Association between inflammatory bowel disease and prostate cancer: A large-scale, prospective, population-based study

Travis J. Meyers, PhD^{1,*}, Adam B. Weiner, MD^{2,*}, Rebecca E. Graff, PhD¹, Anuj S. Desai², Lauren Folgosa Cooley, MD PhD², William J. Catalona, MD², Stephen B. Hanauer, MD³, Jennifer D. Wu, PhD², Edward M. Schaeffer, MD PhD², Sarki A. Abdulkadir, MD PhD², Shilajit D. Kundu, MD^{2,†}, John S. Witte, PhD^{1,4,†}

* Co-first authors; [†]Co-senior authors

Affiliations:

1. Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA

2. Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL

3. Department of Medicine, Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, IL

4. Department of Urology, UCSF

Corresponding Author Information:

John S. Witte, PhD University of California, San Francisco 1450 3rd Street, Room 388 San Francisco, CA 94158 Phone: 415-502-6882 E-mail: <u>JWitte@ucsf.edu</u>

Shilajit D. Kundu, MD Northwestern Medicine 675 N. St. Clair Street Galter 20-236 Chicago, IL 60611 Phone: 312-695-6125 Email: s-kundu@northwestern.edu

Acknowledgements: This research was funded by the following NIH grants: NCI R25CA112355, R01CA201358, and NIA T32AG049663. This research was conducted with approved access to UK Biobank data under application number 14105.

Abstract word count: 282; Text word count: 2,494; Total: 2,776

Keywords: cohort study; epidemiology; inflammatory bowel disease; prostate cancer; UK Biobank; ulcerative colitis

2

1 Abstract

2 Background: Inflammatory bowel disease (IBD) is an established risk factor for 3 colorectal cancer. Recent reports suggesting IBD is also a risk factor for prostate cancer 4 (PC) require further investigation. 5 **Objective:** To test the association between IBD with incident PC. 6 **Design, setting, and participants:** We studied 218.084 men in the population-7 based UK Biobank cohort, aged 40-69 at study entry between 2006 and 2010, with 8 follow-up through mid-2015. 9 Outcome measurements and statistical analysis: We assessed the 10 association between IBD and subsequent PC using multivariable Cox regression 11 analyses, adjusting for age at assessment, ethnic group, UK region, smoking status, 12 alcohol drinking frequency, body mass index, Townsend Deprivation Index, family 13 history of prostate cancer, and previous prostate-specific antigen testing. 14 **Results and limitations:** Mean age at study entry was 56 years, 94% of the 15 men were white, and 1.1% (n=2,311) had a diagnosis of IBD. After a median follow-up 16 of 78 months, men with IBD had an increased risk of PC (adjusted hazards ratio [aHR] = 17 1.31, 95% Confidence interval [CI] = 1.03-1.67, p = 0.029). Separately analyzing the 18 IBD subtypes of ulcerative colitis (UC) and Crohn's disease (CD), the association with 19 PC was only among men with the former (UC; aHR = 1.47, 95% CI = 1.11-1.95, 20 p=0.0070), and not the latter (CD; aHR 1.06, 95% CI = 0.63-1.80, p = 0.82). Results are 21 limited by lack of data on frequency of health care interactions. 22 **Conclusions:** In a large-scale, prospective cohort study, we detected an 23 association between IBD, and UC specifically, with incident PC diagnosis.

3

24	Patient summary: This study of over 200,000 men in the UK suggests that men
25	with inflammatory bowel disease may be at a higher risk of prostate cancer than the
26	general population.
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

4

47 Introduction

48	Prostate cancer (PC) is the second most common non-cutaneous malignancy in
49	men globally, accounting for 1.3 million new cases and over 350,00 deaths in 2018
50	globally ¹ . Screening for PC may help reduce PC mortality at the potential cost of
51	overdiagnosis leading to unnecessary exposure to treatment related morbidities ^{2,3} .
52	Guidelines in both the United States and Europe acknowledge the benefits of identifying
53	risk factors for PC to better counsel men on the use of prostate-specific antigen (PSA)-
54	based screening ^{4,5} .
55	While inflammatory bowel disease (IBD) is an established risk factor for
56	colorectal cancer ⁶ , associations between IBD with prostate cancer have been reported
57	for some studies ^{7–13} but not others ^{14–16} . We thus conducted a prospective study of men
58	from the large-scale, population-based UK Biobank cohort ¹⁷ to test this association.
59	Men in the UK historically have low rates of PC screening (3-11% after age 50 years) ¹⁸
60	and PC screening is not currently recommended by the UK National Screening
61	Committee ¹⁹ . We hypothesized that men in the UK Biobank with a diagnosis of IBD
62	would experience a higher incidence of subsequent PC diagnosis.
63	
64	
65	
66	
67	
68	
69 70	
70	

5

71 Patients and Methods

72 Study population

73 The UK Biobank is a prospective, population-based study established to 74 investigate genetic and non-genetic risk factors for disease in individuals of middle and 75 advanced age¹⁷. The details of study design and data collection have previously been described and the complete protocol can be found online^{17,20}. In summary, 500,796 76 77 participants aged 40-69 years registered within the National Health Service (NHS) and 78 living within 40km of one of 22 assessment centers across England, Scotland, and 79 Wales were recruited between 2006 and 2010. Each participant provided written 80 informed consent and the UK Biobank's study protocol was approved by the UK North 81 West Multicenter Research Ethics Committee. Baseline assessments at entry into the 82 cohort were made for each participant in 90-minute appointments which included 83 guestionnaires, sample collections, and health care physical exams and interviews. 84 Participants are linked to the NHS Central register to capture IBD status, cancer 85 diagnoses, and deaths.

86 Since the present outcome of interest was prostate cancer, the analytical cohort 87 was limited to self-reported male participants (n=228,284). We excluded men if at 88 baseline assessment they had: 1) prior history of a malignant cancer (any site), or 89 timing of malignant cancer diagnosis relative to baseline could not be determined 90 (n=9,902, 4.3%); 2) surgical removal of the prostate (n=64, <0.01%); NHS procedure 91 codes: OPCS version 3- 630-635; OPCS version 4-M61); 3) earlier recorded death date 92 (n=1, <0.01%). We also excluded 233 (<0.01%) individuals whose genetically inferred 93 sex was female. The remaining 218,084 men comprised the study population.

6

94

95 Exposure

96	The exposure of interest was a history of IBD (ulcerative colitis [UC] or Crohn's
97	disease [CD]) at the time of baseline assessment. IBD history was considered present if
98	the participant had either a relevant inpatient ICD code or self-reported illness. ICD10
99	codes for UC and CD were K51 and K50, respectively. ICD9 codes for UC and CD were
100	556 and 555. Self-reported IBD and the approximate date that a doctor first diagnosed
101	IBD were collected during the baseline assessment interview. If a participant had
102	recorded diagnoses for both UC and CD, then they were still included in the analysis of
103	overall IBD but not in the subtype analyses.
104	
105	Outcome
106	The outcome of interest was first diagnosis of malignant PC following baseline
107	assessment. Prostate cancer case status was determined using ICD codes (ICD-9: 185,
108	ICD-10: C61). Follow-up data for the UK Biobank cohort was available through the
109	middle of 2015.
110	
111	Covariates
112	Covariates included in multivariable analyses included age at baseline
113	assessment (continuous), self-reported ethnicity (White, Mixed, South Asian, Chinese,
114	Black, or other), region of assessment center (10 cancer registry regions), Townsend
115	Deprivation Index (TDI; quintiles), smoking status (never, former, or current), alcohol
116	drinking frequency (never, special occasions only, 1-3 times per month, 1-2 times per

7

week, 3-4 times per week, daily/almost daily), body mass index (BMI; quintiles), family
history of PC in biological relatives (yes, no), and history of PSA testing (yes, no). All
categorical variables included a category for missingness.

120

121 Statistical analyses

Person-years were calculated from the date of baseline assessment until diagnosis of PC, diagnosis of a different malignant cancer, prostatectomy, death, or end of follow-up, whichever came first. The non-PC endpoints were considered censoring events. If PC diagnosis followed any of the other censoring events within three months, then PC was used as the endpoint and the time to PC was included as the follow-up time. The rationale was that the censoring event may have been correlated with PC diagnosis.

Incidence rates for PC were calculated for each baseline group (no IBD, any IBD,
UC, or CD) from the number of incident PC cases divided by the person-years of followup in each group. Kaplan-Meier curves were fit comparing survival for men with IBD
(any IBD, UC, or CD) at baseline to those without IBD at baseline. The difference in
survival by IBD status was compared by the univariate log-rank test.

Adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for the association between IBD and PC were calculated using Cox proportional hazards models adjusting for all aforementioned covariates. This analysis was the basis for testing our main hypothesis. We further investigated whether the potential association between IBD and PC varied by: 1) IBD subtype; 2) duration of living with IBD (using 20 years from IBD diagnosis until baseline assessment in UK Biobank as the cut point);

8

140	and 3) age at assessment (using 60 years as the cut point). For analysis 1 and 2, we
141	performed the same regression as the primary analysis except IBD status was stratified
142	as UC, CD, or no IBD and IBD > 20 year, IBD \leq 20 years, or no IBD, respectively. For
143	analysis 3, we created a new model which included age categorized as ≤ 60 or > 60
144	years as opposed to continuous and an interaction term between this new age variable
145	and IBD status (IBD or no IBD).
146	To determine the appropriateness of our Cox models, we tested the underlying
147	assumption that the relative incidence of PC between men with and without IBD was
148	constant over time (proportional hazards). Specifically, the correlation between scaled
149	Schoenfeld residuals with follow-up time was tested, based on the univariable Cox
150	model with IBD status as the regressor. All statistical analyses were conducted using R
151	statistical software, version 3.6.0: Kaplan-Meier plots were generated by the 'survminer'
152	package; Cox models were conducted using the 'survival' package.
153	
154	
155	
156	
157	
158	
159	
160	
161	
162	
163	

9

164 Results

165 Study participants

At baseline assessment, there were 2,311 men with a history of IBD and 215,773
men without a history of IBD (Table 1). Compared to men without IBD, men with IBD
were on average one year older (57.3 vs. 56.5; $p < 0.05$), were more likely to be White
(95.3% vs. 93.8%; p < 0.05), were more likely to be former smokers (49.5% vs. 37.7%)
than current smokers (8.9% vs. 12.6%), and had a lower average BMI (27.5 vs. 27.8; p
< 0.05). All participants were similar with respect to average TDI (No IBD: -1.25; IBD: -
1.19; negative values reflect relative affluence), family history of PC (both 7.7%), and
history of PSA testing (No IBD: 27.6%; IBD: 26.9%). Of those with IBD, 1,488
exclusively had UC and 643 exclusively had CD. Compared to men with CD, men with
UC were on average one year older (57.7 vs. 56.4; p < 0.05), had a lower TDI (-1.33 vs.
-0.88; p < 0.05), were more likely to be former smokers (51.2% vs. 47.6%) than current
smokers (6.7% vs. 13.7%), and had a higher average BMI (27.7 vs. 27.1, p < 0.05).
Prostate cancer incidence based on inflammatory bowel disease status
After a median follow-up of 78 months (over 1.3 million person-years for men
without IBD and 14,379 years for men with IBD), there were 4,681 new cases of PC in
men without IBD and 66 in men with IBD (Table 2). Men with IBD demonstrated a
shorter time to developing PC (Log-rank, p=0.018; Figure 1). The assumption of
proportional hazards was satisfied for each univariate model for baseline status of any
IBD, UC, or CD. The incidence rates for PC (cases per 100,000 person-years) were 343
for non-IBD and 459 for men with IBD. After adjusting for covariates, IBD was

10

187	associated with an increased hazard of PC (aHR = 1.31, 95% CI = 1.03 - 1.67, p =
188	0.029; Table 2). Further adjusting for history of partial or complete colectomy did not
189	meaningfully change the HR so it was not included in the final models. In addition, we
190	observed a trend for increasing HR across years since IBD diagnosis (<=20 years, aHR
191	= 1.22; >20 years, aHR = 1.49; p-trend = 0.018; Table 3). We did not detect interaction
192	by age at study assessment (p=0.92).

193

194 Prostate cancer incidence based on inflammatory bowel disease subtype

195 The person-years for men with exclusively one IBD subtype were comprised of 196 9,201 for men with UC and 4,021 for men with CD (Table 2). A total of 49 men with UC 197 and 14 men with CD developed PC. While men with UC developed PC more rapidly 198 than men without IBD (Log-rank p=0.0023, 533 cases per 100,000 person-years), those 199 with CD did not (Log-rank p=0.95; 348 cases per 100,00 person-years; Figure 2). The 200 same associations were noted on adjusted analysis (UC: aHR = 1.47, 95% CI = 1.11 -201 1.95, p= 0.0070; CD: aHR = 1.06, 95% CI = 0.63 - 1.80, p = 0.82; **Table 2**). For the UC 202 subtype, increasing HR was also noted across years since diagnosis (<=20 years, aHR 203 = 1.29; >20 years, aHR = 1.87; p-trend = 0.0022; **Table 3**).

- 204
- 205
- 206
- 207
- 208
- 209

11

210 Discussion

IBD is a chronic inflammatory condition with a growing prevalence, affecting at least 0.3% of individuals in developed countries²¹. In a large, prospective cohort of men in the UK, where PC screening is low (~27% in our cohort), we found a positive association between IBD and PC. This association was driven by an approximate 50% increase in PC risk among men with UC. These findings suggest that even outside the setting of routine PC screening, men with IBD are at an increased risk of PC.

217 The limited research into IBD and PC has demonstrated conflicting results. In a 218 recent, large, retrospective study at a single medical center, men with IBD undergoing 219 PC screening had a greater than four-fold increase in incident PC and high-grade PC compared to men without IBD⁹. In a case-control study within a shared, equal-access 220 healthcare system, men with IBD had a 70% increased risk of PC⁷. In contrast, other 221 studies and a meta-analysis found no clear association between IBD and PC^{14–16}. Three 222 studies reported the association for UC but not CD^{8,12,13}, as we observed in the present 223 study. A pair of studies observed the association for both CD¹⁰ and UC¹¹, although the 224 225 associations were attenuated when cancers diagnosed within the first year after IBD diagnosis were excluded. Much of this prior research included men younger than 50 226 and thus at low risk of $PC^{8,12,13,15,16}$, which may explain why two of these studies 227 reported no IBD-PC association^{15,16}. In contrast, the UK Biobank was designed to study 228 age-related diseases²⁰. 229

230 Several mechanisms may explain the potential relationship between IBD and PC. 231 Chronic inflammation is a risk factor for cancer development in various solid tumors and 232 may contribute to prostate tumorigenesis by inducing DNA damage and promoting

12

carcinogenic epigenetic alterations²². Chronic inflammation may play a role in the well-233 234 established association between IBD and colorectal cancer⁶, though it is unknown 235 whether chronic gut inflammation leads to changes in the prostatic inflammatory milieu. 236 Transmission of gut inflammation to the prostate may occur via local inflammation in the 237 rectum, which is nearly universal in UC and less frequently observed in CD. These IBD subtypes have distinct clinical and pathologic features²³. While local inflammation may 238 239 help to explain our observation and prior reports that UC, not CD, is associated with PC. 240 further research is warranted, in particular the documentation of adjacent rectal 241 inflammation in patients with UC vs. CD. An alternative factor may be elevated serum (systemic) inflammatory markers, which are known to occur in IBD²⁴ and may play a 242 role in PC development and progression²². In contrast, immunomodulatory medications 243 244 commonly used in IBD have been associated with other extra-intestinal 245 malignancies^{14,25}, suggesting immunosuppression may also be responsible for prostate 246 tumorigenesis or progression. Lastly, shared underlying genetics may explain the IBD-247 PC association, although preliminary evidence across common gene variants has not 248 detected genetic correlations for either UC or CD with PC^{26} . 249 The potential link between IBD and PC has important implications for screening 250 and detection of PC. While recommendations are controversial, some guideline panels have supported more aggressive screening in high risk populations^{4,5}. Older age, 251 252 African-ancestry, and family history of PC have been consistently identified as risk factors for PC development²⁷. Our study suggests that IBD may be an independent risk 253 254 factor for PC, but future study is needed to determine how to appropriately apply this 255 finding to patient screening practices.

13

256 There are several important limitations of our study. First, we were unable to 257 account for frequency of healthcare encounters in our analysis of incident PC. Men with IBD have more frequent healthcare encounters²⁸, are more likely to undergo rectal 258 259 examinations, and may be subject to opportunistic screening. Our analysis was 260 adjusted for whether the participant had a PSA test prior to entry into the UK Biobank, 261 however, we were unable to account for number of prior PSA tests or digital rectal 262 examinations. Nevertheless, in a sensitivity analysis, we observed that in men with no 263 history of a PSA test, the hazard ratios were greater by 10% and 12% for IBD and UC, 264 respectively compared to the models including all men and with PSA test as a covariate. 265 Second, the release of the UK Biobank data at the time we performed the analysis did 266 not provide information regarding cancer grade or stage; thus, we were unable to 267 differentiate between low-risk and clinically significant cancer. Third, given the relatively 268 few cancer diagnoses overall, we report incidence of PC diagnosis, but not morbidity or 269 mortality related to diagnosis and treatment. Lastly, important characteristics of the UK 270 Biobank limit the generalizability of these results. Participants in the study, compared to 271 nonparticipants in the UK, are noted to be older, of higher socioeconomic status, 272 predominantly Caucasian, and generally healthy—all of which have important relevance 273 in PC screening and diagnosis. In addition, participants of the UK Biobank have lower 274 all-cause mortality and total cancer incidence compared to nonparticipants which may 275 suggest that our results under-estimate the burden of PC in men with IBD in the UK²⁹. 276

- 277
- 278

279 Conclusions

- 280 In this large-scale cohort study outside the setting of widespread PC screening,
- 281 men with IBD had an increased risk of incident PC compared to men without IBD.
- 282 Future work is needed to validate this association accounting for PC screening and
- 283 other covariates, and determine potential mechanisms of prostate tumorigenesis in men
- with IBD. Ultimately, this work could provide an avenue for incorporating information
- about IBD into screening decisions for PC.

References

- 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin.* 2018;68(6):394-424. doi:10.3322/caac.21492
- 2. Hugosson J, Roobol MJ, Månsson M, et al. A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer. *Eur Urol.* 2019;76(1):43-51. doi:10.1016/j.eururo.2019.02.009
- 3. Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate cancer. *Eur Urol.* 2014;65(6):1046-1055. doi:10.1016/j.eururo.2013.12.062
- 4. US Preventive Services Task Force, Grossman DC, Curry SJ, et al. Screening for Prostate Cancer: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2018;319(18):1901-1913. doi:10.1001/jama.2018.3710
- 5. Gandaglia G, Albers P, Abrahamsson P-A, et al. Structured Population-based Prostate-specific Antigen Screening for Prostate Cancer: The European Association of Urology Position in 2019. *Eur Urol.* 2019;76(2):142-150. doi:10.1016/j.eururo.2019.04.033
- Dulai PS, Sandborn WJ, Gupta S. Colorectal Cancer and Dysplasia in Inflammatory Bowel Disease: A Review of Disease Epidemiology, Pathophysiology, and Management. *Cancer Prev Res (Phila Pa)*. September 2016. doi:10.1158/1940-6207.CAPR-16-0124
- 7. Mosher CA, Brown GR, Weideman RA, et al. Incidence of Colorectal Cancer and Extracolonic Cancers in Veteran Patients With Inflammatory Bowel Disease. *Inflamm Bowel Dis.* 2018;24(3):617-623. doi:10.1093/ibd/izx046
- 8. Kappelman MD, Farkas DK, Long MD, et al. Risk of Cancer in Patients with Inflammatory Bowel Diseases: a Nationwide Population-Based Cohort Study with 30 Years of Follow Up. *Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc.* 2014;12(2):265-73.e1. doi:10.1016/j.cgh.2013.03.034
- 9. Burns JA, Weiner AB, Catalona WJ, et al. Inflammatory Bowel Disease and the Risk of Prostate Cancer. *Eur Urol*. 2019;75(5):846-852. doi:10.1016/j.eururo.2018.11.039
- Hemminki K, Li X, Sundquist J, Sundquist K. Cancer risks in Crohn disease patients. Ann Oncol Off J Eur Soc Med Oncol. 2009;20(3):574-580. doi:10.1093/annonc/mdn595
- 11. Hemminki K, Li X, Sundquist J, Sundquist K. Cancer risks in ulcerative colitis patients. *Int J Cancer*. 2008;123(6):1417-1421. doi:10.1002/ijc.23666

16

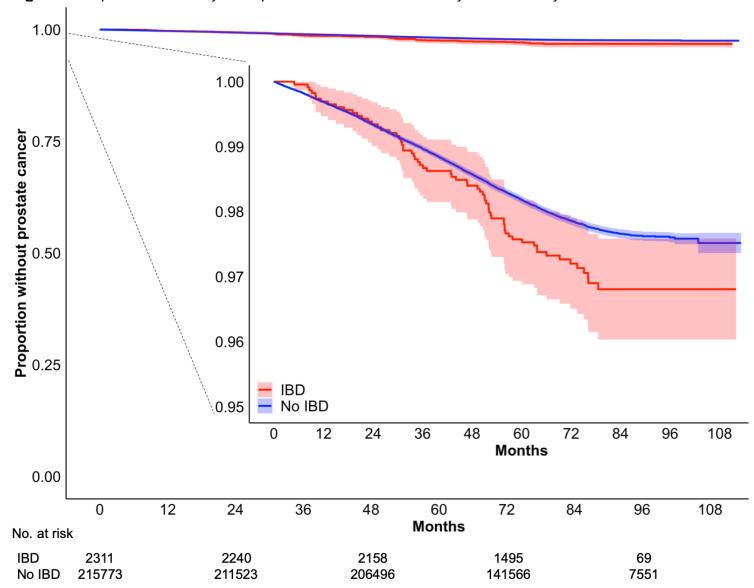
- Jess T, Horváth-Puhó E, Fallingborg J, Rasmussen HH, Jacobsen BA. Cancer risk in inflammatory bowel disease according to patient phenotype and treatment: a Danish population-based cohort study. *Am J Gastroenterol*. 2013;108(12):1869-1876. doi:10.1038/ajg.2013.249
- 13. Jung YS, Han M, Park S, Kim WH, Cheon JH. Cancer Risk in the Early Stages of Inflammatory Bowel Disease in Korean Patients: A Nationwide Population-based Study. *J Crohns Colitis*. 2017;11(8):954-962. doi:10.1093/ecco-jcc/jjx040
- Pedersen N, Duricova D, Elkjaer M, Gamborg M, Munkholm P, Jess T. Risk of extra-intestinal cancer in inflammatory bowel disease: meta-analysis of populationbased cohort studies. *Am J Gastroenterol*. 2010;105(7):1480-1487. doi:10.1038/ajg.2009.760
- 15. Wilson JC, Furlano RI, Jick SS, Meier CR. A population-based study examining the risk of malignancy in patients diagnosed with inflammatory bowel disease. *J Gastroenterol.* 2016;51(11):1050-1062. doi:10.1007/s00535-016-1199-8
- 16. van den Heuvel TRA, Wintjens DSJ, Jeuring SFG, et al. Inflammatory bowel disease, cancer and medication: Cancer risk in the Dutch population-based IBDSL cohort. *Int J Cancer*. 2016;139(6):1270-1280. doi:10.1002/ijc.30183
- 17. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLoS Med.* 2015;12(3):e1001779. doi:10.1371/journal.pmed.1001779
- 18. Williams N, Hughes LJ, Turner EL, et al. Prostate-specific antigen testing rates remain low in UK general practice: a cross-sectional study in six English cities. *BJU Int.* 2011;108(9):1402-1408. doi:10.1111/j.1464-410X.2011.10163.x
- 19. Prostate Cancer. https://legacyscreening.phe.org.uk/prostatecancer. Accessed December 23, 2019.
- 20. Key documents | UK Biobank. https://www.ukbiobank.ac.uk/key-documents/. Accessed November 19, 2019.
- Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of populationbased studies. *Lancet Lond Engl.* 2018;390(10114):2769-2778. doi:10.1016/S0140-6736(17)32448-0
- 22. Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. *Nat Rev Urol.* 2018;15(1):11-24. doi:10.1038/nrurol.2017.167
- 23. Souza HSP de, Fiocchi C. Immunopathogenesis of IBD: current state of the art. *Nat Rev Gastroenterol Hepatol.* 2016;13(1):13-27. doi:10.1038/nrgastro.2015.186

- 24. Vrakas S, Mountzouris KC, Michalopoulos G, et al. Intestinal Bacteria Composition and Translocation of Bacteria in Inflammatory Bowel Disease. *PloS One*. 2017;12(1):e0170034. doi:10.1371/journal.pone.0170034
- 25. Biancone L, Onali S, Petruzziello C, Calabrese E, Pallone F. Cancer and immunomodulators in inflammatory bowel diseases. *Inflamm Bowel Dis.* 2015;21(3):674-698. doi:10.1097/MIB.00000000000243
- Lindström S, Finucane H, Bulik-Sullivan B, et al. Quantifying the genetic correlation between multiple cancer types. *Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol.* 2017;26(9):1427-1435. doi:10.1158/1055-9965.EPI-17-0211
- 27. Pernar CH, Ebot EM, Wilson KM, Mucci LA. The Epidemiology of Prostate Cancer. *Cold Spring Harb Perspect Med.* 2018;8(12):a030361. doi:10.1101/cshperspect.a030361
- Park KT, Ehrlich OG, Allen JI, et al. The Cost of Inflammatory Bowel Disease: An Initiative From the Crohn's & Colitis Foundation. *Inflamm Bowel Dis.* May 2019. doi:10.1093/ibd/izz104
- Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population. *Am J Epidemiol*. 2017;186(9):1026-1034. doi:10.1093/aje/kwx246

Tables and Figures

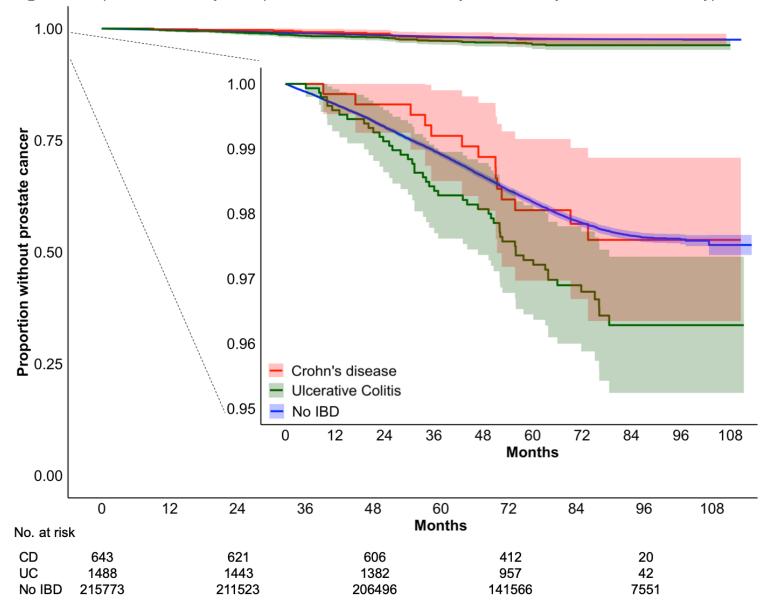
Table 1. Baseline characteristics of male UK Biobank participants by IBD status at baseline assessment

Characteristic	No IBD (n=215,773)	IBD (n=2,311)	CD (n=643)	UC (n=1,488)
Age at assessment, mean (SD)	56.5 (8.2)	57.3 (8.0)*	56.4 (8.1)	57.7 (7.9)*,†
White, n (%)	202,433 (93.8)	2,203 (95.3)*	621 (96.6)	1,410 (94.8)*
Townsend Deprivation Index, mean (SD)	-1.25 (3.2)	-1.19 (3.2)	-0.88 (3.4)*	-1.33 (3.1)†
Region of assessment center, n (%)		*	*	*
Southern England	64,969 (30.1)	644 (27.9)	186 (28.9)	404 (27.2)
English Midlands	35,126 (16.3)	410 (17.7)	113 (17.6)	278 (18.7)
Northern England	91,886 (42.6)	951 (41.2)	249 (38.7)	632 (42.5)
Wales	8,873 (4.1)	106 (4.6)	38 (5.9)	59 (4.0)
Scotland	14,919 (6.9)	200 (8.7)	57 (8.9)	115 (7.7)
Smoking Status, n (%)		*	*	*†
Never	105,751 (49.0)	956 (41.4)	247 (38.4)	622 (41.8)
Former	81,451 (37.7)	1,143 (49.5)	306 (47.6)	762 (51.2)
Current	27,220 (12.6)	205 (8.9)	88 (13.7)	99 (6.7)
Alcohol drinking frequency, n (%)		*	*	*†
Never	13,568 (6.3)	190 (8.2)	57 (8.9)	116 (7.8)
Special occasions/1-3 times per month	34,899 (16.2)	452 (19.6)	146 (22.7)	274 (18.4)
1-2 times per week/3-4 times per week	112,060 (51.9)	1,138 (49.2)	303 (47.1)	737 (49.5)
Daily/almost daily	54,513 (25.3)	526 (22.8)	135 (21.0)	358 (24.1)
Body mass index, mean (SD)	27.8 (4.3)	27.5 (4.3)*	27.1 (4.3)*	27.7 (4.2)†
Family history of prostate cancer, n (%)	16,526 (7.7)	179 (7.7)	50 (7.8)	111 (7.5)
Ever had a PSA test, n (%)	59,585 (27.6)	622 (26.9)*	171 (26.6)*	409 (27.5)*


Difference of means tested by t-tests; categorical variables tested by chi-square tests; alcohol drinking frequency tested by chi-square trend test

* P-value compared to No IBD < 0.05

† P-value compared to CD < 0.05


Abbreviations: IBD = Inflammatory bowel disease; SD = standard deviation; CD = Crohn's disease; UC =

Ulcerative colitis Percentages do not sum to 100% due to missing data

Shading represents 95% confidence intervals. Log-rank comparing IBD to no IBD p=0.018. Abbreviations: IBD = Inflammatory bowel disease

Shading represents 95% confidence intervals. Log-rank comparing CD to no IBD p=0.95 and UC to No IBD p=0.0023. Abbreviations: CD = Crohn's disease; UC = Ulcerative colitis; IBD = Inflammatory bowel disease

24

IBD status ¹	n	Person- years	PC cases	Incidence/ 100,000 PYs	Adjusted hazard ratio (95% CI) ¹	Р
No IBD	215,773	1,365,610	4,681	343	Reference	
Any IBD	2,311	14,379	66	459	1.31 (1.03-1.67)	0.029
UC	1,488	9,201	49	533	1.47 (1.11-1.95)	0.0070
CD	643	4,021	14	348	1.06 (0.63-1.80)	0.82

Table 2. Cox regressions assessing the association between inflammatory bowel disease and future prostate cancer.

1. Three separate models were tested: Any IBD vs. No IBD; UC vs. No IBD; and CD vs. No IBD $\!\!\!\!$

2. Models adjusted for age at assessment, ethnic group, UK region, smoking status, alcohol drinking frequency, body mass index, Townsend Deprivation Index, family history of prostate cancer, and ever had a PSA test.

Abbreviations: IBD = Inflammatory bowel disease; UC = Ulcerative colitis; CD = Crohn's disease; PC = Prostate cancer; CI = Confidence interval; PYs = Person-years

	<=20 years					>20 years			
IBD Status ¹	n	Person- Years	PC Cases	HR (95% CI) ²	n	Person- Years	PC Cases	HR (95% CI) ²	P for trend
Any IBD	1,601	9,990	40	1.22 (0.89,1.66) p = 0.22	710	4,389	26	1.49 (1.01, 2.19) p = 0.042	0.018
UC	1,076	6,679	29	1.29 (0.89, 1.85) p = 0.18	412	2,521	20	1.87 (1.21, 2.91) p = 0.0052	0.0022
CD	406	2,545	9	1.11 (0.58, 2.14) p = 0.75	237	1,476	5	0.98 (0.41, 2.37) p = 0.97	0.89

Table 3. Adjusted hazard ratios and 95% CIs of IBD duration (diagnosis until assessment) and future PC, compared to never having IBD

1. Three separate models were tested: Any IBD vs. No IBD; UC vs. No IBD; and CD vs. No IBD; No IBD: N= 215,773;

1.37 million person-years of follow-up; 4,681 PC cases

2. Models adjusted for age at assessment, ethnic group, UK region, smoking status, alcohol drinking frequency, body mass index, Townsend Deprivation Index, family history of prostate cancer, and ever had a PSA test

Abbreviations: IBD = Inflammatory bowel disease; UC = Ulcerative colitis; CD = Crohn's disease; PC = Prostate cancer; CI = Confidence interval