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1 Abstract

Background: Norovirus outbreaks are notoriously explosive, with dramatic sympto-

mology and rapid disease spread. Children are particularly vulnerable to infection and

drive norovirus transmission due to their high contact rates with each other and the

environment. Despite the explosive nature of norovirus outbreaks, attack rates in schools

and daycares remain low with the majority of students not reporting symptoms.

Methods: We explore immunologic and epidemiologic mechanisms that may underlie

epidemic norovirus transmission dynamics using a disease transmission model. Towards

this end, we compared different model scenarios, including innate resistance and acquired

immunity (collectively denoted ‘immunity’), stochastic extinction, and an individual

exclusion intervention. We calibrated our model to daycare and school outbreaks from

national surveillance data.

Results: Recreating the low attack rates observed in daycare and school outbreaks

required a model with immunity. However, immunity alone resulted in shorter duration

outbreaks than what was observed. The addition of individual exclusion (to the immunity

model) extended outbreak durations by reducing the amount of time that symptomatic

people contribute to transmission. Including both immunity and individual exclusion

mechanisms resulted in simulations where both attack rates and outbreak durations were

consistent with surveillance data.

Conclusions: The epidemiology of norovirus outbreaks in daycare and school settings

cannot be well described by a simple transmission model in which all individuals start as

fully susceptible. Interventions should leverage population immunity and encourage more

rigorous individual exclusion to improve venue-level control measures.
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3 Background

Norovirus is the leading cause of acute gastroenteritis across all ages in the United States

(US), with 19 to 21 million cases occurring per year [1]. The role of children in its trans-

mission has recently been highlighted in a mathematical modeling analysis [2], which

found that pediatric vaccination would result in substantially higher protective population-

level effects when compared with vaccination of the elderly. This finding highlights the

propensity of children in daycares and schools to cause explosive outbreaks and subse-

quently to propagate disease into the community through person-to-person transmission

[3–10]. Here we examine how norovirus spreads within schools and daycare centers to

inform the potential design of effective venue-specific interventions to ultimately reduce

population-level risk.

Norovirus transmission can occur directly through person-to-person contact [11] and indi-

rectly through water [12], food [13], or fomite-mediated pathways [14–17]. Symptomatic

individuals efficiently spread virus through vomiting and defecation [17]. After symptoms

resolve, individuals continue to shed for an average of ∼2 weeks [18]. Norovirus trans-

mission is sustained through the combination of efficient and prolonged human shedding

[17], and extended environmental persistence [19–22]. Additionally, norovirus is highly

infectious, with an infectious dose of 18-2800 virions being sufficient to cause infection,

while peak viral concentration per gram of stool reach levels of 109 [23, 24]. These features

of transmission as well as a lack of long-lasting immunity in human hosts [25, 26], con-
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tribute to venue-level norovirus outbreaks potentially exhibiting rapid, explosive growth

rates [27, 28]. These explosive epidemic growth rates would be expected to correspond

to high attack rates with exhaustion of susceptibles, similar to other highly transmissible

diseases like measles [29, 30]. However, despite this explosive tendency and the important

role that children play in transmission, attack rates (ARs) in daycare and school outbreaks

are relatively low (∼22% to ∼15% in daycares and schools, respectively, based on data

from the National Outbreak Reporting System (NORS) [31]).

While the transmission of other explosive diseases, such as measles, may be often be

captured through simple susceptible-infectious-recovered (SIR) models in which all in-

dividuals start as fully susceptible, norovirus does not result in exhaustion of susceptibles,

suggesting that a more complex transmission process may be occurring. One distinction

between norovirus and measles is that norovirus immunity is strain dependant and not per-

manent, so that norovirus outbreaks often occur in populations with immunity. This raises

the question of whether population-level immunity is sufficient to explain the norovirus

outbreak patterns that we observe.

There are multiple explanations for the combination of explosive outbreaks and low ARs

observed in outbreak data. First, ∼20% of the US population lack a functional FUT2 gene,

conferring innate resistance to certain norovirus genotypes [32]. Furthermore, depending

on age, up to ∼90% of children < 5 years of age have norovirus antibodies titers poten-

tially indicating acquired immunity [33, 34], although the level of protection conferred

by these antibodies is not known and the levels of acquired immunity may fluctuate in

part due to the genetic drift of norovirus strains [35]. Second, the Centers for Disease

Control and Prevention (CDC) recommends various interventions to prevent and control

norovirus outbreaks, including isolation of individuals during and 1 to 3 days following

the symptomatic period [36] which may also reduce transmission [37]. Finally, stochastic

extinction may lead to outbreaks ending without exhaustion of susceptibles, especially for
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smaller populations [38] e.g. daycares. Any combination of these factors may contribute

to low ARs within venues.

In this paper, we employ mathematical models to explore underlying mechanisms leading

to disease transmission dynamics that can explain the observed norovirus epidemiology

within daycare and school venues. Given the epidemiological features discussed above, ex-

plaining norovirus dynamics requires a detailed representation of the mechanisms driving

transmission. Here, we examine which mechanisms are sufficient to explain the epidemi-

ological patterns seen in outbreaks using a transmission model calibrated to CDC NORS

surveillance data.

4 Methods

5 NORS Dataset

We calibrated our model to outbreak duration (in days), student AR, and student popu-

lation size data from NORS, a CDC-managed internet-based surveillance system through

which state, territorial, and local health departments within the US can enter outbreak in-

formation [31, 39] (See Appendix Table S6 for summary statistics of dataset). Our dataset

includes all school and daycare outbreaks in NORS that occurred from 2009–2016 which

indicated norovirus as the only suspected or confirmed etiology. We classified a given

venue as daycare or school based on self-reported classification by the reporting agency

[40]. In total, there were 989 school outbreaks and 329 daycare outbreaks, which com-

prised 4.6% of all outbreaks reported through NORS during 2009–2016 (i.e., 1,318 of

28,580 total outbreaks across all modes and etiologies). We only included outbreaks with

complete data (i.e., not missing for total students exposed, AR, and outbreak start and
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end dates), and with ARs and durations within the 5th and 95th percentiles of the dataset

to remove outliers and to calibrate our model to data generally representative of com-

mon norovirus outbreaks. Our final calibration dataset consisted of 562 total norovirus

outbreaks.

5.1 Model Structure

We modeled transmission in school and daycare venues and examined how including dif-

ferent mechanisms capture the features of the NORS data. Our stochastic model is an

extension of [2]. All analyses were conducted in R version 3.2.4 [41].
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Figure 1: Model schematic: All compartments involved in the force of infection (Equation
1) are in light gray. The full force of infection equation is also shown in the figure above.
Susceptible individuals (S) may be infected and pass through a latent period (E1 to E3)
before becoming symptomatically (I) or asymptomatically infectious (A1 to A3). Once re-
covered from asymptomatic infection, individuals become fully immune (R). Note, there
is no waning immunity due to the fact that we are simulating over a short timescale (i.e.,
60 days). At the start of the outbreak some individuals may be fully immune (R) due
to innate resistance or partially immune (P ) due to acquired immunity. Social distanc-
ing or individual exclusion is represented by X. During infection, individuals may shed
pathogens onto environmental fomites (F1). As pathogens on the fomites decay, they move
to (F2), together the two fomite compartments represent biphasic decay of norovirus in the
environemnt. All parameter values are shown in Table 1.

5.1.1 Transmission Model for Daycare centers and Schools

Transmission occurs directly through person-to-person contact or indirectly through

fomite-mediated pathways i.e., shedding and pickup of virions in the environment (in

this analysis, we are not simulating foodborne or waterborne transmission). Individuals

start as susceptible S, partially immune P , or have innate resistance (and start as fully

recovered) R depending on the initial conditions (Figure 1). Susceptible and partially im-

mune individuals become infected according to the force of infection λ(t), which is derived
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from the number of symptomatic individuals (I), asymptomatic individuals (A1, A2, and

A3), environmental pathogens residing on fomites (F1 and F2), and the human-to-human

(βHH) and fomite-to-human (βFH) transmission rate parameters. The parameter βA repre-

sents the reduction in efficiency of asymptomatic transmission compared with symptomatic

transmission. Excluded individuals do not contribute to the force of infection:

λ(t) = [I + βA(A1 + A2 + A3)]βHH + (F1 + F2)βFH , (1)

Infected individuals move through a gamma-distributed latent period (E1, E2, and E3)

which represents the distribution of the incubation times in the literature [42]. Individuals

then become either symptomatic or asymptomatic [43]. The gamma-distributed asymp-

tomatic period represents post-symptomatic shedding and exhibits reduction in shedding

by stage (e.g., individuals in A2 shed less than individuals in A1). Partially-immune indi-

viduals can become infected, but not diseased (symptomatic). Symptomatic individuals

may become excluded (X) until 2 days after their symptoms resolve and do not contribute

to transmission while they are excluded. All non-excluded symptomatic and asymptomatic

individuals shed pathogen into the environment (in the venue). Norovirus pathogen decay

on fomites occurs in a biphasic pattern with an initial rapid die-off followed by a period of

slower decay [19, 44]. Finally, all individuals who become infected eventually progress to

fully recovered. See Appendix Table S1 for initial condition ranges, and Section S2 for the

model description and equations.

5.1.2 Predefined parameter ranges

To reduce parameter space and the number of simulations required to calibrate the model,

we fixed the values of parameters that have been estimated in the literature (i.e., µ, θ, φ,

ρ, σ, and qT ime). If there was no information about a given parameter (i.e., αI , ξ, βA,βHH ,
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βFH , and υ), we sampled its value from predefined ranges. See Table 1 for all parameter

values and ranges.

Table 1: Transmission Model Parameter Values and Uncertainty Ranges
Parameter Description Estimate/Uncertainty Ranges (units) Sources
µ Rate of transition through each

latent state
2.6 (days−1) Systematic review [42] determined that norovirus in-

cubation period is ∼ 1.15 days. The period is divided
by 3 because it is gamma distributed and then con-
verted to a rate i.e., 1

( 1.15
3

)

θ Proportion of latent individuals
that don’t become symptomatic

0.3 (unitless) Volunteer study [43]

φ Transition rate from symp-
tomatic compartment (I) to
asymptomatic compartment
(A1)

0.8 (days−1) Cohort study examining the natural history of cal-
civirus infection in the community [45]. We converted
the symptomatic period (1.25 days) to a rate i.e, 1

1.25

ρ Recovery rate 0.2 (days−1) Review examining norovirus shedding duration data
determined the recovery rate to be ∼ 15 days [18].
The period is divided by 3 because it is gamma dis-
tributed and then converted to a rate i.e., 1

( 15
3

)

αI Shedding rate for diseased (I,
A, X) individuals

0 to 10,000,000 ( pathogens
day

) Study quantifying symptomatic and asymptomatic
shedding in nursing home and hospital outbreaks [23]

σ Rate of reduction in shedding 0.2 (unitless) Study quantifying symptomatic and asymptomatic
shedding in nursing home and hospital outbreaks [23]

ξ Biphasic decay rate of norovirus
in the environment

0.07 to 3 (days−1) Lab-based study quantifying the persistence of murine
norovirus on a variety of surfaces [19] ranging from
2 weeks (i.e., a rate of 1

14
) to 8 hours (i.e., a rate of

1
0.333

)
βA Reduction factor for asymp-

tomatic shedding and trans-
mission (compared with symp-
tomatic individuals)

-4 to -0.09691; sampled in log space (unitless) See above [23]

Transmission Rates
βHH Human-to-human transmission

rate

1
Population

to 70
Population

(infec-
tion/time)

Approximation of R0. This value is scaled by the pop-
ulation size. The range from a review of norovirus
mathematical models [46]

βFH Fomite-to-human transmission
rate derived by multiplying a
scaling factor [0,2] by βHH

0 to 2βHH (unitless) Limited empirical data on fomite to human transmis-
sion therefore, we allowed for wide range of values
which can increase or decrease rates relative to βHH

Exclusion Parameters
υ Time spent in symptomatic com-

partment, (I), before becoming
excluded (X)

1 to 24 (days−1) Individuals are symptomatic and mixing normally for
between 1 (i.e., 1

( 1
24

)
)to 24 hours (i.e., 1) before be-

ing excluded
qTime Additional time spent in ex-

cluded compartment after symp-
toms resolve

0.5 (days−1) The CDC recommends that individuals exclude them-
selves until 2 days after symptoms resolve i.e., 1

2
[36]

5.2 Model Scenarios

We considered the following scenarios to examine mechanisms that can recreate the fea-

tures of norovirus transmission:

• Baseline Model: The outbreak starts in a fully susceptible population.

• Immunity Model: The outbreak starts in a population where 20% of individuals

have innate resistance [32] and between 0 and 80% of individuals have acquired
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immunity (depending on the sampled initial condition values, see Section S5). There

is no individual exclusion.

• Individual Exclusion Model: The outbreak starts in a fully susceptible population.

Symptomatic individuals can become excluded (X) and these individuals do not

contribute to transmission.

• Combined Model: The outbreak starts in a population with immunity (i.e., innate

resistance and acquired immunity) and contains symptomatic individuals that can

become excluded.

See Appendix Section S3 for more details about the model scenarios. All models were

simulated in daycares and schools. We randomly sampled starting population sizes from

the distribution of exposed student populations in the NORS data (Table S6). To address

assumptions about our modeling framework, we conducted sensitivity analyses. First, we

looked to see whether specific initial conditions influence our results in our best-calibrated

model. We varied whether the outbreak was initiated by an infected individual entering

the venue or by differing amounts of contamination in the environmental. Second, we

looked to see whether including staff in addition to student transmission influenced our

conclusions (see Appendix Sections S11 and S12 for details).

5.3 Calibration

We calibrated each venue–specific model separately to its corresponding NORS data us-

ing sample-importance-resampling [47]. This approach allowed us to obtain an array of

parameter sets that best recreate the NORS data distribution.

Sample-importance-resampling is a three-step procedure. In the ‘sample’ stage we ran the

10
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model with 10,000 randomly sampled parameter and initial condition sets (collectively

denoted ‘parameter sets’, and listed in Table 1) from pre-defined ranges using Latin Hy-

percube Sampling [48]. Each parameter set was run in a school setting and separately, in

a daycare setting. Next, in the ‘importance’ stage, we calculated a likelihood to determine

how well each parameter set corresponds to the NORS data. Our likelihood compared

the 3-dimensional probability distribution of the student ARs, student population size, and

outbreak durations from the model to NORS data. We also examined the effects of weak-

ening our prior (i.e., our best guess pre-defined parameter ranges) on the results. Finally,

in the ‘resampling’ stage we resampled the parameter sets 2,500 times with replacement

using the likelihoods as weights to obtain a final array of parameter sets. See Appendix

Section S6 for more details on calibration and the effects of weakening our prior.

As described above, we considered two versions of the model and calibration—one model

which included only students (using the student AR and population data), and a second

sensitivity analysis that included staff members and students separately in the model (see

Appendix Section S12 for details). The overall outbreak duration was used for calibration

in both model versions. Calibrating the staff and student model was substantially more

computationally expensive than the student-only model. Additionally, the full calibration

results for the staff and student model were similar to the student-only model (see below

and Appendix Section S12), and so for simplicity we present only the student model here

and the model with the staff included is presented as a sensitivity analysis in the appendix.

To determine the best-fitting model, we derived a kernal density estimate of the calibrated

model results (namely the density of resamples across AR, population size, and outbreak

durations), and calculated the Kullback-Leibler divergence to measure the difference be-

tween the each calibrated model and NORS kernal density estimate [49]. We also exam-

ined pairwise scatter plots of ARs, outbreak durations, and population sizes for resampled

model runs and compared them to the NORS data to assess the calibration graphically.
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6 Results

6.1 NORS Data

Our final dataset (after removing incomplete data and outliers) consisted of 165 daycare

outbreaks and 397 school outbreaks. The median student population, AR, and outbreak

duration for daycare outbreaks were 80 people (range: 7, 410), 21.5% (range: 4.6%,

69.2%), and 13 days (range: 2, 40 days), respectively. The median population, AR, and

duration for school outbreaks were 420 people (range: 6, 6486), 15.3% (range: 4.6%,

68.4%) and 8 days (range: 1, 32 days), respectively. See Appendix Table S6 for details.

6.2 Calibration

We found that the fully uninformed prior resulted in the best graphical fit and lowest

Kullback-Leibler divergence (discussed in Appendix Section S7). The graphical results of

the calibration are shown in the Appendix Section S10 and the Kullback-Leibler divergence

for each model is given in Table 2.

6.3 Model Comparisons

Figure 2 shows the median attack rates and durations for the NORS data and each of

the models. Overall, the combined model matched the NORS data best both graphically

and according to Kullback-Leibler divergence (see Figure 3 and Appendix Figures S10 for

scatter plots showing model results compared with NORS data and Table 2 for all Kullback-

Leibler divergences). In the combined model, the daycare and school-aged ARs had medi-

ans of 20% (CI: 2.6% to 57.1%) and 14.3% (95% CI: 2.1% to 52.7%), respectively. These

12
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are slightly lower, but relatively consistent with the NORS ARs which were 21.5% (range:

4.6% to 69.2%) and 15.3% (range: 4.6% to 68.4%) for daycares and schools, respectively.

The daycare and school outbreak durations were 12 days (95% CI: 2 to 36) and 10 days

(95% CI: 3 to 31), respectively. These ranges are somewhat smaller, but generally consis-

tent with the NORS outbreak durations which were 13 days (range: 2 to 40) and 8 days

(range: 1 to 32) for daycares and schools, respectively. Results for the other models that

did not calibrate as well are shown in Tables 3 and 4.
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Attack Rate Duration

Figure 2: ARs (left column) and durations (right column) for each model compared with
NORS data. Each plot corresponds to a different model structure (indicated on the y-axis
label).
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Figure 3: Attack rate vs. outbreak duration in daycares for the NORS data (top left), with
all remaining panels showing results from resampled parameter and initial conditions by
model scenario. Points correspond to individual parameter sets and are colored by the
amount of times they were resampled.

Overall, the baseline model which examined the effects of stochasticity alone (i.e., in the

absence of immunity and individual exclusion) resulted in ARs being too high and outbreak

durations being too short compared with the NORS data. Among the mechanisms we ex-

amined, population immunity (included in the immunity and combined models) was best

able to recreate relatively low ARs observed in the NORS data (Table 3). This is because

individuals who are partially immune may become infected, but not symptomatic. Even

though these individuals contribute to transmission, they are not detected as diseased and

do not count in the overall AR. On the other hand, the individual exclusion mechanism (in-

cluded in the individual exclusion and combined models) resulted in durations that were

15
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Model Daycare School
Stochastic Simulations

Baseline 5.05 7.41
Immunity 1.05 0.53

Individual Exclusion 1.39 3.59
Combined 0.3 0.39

Sensitivity Analyses on Combined Model
Seeding: Varying Pathogens in Environment 0.56 0.35

Seeding: Diseased Individual 0.34 0.46

Table 2: Kullback Leibler divergence for each model compared with the NORS data ker-
nel density estimated distribution. Smaller Kullback-Leibler divergence indicates a more
similar distribution to NORS (i.e. less information difference between the NORS and the
model distribution). The combined model is shown in bold. The sensitivity analyses in-
clude varying the environmental contamination at the start of the outbreak (‘Seeding:
Varying Pathogens in Environment’), and seeding with a single diseased individual (‘Seed-
ing: Diseased Individual’)

more consistent with NORS data. Specifically, individual exclusion led to longer outbreak

durations (see Appendix Table 4) indicating that it may slow the spread of norovirus. Ex-

cluded individuals transmit for a shorter time while they are symptomatic (i.e., between 1

hour and 1 day before being excluded) compared with non-excluded individuals (i.e., 1.25

days). This reduction in transmission time likely prevents the outbreak from spreading as

fast as the baseline or immunity models. Individual exclusion also provides population-

level protection from becoming symptomatic (as indicated by the reduction in individual

exclusion ARs compared with the baseline model).

Table 3: Venue-specific Attack Rates for All Models: Median (95% CI) [Mean]
Model Daycare School

Baseline 57.1% (2.8%, 73.3%) [47%] 56.5% (0.6%, 70.8%) [48.1%]
Immunity 19.5% (3.1%, 55.1%) [22.2%] 13.7% (2.6%, 54.2%) [18.3%]

Individual Exclusion 27.3% (2.8%, 70%) [31.1%] 12.5% (0.7%, 67.8%) [22.8%]
Combined 20% (2.6%, 57.1%) [22.8%] 14.3% (2.1%, 52.7%) [18.6%]

NORS 21.5% (4.6%, 69.2%) [25.3%] 15.3% (4.6%, 68.4%) [20.4%]
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Table 4: Venue-specific Outbreak Durations for All Models: Median (95% CI) [Mean]
Model Daycare School

Baseline 8 days (2, 22) [8.8] 5 days (2, 17) [6.2]
Immunity 8 days (2, 26) [9.7] 8 days (2, 27) [9.8]

Individual Exclusion 10 days (3, 31) [11.8] 9 days (2, 30) [11.2]
Combined 12 days (2, 36) [13.5] 10 days (3, 31) [12]

NORS 13 days (2, 40) [14.6] 8 days (1, 32) [10.8]

Each single mechanism model can account for single aspect of the NORS data. Specifi-

cally, immunity can recreate the NORS attack rates and individual exclusion can recreate

the NORS outbreak durations. Furthermore, examining the pairwise comparison between

attack rates and populations and durations and populations, we can see that the immunity

and combined models best match the NORS data. See Appendix Figures S2, S3, S5, and

S6 for populations plotted against attack rates and outbreak durations. Because of the

balance in fit of these different features, the combined model performed best according to

the Kullback-Leibler divergence (see Table 2 ).

For all models, the median outbreak durations were less than the average time it took the

first incident cases to fully recover (i.e., less than the ∼ 16-day infectious period), which

meant that outbreaks tended to end within a single infectious period indicating a rapid

(explosive) spread of disease within venues. Therefore, both the combined and immunity

models provided a mechanism for explosive outbreaks that did not result in the entire

population becoming diseased.

6.4 Sensitivity Analyses

We examined how results changed when simulating different initial conditions and also,

including staff transmission. First, starting with different initial conditions using the com-
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bined model (seeding with an infected individual or varying the number of pathogens

starting in the environment) led to similar model results compared with the original model.

See Appendix Sections S11, and S12 for more details, and Tables S7 and S8 for ARs and

durations. Second, the student and staff model had qualitative results consistent with the

main analysis. Specifically, among calibrated parameter sets, although median results were

closer than the student only model to the NORS data for certain model scenarios (e.g. the

attack rates of the baseline model), the overall behavior of each scenario was consistent.

This is evidenced by the attack rate ranges being wider for the immunity model, and the

outbreak duration ranges being wider for the individual exclusion model. Overall, the stu-

dent and staff model was consistent with our overall results in that the combined model

calibrated best to the NORS data (see Appendix section S12 for details).

7 Discussion

Although norovirus is classically characterized by explosive outbreaks, its epidemiology

exhibits interesting properties that are not captured by simple SIR models starting with a

fully susceptible population. The NORS data has lower attack rates and longer durations

than were observed in our baseline model alone. An interesting characteristic of norovirus

is that a portion of the population exhibits immunity that provides some degree protec-

tion. Immunity to norovirus (either innate or post-exposure) is well known, our analysis

suggests that this process may be sufficient to explain the observed general pattern of

explosive norovirus outbreaks but relatively low ARs within venues. However, this mech-

anism alone resulted in outbreak durations that were substantially faster than what we

observed in the data. Another interesting feature of norovirus outbreaks, due to the short

but intense symptomatic phase, is that individual’s choose to and/or are asked to exclude

themselves from the general population. This exclusion appears to slow transmission and
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result in lower attack rates, but does not produce a wide distribution of attack rates in

our model. For this reason, the combined model (with both immunity and individual ex-

clusion) was able to generate a wider distribution of outbreaks with both low attack rates

and longer outbreak durations and therefore matched the NORS data most closely. These

findings suggest that partial population immunity and exclusion of ill individuals are im-

portant mechanisms that contribute to the observed characteristics of reported norovirus

outbreaks.

These results are based on an analysis of the NORS dataset in conjunction with a trans-

mission model. Both the data and the model come with assumptions and limitations.

With respect to the data, NORS relies on passive surveillance, which means there is under-

reporting of outbreaks that likely results in the distribution of ARs and durations not being

representative of the general trends in the population [11]. Second, the amount of missing

data (only 562 of the initial 1,318 outbreak were complete and therefore included) could

result in bias. Third, interventions (e.g. decontamination) were likely implemented in

many of the reported outbreaks, but the majority (¿ 90%) did not report on this. Fourth,

the exposed population reported (i.e., the denominator of the ARs) may correspond to

a single classroom, grade-level or entire school, and is not consistent across outbreaks

(and the method of determining the exposed population is not specified). This may re-

sult in lower ARs (if the exposed population is overestimated) and could have substantial

effects on how well our models calibrate. To address this, in our initial exploration of

the NORS data, we plotted ARs vs. duration while stratifying on exposed population size

(for populations < 200) and found that the overall distribution appeared similar across

strata (see Appendix Figure S1). Lastly, classifications of school or daycare venues relied

on self-reporting. Many venues have a mixture of different age groups and therefore,

classifications were likely not consistent.

Our analytical methods include a wide range of assumptions required to generate a parsi-

19

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted December 21, 2019. .https://doi.org/10.1101/2019.12.19.19015396doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.19.19015396
http://creativecommons.org/licenses/by-nd/4.0/


monious model. First, we did not explicitly include the processes of waning immunity and

the existence of different norovirus strains because we are simulating a single outbreak.

These processes are represented in our model by varying the distribution of individuals

who start as immune compared with fully susceptible. Second, we assume that partially

immune individuals may become infected, but not diseased. In reality, individuals with

acquired immunity may become symptomatic or asymptomatic. However, altering the rel-

ative proportion of asymptomatic vs. symptomatic individuals i.e., by varying the initial

conditions of those who start as partially immune should account for these effects. Third,

we used a compartmental rather than individual-based structure, which does not include

explicit contact network effects such as clustering and degree heterogeneity. One form of

contact heterogeneity is the different transmission rates for staff and students—while our

main model did not include staff transmission, the staff and student sensitivity analysis

included these features and had results consistent with the main analysis i.e., immunity

allows for a wider range of attack rates and individual exclusion allows for a wider range

of outbreak durations. For more details see Appendix Section S12. Finally, we assume that

each outbreak is seeded in the environment with a set number of pathogens. We explored

variations to this in sensitivity analyses altering initial seeding (1) with a single infected

individual and (2) varying the number of pathogens starting in the environment. These

additional analyses did not substantially change the results (see Appendix Section S11).

Future analyses should consider how interventions can leverage the fact that innate and

partial immunity, as well as individual exclusion may shape outbreak patterns. The im-

portance of innate and acquired immunity in reducing attack rates supports the current

approach to implement a vaccine and also may be factored into the design of vaccination

programs (because ∼ 20% of the population already has innate immunity). The obser-

vation that individual exclusion leads to slower transmission, suggests that other inter-

ventions like decontamination can work in conjunction with individual exclusion to stop
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transmission altogether.
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S1 Supplementary Information

S2 Transmission Model for Daycare Centers and Schools

Transmission occurs either directly through person-to-person contact or indirectly through

fomite-mediated pathways i.e., shedding and pickup of virus in shared environments. In-

dividuals start as either susceptible S, partially immune P , or fully recovered R depending

on acquired immunity and innate resistance status (Figure 1). Susceptible and partially im-

mune individuals become infected according to the force of infection λ(t), which is based

on: (1) the number of symptomatic (I), and asymptomatic (A1, A2, and A3) individuals;

(2) the number of pathogens on fomites in the environment (F1 and F2); (3) the human

to human and fomite to human transmission rates (βHH; and βFH); and (4) The asymp-

tomatic transmission reduction factor (βA) which reduces the efficiency of transmission

compared with symptomatic individuals. Excluded individuals, X, do not contribute to

transmission.

Force of Infection

λ(t) = [I + βA(A1 + A2 + A3)]βHH + (F1 + F2)βFH (2)

Once infected, individuals pass through a gamma distributed latent period i.e. E1, E2,

and E3. It is gamma distributed to represent the empirical distribution of incubation times

[42] in the literature. After they pass through the latent period, they become symptomatic.

After an individual is symptomatic, they pass through a gamma distributed asymptomatic

period i.e., A1, A2, and A3 that represents post-symptomatic shedding and exhibits a re-

duction in shedding by stage (e.g., individuals in A2 shed less than individual in A1, see
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below for details). A proportion of infected individuals who originate in S do not become

symptomatic and pass directly from E3 to A1. Individuals who start as partially immune

can become infected, but do not become symptomatic and move directly to A1.

A proportion of symptomatic individuals become excluded and move into the X compart-

ment. After their symptoms resolve, they move to A1 and return to the general popula-

tion with the normal transmission and shedding rates for the A1 compartment. Finally,

all individuals who become infected eventually progress to the fully recovered state. All

symptomatic and asymptomatic individuals (unless excluded) shed pathogen into the en-

vironment as follows:

Shedding = αII + αIβA(A1e
−σ( 1

φ
) + A2e

−σ( 1
φ
+ 1
ρ
) + A3e

−σ( 1
φ
+ 1
ρ
+ 1
ρ
))

Ḟ1 = Shedding − ξF1

Ḟ2 = ξF1 − ξF2

(3)

where αI is the shedding rate for symptomatic individuals, and the reduction factors for

shedding among asymptomatic individuals is βA.

The amount of shedding is reduced exponentially as individuals progress across the gamma

distributed asymptomatic period by σ for each state transition [23]. The symptomatic

period, φ, and the recovery rate, ρ (i.e., from A1 to A2 etc.), account for the length of time

that individuals shed at certain rates.

Viral concentration on fomites is tracked in the venue. Norovirus pathogen decay on

fomites occurs in a biphasic pattern with an initial rapid rate of die-off followed by a

period of slower die-off [19, 44]. Since we are simulating a single outbreak, waning im-

munity is ignored. See Appendix Section S4 for the full model equations, Table S1 for

initial condition ranges, and Table 1 for parameter ranges.
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S3 Model Features

We incorporated different model features to examine mechanisms that can recreate the

explosive outbreaks and low ARs characteristic of norovirus. We considered the following

models (see Figure 1 for reference):

• Baseline Model: In this scenario, we simulated a fully susceptible population, with

no individual exclusion. All individuals started in the susceptible, S, compartment.

• Immunity Model: In this scenario, we simulated partial population immunity with

no individual exclusion. Because there is strain-dependent variation in the amount

of protection innate resistance provides [32], and due to the fact that there is not an

established correlate of norovirus protection that would be able to quantify acquired

partial immunity, we examined different proportions of immunity. We assumed that

those with innate resistance could not become infected at all and started as fully

immune (in the R compartment), while those with acquired immunity started as

partially immune (in P ). Individuals in P could become infected, but not diseased.

Non-diseased individuals were assumed to not be detectable during norovirus out-

breaks and therefore were not counted in the numerator of the attack rate. Twenty

percent of the population started in the R compartment i.e., with innate resistance

[32], and we varied the total number with acquired immunity (P ). We chose to

vary the percentage starting with acquired immunity, because again there is not a

well established correlate of protection [50]. Finally, we calibrated the proportion of

individuals with acquired immunity to the data by sweeping over a broad range of

Latin Hypercube Sampled [48] values (Table 1).

• Individual Exclusion Model: In this scenario, we simulated a fully susceptible pop-

ulation (i.e., all individuals started in the S compartment) with individual exclusion.
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During the simulation, a proportion of diseased individuals were removed from nor-

mal mixing and shedding, i.e., excluded. Excluded individuals do not contribute to

transmission.

• Combined Model: In this scenario, we simulated partial population immunity, with

individual exclusion.

Each of the above approaches were simulated stochastically. The stochastic simulation is

a tau leaping version of the model [51] based on the Gillespie algorithm in which the

stochastic model is approximate, but more efficient. The proportion of individuals across

disease states is updated at each large predefined time step (the time interval is denoted

τ). We then ran the model 10 times using different random number generator seeds for

each parameter set and population size to account for stochastic variation.
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S4 Model Equations

As noted above, the model was simulated stochastically, but the equivalent ordinary

differential equations are:

Force of Infection

Ninf = I + βA(A1 + A2 + A3)

λ = NinfβHH + (F1 + F2)βFH

(4)

Human Transmission Model

Ṡ = −λS

Ė1 = λS − µE1

Ė2 = µE1 − µE2

Ė3 = µE2 − θµE3 − (1− θ)µE3

İ = (1− θ)µE3 − φI − υI

Ẋ = υI − 1
1
φ
− 1

υ
+ 1

qT ime

X

Ȧ1 = φI − ρA1 + λP + θµE3 +
1

1
φ
− 1

υ
+ 1

qT ime

X

Ȧ2 = ρA1 − ρA2

Ȧ3 = ρA2 − ρA3

Ṗ = −λP

Ṙ = ρA3

(5)
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Venue and Pathogens

Shedding = αII + αIβA(A1e
−σ( 1

φ
) + A2e

−σ( 1
φ
+ 1
ρ
) + A3e

−σ( 1
φ
+ 1
ρ
+ 1
ρ
))

Ḟ1 = Shedding − ξF1

Ḟ2 = ξF1 − ξF2

(6)

S5 Initial Conditions

In the baseline model, we start all individuals as Susceptible (S). In the immunity and

combined models, 20% of individuals start as fully recovered (R) and some proportion of

individuals start with partial immunity (P ). This proportion is randomly sampled between

0 and 80%. Finally, 10 million pathogens start in the F1 compartment to initiate the

outbreak. However, this number was varied from 0 to 100 million in a sensitivity analysis.

Another sensitivity analysis seeded the outbreak with a single infectious individual.
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Table S1: Initial Condition Values and Uncertainty Ranges
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S6 Calibration

We calibrated each venue–specific model separately to its corresponding NORS data using

sample-importance-resampling [47]. This approach allowed us to obtain an array param-

eter sets upon which, if the model is run will recreate the NORS data distribution to the

best ability of the model.

S6.1 Initial Sample:

We ran the model with 10,000 randomly sampled parameter and initial condition sets (col-

lectively denoted ‘parameter sets’, and listed in Table 1) using Latin Hypercube Sampling

[48]. Each parameter set was run in a school setting and separately, in a daycare setting.

The only distinction between the model setup for schools and daycares was the starting

population size (the sets of parameter values are the same), which is taken from the NORS

outbreak data in the corresponding setting (Table S6). The NORS data includes separate

attack rates (ARs) and populations for students and staff, but only one overall outbreak

duration.

For a given venue–specific model, parameter sets were excluded from calibration if the

outbreak was ongoing when the simulation ended (i.e., > 60 days, set according to the

NORS data). We note that all the outbreaks in the NORS calibration dataset had ended by

this point (the maximum duration was 40 days for daycare and 32 days for schools).
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S6.2 Calculating the Likelihood:

We derived 2 kernel density estimates of the 3-dimensional probability distribution of the

student ARs, student population size, and outbreak durations: one for NORS, KDENORS,

and one for the model results (generated based on our parameter ranges), KDEModel. The

kernel density estimates were computed using the KS package in R which was designed for

kernel smoothing of multidimensional data [53, 54]. We first derived the likelihood from

the KDENORS value only and calibrated (fully informed prior). Next, because the pre-

defined parameter ranges in the model represented our subjective best-guesses (i.e., our

prior), we used KDEModel (the model-derived kernel density estimate) to examine how

weakening our prior (i.e., making it more uninformed) might affect results. Specifically,

the likelihood estimate of a given parameter set was calculated by taking the NORS kernel

density estimate value which corresponded to a given AR, population size, and outbreak

duration from the model results and dividing that by the model kernel density estimate

value i.e., we plugged our model outputs into both of these kernel density estimates, re-

sulting in a fully uninformed (bounded uniform) prior. In other words, we looked up

how likely our model results were to appear in the NORS data and divided by how likely

our model results were in the entire pool of model results (wherein the shape of this

pool of results is directly affected by our prior). By doing this, we effectively canceled

the over-weighting of certain model results that occurred due to our parameter ranges.

We subsequently investigated how results change when reducing the effect of the model

kernel density estimate by using the following hill function:

Likelihood =
KDENORS[ARmodel, Populationmodel, Durationmodel]

KDEModel[ARmodel, Populationmodel, Durationmodel] + C
(7)

where [ARmodel, Popmodel, Durationmodel] represent indices used to lookup the correspond-

ing KDENORS value (i.e., to determine how likely our model results are to appear in the
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NORS data) and KDEmodel value. C was the set to equal the 25th, 50th, 75th percentiles of

all KDEmodel values to explore how weaker or stronger priors might affect calibration (i.e.,

as C increases the prior the effect of our predefined parameter ranges become stronger).

For each simulation, the AR was defined as the total number of symptomatic individuals

divided by the total population and the outbreak duration was defined as the number of

days from the first symptomatic incident case to the last symptomatic incident case.

S6.3 Deriving our posterior

Finally, we resampled the parameter sets 2,500 times with replacement using the likeli-

hoods as weights to obtain a final array of parameter sets that, if used as inputs for the

model, could most closely recreate the NORS data distribution.

S6.4 Calibration and Selecting a Prior

We initially calibrated using with a fully informed prior i.e., we looked up model outputs

in KDENORS only (and did not divide by KDEModel). We found that although the models

were generally able to recreate the distribution of the NORS data, the large majority of pa-

rameter sets yielded model results in specific regions of the NORS data distribution. There-

fore, the majority of resampled parameter sets were taken from these regions and resulted

in results (specifically outbreak durations) that were not consistent with the NORS data.

See Appendix Section S7.1 for attack rates, durations, and Kullback-Leibler divergence

from the fully informed prior analysis. The fact that model results were over-represented

in specific regions was likely due to our pre-selected parameter ranges, therefore we ex-

plored whether making the prior weaker (i.e., plugging model outputs into KDEModel and
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calculating likelihoods with the hill function see Appendix Table S7.1 for results) might

improve calibration.

S7 Selecting a Prior Results

We initially calibrated each model scenario to the NORS data without accounting for the

distribution of model results. In other words, likelihoods were calculated based on how

well the model results match the NORS data only. We next examined how weakening the

prior might improve model calibration to NORS data.

Below are Kullback-Leibler divergence values for different values of C in the likelihood hill

function (see Equation 7).
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Table S2: Venue-specific Kullback-Leibler divergence for All Models for different priors:
Median (95% CI) [Mean]

Model Daycare School

Fully Uninformed Prior

Baseline 5.05 7.41
Immunity 1.05 0.53

Individual Exclusion 1.39 3.59
Combined 0.3 0.39

C is set to 25th percentiles of all model kernel density estimate values

Baseline 5.05 7.31
Immunity 1.18 0.54

Individual Exclusion 1.42 3.66
Combined 0.31 0.5

C is set to 50th percentiles of all model kernel density estimate values

Baseline 5.34 7.32
Immunity 1.08 0.56

Individual Exclusion 1.35 3.79
Combined 0.37 0.51

C is set to 75th percentiles of all model kernel density estimate values

Baseline 5.27 7.55
Immunity 1.34 0.6

Individual Exclusion 1.41 3.92
Combined 0.48 0.48

Fully informed Prior

Baseline 10.24 9.27
Immunity 5.8 3.47

Individual Exclusion 4.43 5.78
Combined 3.35 1.69

S7.1 Results from Fully Informed Prior Analysis

Below are the attack rates, durations, and Kullback-Leibler divergence from the fully in-

formed prior analysis.
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Table S3: Venue-specific Attack Rates for All Models (fully informed prior): Median (95%
CI) [Mean]

Model Daycare School

Baseline 66.2% (4%, 75.4%) [62.1%] 64% (0%, 72.3%) [59.5%]
Immunity 23.5% (3.1%, 50%) [23.7%] 16.1% (2.2%, 53.5%) [20.1%]

Individual Exclusion 61.9% (2.6%, 75%) [51.8%] 58.3% (0%, 71.8%) [45.8%]
Combined 20.9% (2.5%, 48.5%) [22.3%] 15.3% (0.7%, 54.1%) [19.4%]

NORS 21.6% (4.6%, 69.2%) [25.5%] 15.3% (4.6%, 68.4%) [20.4%]

Table S4: Venue-specific Outbreak Durations for All Models (fully informed prior): Median
(95% CI) [Mean]

Model Daycare School

Baseline 4 days (2, 12.5) [4.7] 4 days (0, 9) [4.5]
Immunity 4 days (2, 12) [4.6] 5 days (1, 14) [5.6]

Individual Exclusion 5 days (2, 21.5) [7] 5 days (0, 22) [6.6]
Combined 4 days (1, 21.5) [6.2] 5 days (1, 24) [6.7]

NORS 13 days (2, 40) [14.7] 8 days (1, 32) [10.8]

Table S5: Venue-specific Kullback-Leibler divergence for All Models (fully informed prior):
Median (95% CI) [Mean]

Model Daycare School

Baseline 10.24 9.27
Immunity 5.8 3.47

Individual Exclusion 4.43 5.78
Combined 3.35 1.69

Although the initial Latin Hypercube sampled simulations of the combined model were

able to recreate almost the entire joint distribution of ARs and durations observed in the

NORS data, a large fraction of the these simulations had very short outbreak durations

(and these short duration simulations were weighted highly in the sample-importance-

resampling as they are also common in NORS). This skewed the calibrated distributions

of durations in the combined model toward the shorter-duration end of the NORS data, so

that the median model-generated durations were lower than those in NORS. Therefore, for
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a model to be able to calibrate well, it is required to both (1) recreate the joint distribution

of attack rates and durations in the NORS data, and (2) evenly distribute model runs

across the distribution. This led us to examine how weaker priors accounting for the

distribution of model results might improve the calibration. We found that the model

scenarios consistently performed the approximately same relative to each other (e.g., the

combined model always performed better than the baseline model)regardless of which

prior we used (see Appendix Table S7.1). We ultimately chose to present results from a

fully uninformed prior (see Equation 7 with C=0) because this yielded the best overall fit

both graphically and with respect to Kullback-Leibler divergence.
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S8 NORS Calibration Ranges

We calibrated our models to the NORS data below. In total, there were 165 daycare

outbreaks and 397 school outbreaks.

Table S6: Calibration Ranges from NORS Data

Metric Median (5th to 95th percentiles) [Mean]

Population sizes of daycare venue 80 people (7, 410) [94.7]
Population sizes of school venue 420 people (6, 6486) [447.3]
Attack rate within daycare venue 21.5% (4.6%, 69.2%) [25.3%]
Attack rate within school venues 15.3% (4.6%, 68.4%) [20.4%]

Outbreak duration within daycare venue 13 days (2, 40) [14.6]
Outbreak duration within school venues 8 days (1, 32) [10.8]
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S9 Attack Rates vs. Outbreak Duration Stratified by NORS

Population Sizes

Figure S1: NORS data: Attack rates vs. outbreak duration stratified by exposed population
size.
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S10 Results from Calibration for Each Model with NORS

Data

Below are pairwise scatter plots examining joint distributions of attack rate (%), outbreak

durations (days), and population sizes (people). The NORS data is in the upper left corner

and all models are displayed with individual points colored by the log of the number of

Times Calibrated. Points in white were not resampled.
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Figure S2: Attack rate vs. population in daycares for the NORS data (top left), with
all remaining panels showing results from resampled parameter and initial conditions by
model scenario. Points correspond to individual parameter sets and are colored by the
amount of times they were resampled.
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Figure S3: Population vs. outbreak duration in daycares for the NORS data (top left), with
all remaining panels showing results from resampled parameter and initial conditions by
model scenario. Points correspond to individual parameter sets and are colored by the
amount of times they were resampled.
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Figure S4: Attack rate vs. outbreak duration in schools for the NORS data (top left), with
all remaining panels showing results from resampled parameter and initial conditions by
model scenario. Points correspond to individual parameter sets and are colored by the
amount of times they were resampled.
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Figure S5: Attack rate vs. population in schools for the NORS data (top left), with all re-
maining panels showing results from resampled parameter and initial conditions by model
scenario. Points correspond to individual parameter sets and are colored by the amount of
times they were resampled.
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Figure S6: Population vs. outbreak duration in schools for the NORS data (top left), with
all remaining panels showing results from resampled parameter and initial conditions by
model scenario. Points correspond to individual parameter sets and are colored by the
amount of times they were resampled.
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S11 Sensitivity Analyses Related to Initial Conditions

We conducted sensitivity analyses to ensure that our model results were robust to key

simplifying assumptions. To assess whether the outbreak durations were affected by the

choice of initial conditions in different compartments, we conducted two sensitivity analy-

ses. First, we ran the model varying the number of pathogens starting in the environment

from 0 to 100 million and second, we seeded the model with a single infectious individual.

S11.1 Sensitivity Analysis Results:

According to the Kullback-Leibler divergence, all sensitivity analyses performed fairly well

and were relatively close to the original combined model. Overall, the combined was

lower according to Kullback-Leibler divergence in the daycare model, but seeding varying

pathogens in the the environment had a lower Kullback-Leibler divergence in the school

model. See Table 2 for Kullback-Leibler divergence values of the main analyses.

Below are attack rates and durations from seeding scenario the sensitivity analyses.

Table S7: Venue-specific Attack Rates for Sensitivity Analyses: Median (95% CI) [Mean]
Model Daycare School

Seeding: Varying Pathogens in Environment 19.9% (3.4%, 51.5%) [22.4%] 14.8% (2.1%, 53.7%) [19.1%]
Seeding: Diseased Individual 21.1% (3.3%, 56.4%) [23.9%] 15.4% (2.1%, 55%) [19.4%]

NORS 21.5% (4.6%, 69.2%) [25.3%] 15.3% (4.6%, 68.4%) [20.4%]

Table S8: Venue-specific Outbreak Durations for Sensitivity Analyses: Median (95% CI)
[Mean]

Model Daycare School

Seeding: Varying Pathogens in Environment 10 days (2, 34) [12.3] 10 days (3, 30) [11.7]
Seeding: Diseased Individual 11 days (2, 35) [13.1] 9 days (3, 30) [11.1]

NORS 13 days (2, 40) [14.6] 8 days (1, 32) [10.8]
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S12 Staff and Students Model

We added staff into the model, to understand whether or not they can affect how norovirus

is spread within venues.

S12.1 Students and Staff Model for Daycare and School

In the staff and student model, there is a staff age group and a student age group. To

derive the human-to-human transmission rates, we assume that the younger age group

(i.e., the students) transmit at higher rates than the older age group (i.e., the staff) due to

both contact rates [55] and susceptibility decreasing with age (e.g. represented by levels of

norovirus antibody titers [56]). Specifically, the human-to-human transmission matrix is

derived by taking the βHH from the students only model and setting that to the student to

student transmission rate. Next, we assume that the inter-age transmission rates (i.e., staff

to student and student to staff transmission are equal) and calculate that by multiplying

the student to student transmission rate by a randomly sampled reduction factor between

[0,1]. Finally, the staff-to-staff transmission rate is calculated by multiplying the inter-age

transmission rate by a randomly sampled reduction factor between [0,1] (this factor is also

used to derive the fomite-to-staff transmission rate).

Next, for fomite-to-human transmission there are two rates, one for students and one for

staff. The fomite-to-student transmission rate is calculated in the same way as the student

only model i.e., βHH multiplied by a randomly sampled parameter between [0, 2]. The

fomite-to-staff transmission rate is derived by multiplying the fomite-to-student rate by the

same factor used to derive the staff-to-staff transmission rate (mentioned above) between
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[0,1]. Overall, the force of infection for the staff and students model is as follows:

λ(t)tot = (I + βA(A1 + A2 + A3))βHH

λ(t)1 = λ(t− 1)1 + (F1 + F2)βWk

λ(t)2 = λ(t− 1)2 + (F1 + F2)βWa

(8)

where λ(t)tot is the total force of infection (and is a vector representing the student force

of infection as the first element and the staff force of infection as the second element. Thus

the human-to-human transmission rate (βHH) is a 2 by 2 matrix. λ(t)1 and λ(t)2 are added

to the force of infection for students and staff, respectively. Finally, βWk and βWa are the

fomite-to-human transmission rates for students and staff, respectively.

Finally, with respect to shedding, staff and students shed into a single shared environment.

Thus, the shedding and fomite tracking equations are as follows:

Shedding = αII + αIβA(A1e
−σ( 1

φ
) + A2e

−σ( 1
φ
+ 1
ρ
) + A3e

−σ( 1
φ
+ 1
ρ
+ 1
ρ
))

Ḟ1 =
∑

Shedding − ξF1

Ḟ2 = ξF1 − ξF2

(9)

where the sum of shedding across both age groups is added to the F1 compartment because

there is a single environmental compartment in each venue.

For the immunity and combined models we assumed that staff had higher rates of partial

immunity than children [56].

All other model equations are the same as the student only model, we just vectorized

the equations to keep track of student and staff compartments separately. see Appendix

Section S4 for details.
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S12.2 Students and Staff Model Likelihood Calculation

To derive an overall likelihood for a given venue, we took the NORS kernel density esti-

mate values which corresponded to a given AR and population size for students from the

model and divided by the model kernel density estimate values which corresponded to a

given AR and population size for students from the model. We multiplied this by the cor-

responding staff value (i.e., NORS kernel density estimate divided by model kernel density

estimate), and finally, multiplied by the NORS kernel density estimate value divided by

the model kernel density estimate value which corresponded to a given outbreak duration

and total venue population from the model. More details can be found in Section 5.3. We

did not calculate a full 5-dimensional kernel density estimate due to computational limi-

tations. Therefore, a key limitation in our approach for this sensitivity analysis is that we

are assuming independence between different kernel density estimates (e.g., the student

joint distribution of ARs and population size is assumed to be independent of the staff

distribution).

We calibrated the student and staff model to 137 daycare and 240 school outbreaks.

S12.3 Students and Staff Model Results

According to the Kullback-Leibler divergence, the combined model calibrated best to the

NORS data. Although the median results were closer to NORS data for model scenarios,

the attack rate ranges were wider for the immunity model, and the outbreak duration

ranges were wider for the individual exclusion model.
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Table S9: Kullback-Leibler Divergence Metrics for the Students and Staff Model
Model Daycare Students Daycare Staff Daycare Outbreak Duration School Students School Staff School Outbreak Duration

Baseline 13.75 15.41 7.94 12.73 12.74 6.77
Immunity 0.28 0.79 0.25 0.33 0.89 0.27

Individual Exclusion 0.62 2.56 0.86 4.43 2.81 2.02
Combined 0.32 0.53 0.14 0.12 0.33 0.15

Table S10: Venue-specific Attack Rates for Students and Staff Model: Median (95% CI)
[Mean]
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Table S11: Venue-specific Outbreak Durations for Students and Staff Model: Median (95%
CI) [Mean]

Model Daycare School

Baseline 14 days (2, 30) [15.1] 12 days (1, 30) [10.9]
Immunity 14 days (4, 35) [15.2] 14 days (3, 33) [14.9]

Individual Exclusion 24 days (4, 43) [24.6] 20 days (3, 33) [20.2]
Combined 15 days (4, 39) [16.9] 13 days (3, 33) [14.4]

NORS 14 days (2, 40) [15.5] 11 days (2, 33) [12.9]
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