/household 

dependencies, etc.,) that can be used to generate a degree of belief of that individual to test positive. 

We denoted this degree of belief by 𝑏𝑖, 𝑖 = 1 … 𝑁. In case, it is not possible to assign a belief to 

each individual, 𝑏𝑖 can be considered to be uniformly random, i.e., 𝑏𝑖~𝑈(0,1). Alternatively, belief 

can be assigned by a human oracle in a subjective manner or can be obtained through machine 

learning or probabilistic modelling based on the given set of features. If we cluster or mix 

individual samples into bags and proceed with testing these bags in a hierarchical manner, the 

number of required tests can be reduced by essentially pruning out multiple negative samples in a 

single test. For this purpose, consider a tree structure organization of the given set of individuals 

based on the degree of belief  𝑏𝑖, 𝑖 = 1 … 𝑁 (or using the given set of features directly) as shown 

in the example figure below. The basic idea of agglomerative testing is that we test a bag of 

samples and if the bag level result comes out negative, then there is no need to test each of the 

samples individually. However, in case, the test comes out positive, we subdivide the samples into 

further clusters and test each of these bags next. This is continued until we get a test score of each 

individual. Furthermore, if a test for a bag comes out positive but the next sub-bag tests negative, 

then we know that the positive result is a consequence of a positive individual in the other bag 

which can be split further directly without additional testing. This guide algorithm based on even 

binary split is summarized in Algorithm-1. The figure below shows that if we obtain a mixed bag 

of all individual samples 1-8 and do a single test, the outcome will be negative and there is no need 

to do individual testing. For a bag comprising of cases 9-16, the result of the test will be positive 

because there is at least one positive individual in the bag. Doing this in a recursive manner can 

lead to reducing the number of tests required from 16 to 11 or 14 depending upon how the terminal 

nodes are tested. 

If we have access to informed belief values, then the given samples can be sorted with respect to 

their belief values prior to tree construction. Tree construction can also be done in an unsupervised 

manner based on existing individual features coupled with hierarchical or agglomerative 

clustering.  [3].  

2.3 Simulation Setup 

In order to evaluate the efficacy of this approach, we constructed a simple simulation in which 𝑁 

individuals are assigned random test labels (𝑦𝑖 = 1 with probability 𝑝 and 𝑦𝑖 = 0 with probability 

1 − 𝑝). Each individual is then assigned a degree of belief 𝑏𝑖. We tested with both a random degree 
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of belief (no belief information) and varying degrees of belief as measured by the concordance 

between 𝑏𝑖 and 𝑦𝑖 by using an additive normal distribution noise prior 𝑏𝑖 = 𝑦𝑖 + 𝑛𝑖 (with 

𝑛𝑖~ℵ(0, 𝜎)) with the degree of noise controlled by the standard deviation parameter 𝜎. For a given 

simulation setting (number of individuals, prior probability and belief control factor 𝜎), we 

calculate the number of required tests  𝑇 by the proposed sampling method. In order to get reliable 

statistical estimates of the distribution of the number of required tests for a given simulation setting,  

we repeated the simulation multiple times with the same setting and plotted the distribution of the 

number of required tests using a  box plot. 

 
Algorithm 1 The proposed method for Agglomerative Sampling 

 
Figure 1 Concept diagram for the proposed agglomerative sampling scheme for a given set of 16 individuals with 3 positives 
(p=0.19) indicated by the plus (+) or (-) sign in the leaf nodes of the tree. Each circle represents a possible test of a bag of samples. 
Each x indicates pruned nodes. Note that the number of tests required is 11 instead of 16. 

2.4 Mathematical Analysis 

Based on our computational analysis, the expected number of tests required for a given positive 

probability 𝑝 and 𝑁 input samples (under no belief assumptions) can be calculated as:   𝑡(𝑝, 𝑁) =
2(𝑁 − 1)(1 − 2−4.5𝑝) + 1. This formulation captures the typical average case number of required 

tests using the proposed strategy. It can be seen that this formulation is heavily dependent on the 

value of the positive probability. However, it can significantly reduce the number of required tests 

when the probability is small, e.g., for community level testing. The probability value up to which 

the proposed strategy can remain effective, i.e., up till T<N, is called the utility breakdown 
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probability 𝑝𝑑 = 𝑝|𝑡(𝑝,𝑁)<𝑁 and it is independent of the value of 𝑁 (for large N) can be calculated 

as: 𝑝𝑑 = 0.22. (proof omitted for brevity).  

2.5 Lab Testing 

Lab testing of the proposed method is currently underway. However, we are sharing the basic idea 

of the proposed method together with the simulation results in order to support the ongoing 

COVID-19 efforts across the globe. Specifically, our planned wet lab experiments will be aimed 

at studying the impact of this approach on the sensitivity/sepecificity of tests and understanding 

practical limitations for use with PCR or immunoassay-based testing as well as serology.  

3. Results 

3.1 Under no informed heuristic or belief 

All simulation results guarantee that the output of the tests remains unchanged from individual 

testing, i.e., if the original test identifies a given sample as positive (negative) then using the 

proposed scheme will identify that given sample as positive (negative) but with fewer number of 

tests required in overall. Figure 2 shows the number tests required under the proposed scheme for 

different positive probability values (𝑝) and different values of (𝑁) under no a prior belief 

(uniformly random 𝑏𝑖) . It can be clearly seen that the mathematical formula for the number of 

expected tests is in excellent concordance with the simulation results. Figure 2(a) shows that the 

number of required tests for 𝑁 = 16 with the proposed method remains below 𝑁 up to a probability 

of 𝑝𝑑 = 0.22 as expected. Figure 2(b) shows the same analysis for 𝑁 = 256. Figure 2(c) shows 

that the expected number of tests that can be saved is above 40% for all values of 𝑁 at a positive 

probability of 𝑝 = 0.1. This clearly shows that the proposed scheme can be very beneficial in 

practical settings. The number of required tests can be reduced further by incorporating a belief 

parameter or performing unsupervised agglomeration based on individual features as discussed 

below. 

3.2 Under an informed heuristic or belief 

As discussed in the methods section, if there is a way of predicting the likelihood of someone 

testing positive for CoV-2 (e.g., by using a machine learning method) or assigning such belief 

based on expert opinion, then the efficiency of the proposed scheme can be further improved by 

first ranking (sorting) the given samples with respect to their belief values. The concordance of the 

belief value 𝑏𝑖 and the true status 𝑦𝑖 can be measured by using the area under the receiver operating 

characteristic curve (AUC) between these values [4]: 𝐴𝑈𝐶 = 0.5 implies poor concordance 

between belief and the actual test status whereas  𝐴𝑈𝐶 = 1.0 implies perfect concordance. Please 

note that this AUC score is not between the test outcomes and the actual status but is used as a 

means of measuring the impact of the additive noise on the belief values for each individual. The 

degree of concordance is dependent upon the value of the noise factor 𝜎: 𝜎 = 0 will result in 

perfect concordance (𝐴𝑈𝐶 = 1) in which case, no testing is needed as the belief is perfect whereas 

for large values of 𝜎, the AUC value will be 0.5. Below we show the results of the proposed scheme 

for various values of 𝑁, 𝑝 and 𝜎. For 𝜎 = 1.0, we get an average AUC score of 0.75 and this leads 

to a moderate increase in the number of tests that can be saved in comparison to the no-belief 

simulation. This shows that even a weak belief assignment model coupled with the proposed 

scheme can significantly reduce the number of required tests. For 𝜎 = 0.5 (with an AUC score of 

0.9), the saving is even more substantial (up to 60%). This clearly shows that the proposed testing 

scheme can lead to further improvements by incorporating belief through machine learning models 

or expert assignment.  

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted April 14, 2020. . https://doi.org/10.1101/2020.04.13.039792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.13.039792
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(a)  

 

 
(b) 

 
(c) 

Figure 2 Simulation results of the proposed sampling scheme. In each figure, a plot of the average number of tests required in 
multiple trials for a given positive probability value are shown as a box plot together with the theoretical estimate: 𝑡(𝑝, 𝑁) =

2(𝑁 − 1)(1 − 2−4.5𝑝) + 1.(a) for N=16 (b) for N = 256 With 𝜎 = 1.0 and (c) Plot of the number of tests saved as a function of the 
N for p=0.1. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3 Results of the simulation in terms of number of tests required for different positive probability values for N=256 with (a) 
𝜎 = 0.5 and (b) 𝜎 = 1.0. (c) and (d) show the expected percentage tests saved for different values of N for p=0.1 with  𝜎 = 0.5 
and 𝜎 = 1.0, respectively. 

4. Conclusions and Future Work 

In this work, we have developed a community laboratory testing strategy for CoV-2 based on a 

divide and conquer approach [5] that can reduce the number of tests required for testing a given 

number of samples. It can optionally be used in conjunction with a belief assignment method such 

as a machine learning prediction model or with guidance from a human expert to improve testing 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted April 14, 2020. . https://doi.org/10.1101/2020.04.13.039792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.13.039792
http://creativecommons.org/licenses/by-nc-nd/4.0/


efficiency even further. In terms of machine learning, the proposed scheme can be adapted for use 

to work together with a machine learning model which generates a ranked list of likely positive 

samples which can be tested individually followed by agglomerative testing of the remaining 

samples. Additionally, in the absence of a predictive model or another means of belief assignment, 

the proposed scheme can use feature-based unsupervised clustering to reduce the number of 

required tests building on the assumption that the test results of individuals are not independent of 

each other.  

We have opted to share the proposed method in the hope that it can be beneficial to large-scale 

CoV-2 testing and the management of patients with COVID-19. Laboratory trials with the 

proposed sampling technique are being considered at the University of Warwick to study the 

impact of the proposed strategy on accuracy of existing testing methods and understand practical 

limitations. 
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