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We used moving regression to model the growth rate (cases/day) and acceleration (cases/day²)
of COVID-19 cases in 123 countries as of March 25th 2020. In countries entering stationary
growth (China and South Korea) decline in acceleration was observable up to 1 week after
severe restriction to human mobility was adopted as a preventive measure. Deceleration was
detectable  within 2 weeks,  whereas stationary growth was reached within 6 weeks.  These
results  corroborate  that  mass  social  isolation  is  a  highly  effective  measure  against  the
dissemination of SARS-CoV-2. We also found that the impact of public health measures could
be  evaluated  in  seemingly  real-time  by  monitoring  COVID-19  growth  curves.  Moreover,
reasonable daily predictions of new cases were obtained (R² ~ 0.95). Apart from the analysis of
prevalence  partitioned  by  country,  moving  regression  can  be  easily  applied  to  city,  state,
region or arbitrary territory data to help monitoring the local behavior of COVID-19 cases.

The World Health Organization (WHO) officially declared COVID-19 a global pandemic on March
11th 2020 (1). The disease is caused by a novel coronavirus, namely SARS-CoV-2 (2, 3), which first
emerged  in  Wuhan,  China  on  December  12th 2019  (4,  5).  Worldwide  dissemination  has  been
extremely rapid, and by the time this study was completed a total of 416,916 cases and 18,565
deaths had been reported across 123 countries  according to data  from the European Center for
Disease Prevention and Control (ECDC) (6). Although 86% of all cases are estimated to have been
undocumented prior to the cordon sanitaire in China (7), partial COVID-19 prevalence data is still
an invaluable resource to help monitoring and controlling the disease. In particular, extracting daily
estimates of growth rate (cases/day) and acceleration (cases/day²) in disease dissemination from
real-time  case  reports  can  be  decisive  for  an  effective  and  promptly  action  to  restrain  further
contagion.  Here  we  report  the  application  of  a  simple  statistical  framework,  namely  moving
regression (MR), to the analysis of publicly available COVID-19 case reports that are updated daily
by the ECDC.

We start from the reasonable assumption that the cumulative number of COVID-19 cases over time
(i.e.,  the  growth  curve)  in  a  specific  country  or  territory  should  typically  follow an  unknown
sigmoidal function (Fig. 1a). In fact, empirical data from China (Fig. 1b) and South Korea (Fig. 1c)
strongly support that assumption. We note however that this assumption is substantially relaxed
later by our model to accommodate complex dynamics in the evolution of COVID-19 prevalence.
We define growth rate and growth acceleration as the first  and second order derivatives of the
prevalence  of  COVID-19 in  respect  to  time.  In our  analysis,  we selected  MR over  competing
models that are frequently used to describe the behavior of growth curves, such as the Gompertz (8)
model, because: (i) it is dependent on a single free parameter, the “smooth factor”, which represents
the number of neighboring days used in local regression; (ii) growth rate and acceleration estimates
are approximated by ordinary least squares equations, which are computationally inexpensive; (iii)
we  performed  extensive  simulations  of  growth  curves  and  found  that  it  produces  reasonably
accurate estimates of growth rate (median  R2 = 0.99 with smooth factor of 3) and acceleration
(median  R2 = 0.92 with smooth factor  of 3)  (Supplementary Fig.  1);  (iv)  it  is  very robust  to
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departures from sigmoidal curves; and (v) it does not rely on observations of the whole curve and
thus can produce estimates in almost real time. Argument (v) is especially relevant to the analysis of
COVID-19 data since the pandemic is ongoing and each country will be at a different stage of the
growth curve as time passes. A clear disadvantage of MR is that it may over-fit the growth curve to
the  data,  especially  if  the  selected  smooth  factor  is  small  (say  <  3),  in  which  case  accurate
prediction of new cases of COVID-19 is limited to very few days in the future. Still, even single-
day predictions can be of great use during a pandemic if reasonably accurate. In the ECDC data set,
a  forward  validation  showed  that  single-day  predictions  were  sufficiently  accurate  (R²  ~  0.95)
(Supplementary Fig. 2).

Growth curves can be partitioned into four easily distinguishable stages (Fig. 1a): (a) the lagging
stage, which corresponds to the beginning of the outbreak or disease importation, where the number
of cases are low and increase only marginally every day; (b) the exponential stage, when growth
starts accelerating and the number of new cases increase rapidly day-by-day; (c) the deceleration
stage, where the number of new cases reduces daily and tends to asymptote; and (d) the stationary
stage, characterized by stagnation of the prevalence with sporadic new cases occurring each day.
The growth rate is the first order derivative of the growth curve and it is approximately bell-shaped,
with its peak corresponding to the inflection of the exponential stage. This inflection point signals
the beginning of a decline in the growth rate. The growth acceleration is the second order derivative
and consists of a combination of two bell-shaped curves: the first one with a peak and the second
with a valley. The peak indicates the point where acceleration starts descending towards zero. The
moment when acceleration is exactly zero coincides with the inflection of the exponential stage,
which  marks  the  beginning  of  growth  deceleration  (i.e.,  negative  acceleration).  The  latter
corresponds to the entire concave section of the curve, but the very bottom of the valley indicates
that  the prevalence is  moving towards stagnation.  Although sigmoidal  curves follow these four
stages sequentially, we anticipate that the growth of COVID-19 cases may not necessarily obey a
sigmoidal curve in practice, since the dynamics of the disease are complex and highly dependent on
public health measures. This implies that a country that has already reached a stationary stage could
resume exponential  growth, for example by seeding a  new outbreak via  importation.  Likewise,
decelerating countries could as well  regain acceleration by relaxing prevention measures. These
scenarios  could  produce  more  complex  growth  curves  that  combine  multiple  exponential,
deceleration and stationary stages. Of note, MR has sufficient flexibility to model these complex
scenarios and can easily  accommodate curves exhibiting anomalous combinations of these four
stages. In this study we sought to ascertain whether these characteristics of growth curves could
have direct implications in understanding the dynamics of COVID-19 prevalence both globally and
locally.

Using MR on ECDC data frozen on March 25th 2020, we found that the number of countries in each
stage of growth were: lagging = 37 (30.1%), exponential = 81 (65.9%), deceleration = 3 (2.4%) and
stationary = 2 (1.6%). The observation that the majority of the countries were in exponential growth
implies that the pandemics is expanding. Only a handful of countries (i.e., those in deceleration or
stagnation) were found to be experiencing an apparent control of COVID-19 dissemination. The
countries found in stationary stage were China and South Korea (Fig. 1b-c), whereas the ones in
deceleration  were  Denmark,  Estonia  and  Qatar  (Fig.  2).  By  projecting  official  government
announcements against  the fitted curves of these countries, we observed that decline in growth
acceleration  occurred  shortly  after  (<  1  week)  the  implementation  of  measures  that  drastically
reduced human movement. Deceleration of growth was typically achieved within 2 weeks in these
five countries. For China and South Korea, COVID-19 prevalence plateaued within 6 weeks. These
results showed that: (i) the effect of public health measures on SARS-CoV-2 prevention can be
detected in seemingly real time by monitoring the behavior of the growth rate and acceleration
curves;  and (ii)  restriction to  human mobility  is  very effective in  controlling the spread of the
disease, but takes several weeks to produce a stationary growth. These findings are in line with a
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recent study showing that human mobility explained early growth and decline of new cases of
COVID-19 in China (9). As discussed before, one should not immediately assume that a country in
deceleration or plateau will remain stationary, since acceleration could take off again.

To illustrate further the utility of MR to monitor the COVID-19 pandemic, we decided to look more
closely to data from three countries that were in the exponential growth stage as of March 25 th 2020,
namely United States of America (USA), Brazil and Italy (Fig. 3). The latter has been severely
impacted with the disease, and by the time we completed our study the country had recorded 69,176
cases and 6,820 deaths. On March 10th 2020 Italy implemented a strict quarantine, and five days
later the country reached its maximum acceleration and started to move towards an inflection of the
exponential growth. Our results indicate that, if Italy persists in this path, deceleration could begin
within a few weeks in the country. In fact, on March 25 th Italy implemented a complete shut down
of its borders, which may help the country to reach deceleration sooner. In contrast, Brazil and USA
continued a march of exponential growth with no clear sign of reaching an inflection point soon.
Still,  since acceleration response to effective measures seems rapid, both Brazil and USA could
bend their acceleration curves within days if such measures are implemented.

In order to facilitate the analysis of growth rate and acceleration of COVID-19 cases, we built an
application using R (10) and Shiny (11). This application automatically loads the latest ECDC case
reports and applies MR to real-time data. The app also allows the user to upload custom data (e.g.,
city, region, province or state), which can be used to monitor the growth behavior of COVID-19
locally. Upon closing of the COVID-19 pandemic, this tool could be useful for the analysis of future
outbreaks and epidemics, or even for the analysis of historical disease data. It is important to note
that MR relies on case reports, such that sub-notification, delayed communication and the elapsed
time between sample collection and diagnostic results may impact the real-time inference of growth
dynamics in disease transmission and consequently jeopardize the timely detection of transitions in
the growth curve.

In conclusion, we demonstrated that the real-time analysis of growth curves of COVID-19 cases can
be a powerful tool to monitor the impact of public health measures on the spread of the disease. We
also showed that the pandemic is expanding, and that restrictions to human mobility can decelerate
the incidence of new cases. Furthermore, we found that only a handful of countries were exhibiting
signs of deceleration or stagnation of COVID-19 dissemination as of March 25th 2020.
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Fig. 1 Moving regression curves for countries approaching a stationary growth.  All  curves
shown here were fitted  with a  smooth factor  of  5.  (a)  Simulated data  using a  four-parameters
Gompertz model with an asymptote at 80,000, growth coefficient of 0.15, inflection time at 35, and
time ranging from 1 to 80. (b) Fitted curves for China between December 31st 2019 and March 25th

2020. The first red dot marks the midpoint between January 23rd and 24th 2020, when a strict cordon
sanitaire  was imposed to  Wuhan,  Shanghai,  Jiangsu and Hainan.  The second red dot  pinpoints
February 4th 2020, when the cordon was extended to a larger portion of the eastern part of China. (c)
Fitted curves for South Korea between January 20th and March 25th 2020. The red dot is placed
between February 20th and  21st 2020,  when a collection  of  restrictions  to  human mobility  was
imposed, including lockdown of Daegu city, suspension of flights, cancellation of mass gatherings
and lockdown of all South Korean military bases. Importantly, reaching a stationary stage is not a
guarantee that the disease will remain controlled, such that acceleration could rebounce up.
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Fig. 2 Moving regression curves for countries in growth deceleration. All curves shown here
were fitted with a smooth factor of 3. (a) On March 11th 2020 (red dot), Denmark became the
second European country to establish a lockdown. The country started decelerating new cases of
COVID-19 2 days after. (b) On March 13th 2020 (red dot) a state of emergency was declared by the
Estonian government, which imposed significant restrictions to travel and mass gatherings. Decline
of growth rate was observed one day after, and deceleration started within 4 days. (c) Our analysis
indicated that Qatar reached its peaking acceleration on March 9th 2020 (red dot), the same day
when Qatari officials had announced the closure of schools, nurseries, and universities, in addition
to strong restrictions  for traveling.  One day after,  the country registered a sudden spike in the
number of cases (arrow). The days that followed were marked by a clear decline in acceleration and
eventually deceleration of growth, which coincided with a succession of measures by the Qatari
government  that  eventually  led  to  significant  restrictions  to  human  movement.  If  the  trend
continues, these three countries may transition to a stationary stage soon. The curves of these three
countries should be followed closely over time to verify whether they will enter a stationary stage or
regain acceleration.
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Fig. 3 Moving regression curves for three countries in exponential growth. All curves shown
here were fitted with a smooth factor of 5. By the time the study was completed, the governments of
the United States of America (a) and Brazil (b) had not announced severe strict measures to restrain
human movement. These two countries had primarily focused on reducing mass gatherings, besides
of closing schools, nurseries, universities and other places that facilitate agglomeration,  such as
shopping malls. This is in contrast with Italy (c), which imposed strict quarantine on March 10th

2020 (red dot). Five days later the country reached its peak acceleration and started an acceleration
decline.
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Material and Methods

Moving regression (MR) model
The  MR  technique  adopted  here  aimed  at  fitting  a  smooth  growth  curve  to  the  COVID-19
prevalence data, such that the resulting curve could describe the cumulative number of cases as a
function of time. For  n recorded days in a given country or territory,  let  x be a  n-dimensional
column vector of days since the first case report and y the reciprocal column vector with elements
corresponding to the cumulative number of cases. Relative to day d, we define yd and xd as k-sized
subset vectors of y and x, respectively, where k = 1 + 2s and s is a free parameter representing the
number of offset days before and after day d. Hereafter, we refer to s as the “smooth factor”, since it
controls the compromise between over-smoothing (large  s) and over-fitting (small  s) the curve to
the  data.  Finally,  we define  Xd =  [1k xd],  where  1k is  a  k-dimensional  column vector  with  all
elements equal to one. The local growth rate was estimated by ordinary least squares regression:

[md  gd ]T = (Xd
TXd)–1Xd

Tyd     (1)

where md is an intercept and  gd is the estimated growth rate (cases/day) at day  d. In practice,  gd

corresponds to an estimate of the instantaneous rate of change in the number of cases at day  d,
which in turn is an approximation to the first order derivative of the unknown growth function
evaluated at time d. The smoothed growth curve was obtained by calculating fitted values as:

ŷd = Xd[md  gd ]T     (2)

After fitting equation (1) to all n records, we define g is a vector of size n containing all estimated
local growth rates and gd as a k-sized subset vector of g. The local growth acceleration at day d was
then obtained by adapting equation (1):

[md  ad ]T = (Xd
TXd)–1Xd

Tgd     (3)

where  ad is the estimated growth acceleration (cases/day²) at day  d. Now ad is an estimate of the
instantaneous rate of change of the growth rate at day  d,  which consequently approximates the
second order derivative of the unknown growth function evaluated at time d.

Simulation study
To test  the  performance  of  MR in  approximating  growth  curves  and  their  rate  of  change  and
acceleration in scenarios where these curves have been observed only partially (i.e., real-time case
report), we selected a widely used sigmoidal mathematical function, namely the Gompertz model,
to generate 50,000 simulated growth curves. We used a parameterization of the Gompertz model
that is dependent on four parameters: 
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f(t) = a*exp(-exp(-k(t – d)))    (4)

where t is a time point, a is the asymptote (i.e., number of cases at the stationary stage), exp is the
exponential function,  k is a growth coefficient and  d is the time at inflection of the exponential
stage (i.e., time when the growth rate reaches its maximum value and acceleration transitions from
positive  to  negative).  All  simulations  were  performed  considering  a  100-days  period,  with
parameters  sampled  as  follows:  a ~  Uniform(500,10000),  k ~  Uniform(0.05,0.95)  and  d ~
Uniform(5,  95).  Completely stationary curves were discarded. The accuracy of growth rate and
acceleration estimates produced by MR with smooth factor ranging from s = 3 to s = 10 were then
evaluated  by taking the  coefficient  of  determination  (R²)  of  the  regression  of  true  values  onto
estimates. Results from this simulation study are presented in Figure S1.

Analysis of COVID-19 case reports
We  analyzed  case  reports  that  have  been  updated  daily  by  the  European  Center  for  Disease
Prevention and Control (ECDC). The moving regression framework was applied to that data using
smooth factors ranging from s = 3 to s = 10. The acceleration curves were clipped at observation n –
s to avoid poor growth acceleration estimates at the end of the curve. Likewise, the last s days had
their growth rates estimated by compounding rates from n – s to n using the acceleration estimated
for day n – s. Finally, next-day predictions of COVID-19 prevalence were obtained by summing the
last observed prevalence with its estimated growth rate. In order to measure the accuracy of these
predictions, we performed a step-wise simulation by censoring observations ahead of each day,
fitting  MR to  the  remaining  data  and  then  comparing  predicted  and  true  next-day  prevalence.
Accuracy of predictions were again measured by linear regression, and only countries presenting at
least 20 observed days were included in this analysis (n = 47). Results from this forward validation
are found  in Figure S2.

Analysis and visualization tools
All analyses presented in this paper were performed using R version 3.4.4 (1). To visualize the
growth  rate  and  acceleration  of  COVID-19  pandemic,  we  implemented  a  simple  Shiny  (2)
dashboard application, which offers an intuitive web interface and allow us to be updated on new
cases and the prevalence of COVID-19 worldwide. The application automatically loads the latest
case reports from ECDC. Alternatively, users can upload their own data to visualize the growth rate
and acceleration of COVID-19 of specific states, provinces, cities or aggregate data from arbitrary
territory definitions. A simulator implementing a simple acceleration model based on trigonometric
functions  also  provides  to  users  an  intuitive  interface  to  simulate  complex  growth  curves  for
comparison with empirical data. For the implementation we used the following packages: shiny
v1.4.0 (3), shinydashboard v0.7.1 (4), shinydashboardPlus v0.7.0 (5), readxl v1.3.1 (6), shinyalert
v1.0 (7), httr v1.4.1 (8) and plotly v4.9.2 (9), all available on CRAN (Comprehensive R Archive
Network,  https://cran.r-project.org/).  The  application  can  be  downloaded  from  our  GitHub
repository at https://github.com/adamtaiti/SARS-CoV-2.
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Supplementary Figures

Fig. S1. Accuracy (R2) of moving regression estimates of growth rate and growth acceleration
from 50,000 simulated Gompertz growth curves.

Fig. S2. Accuracy (R2) of moving regression predictions of next-day COVID-19 prevalence
using real data from 47 countries with a minimum of 20 observed days.
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