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We propose a Gauss model (GM), a map from time to the bell-shaped Gauss function to model the deaths
per day and country, as a quick and simple model to make predictions on the coronavirus epidemic. Justified by
the sigmoidal nature of a pandemic, i.e. initial exponential spread to eventual saturation, we apply the GM to
existing data, as of April 2, 2020, from 25 countries during first corona pandemic wave and study the model’s
predictions. We find that logarithmic daily fatalities caused by Covid-19 are well described by a quadratic
function in time. By fitting the data to second order polynomials from a statistical χ2-fit with 95% confidence,
we are able to obtain the characteristic parameters of the GM, i.e. a width, peak height and time of peak, for
each country separately, with which we extrapolate to future times to make predictions. We provide evidence
that this supposedly oversimplifying model might still have predictive power and use it to forecast the further
course of the fatalities caused by Covid-19 per country, including peak number of deaths per day, date of peak,
and duration within most deaths occur. While our main goal is to present the general idea of the simple modeling
process using GMs, we also describe possible estimates for the number of required respiratory machines and
the duration left until the number of infected will be significantly reduced.

I. Introduction

Nowadays, numerous models to predict the spreading of in-
fectious diseases like Covid-19 are available, for example the
actively discussed susceptible-infected-removed (SIR) model
[9–11]. Many of these models are either toy models that can-
not make reliable predictions or they are so complex, by tak-
ing into account a wide range of factors, that simple predic-
tions are not possible. In times of the coronavirus epidemic,
predictions such as the maximum number of fatalities per day
or the date of the peak number of newly seriously sick persons
per day (SSPs) are valuable data for governments around the
world, especially those facing the beginning of an exponen-
tial increase of casualties, and we hope to serve the people in
charge with the here presented approach. In particular, fast
predictions on the course of the coronavirus disease are cru-
cial for policy makers to optimize their managing of the dis-
ease wave. To feed into the current debate on infectious dis-
ease models, we would like to propose a Gauss model (GM)
as a simple, but effective description of fatalities caused by
Covid-19 over time, similar to recent studies for the US [12]
and for Germany [13]. In contrast to this previous work, we
choose to use the logarithm of the reported daily death rates
[2], instead of cumulative infections, as monitored input data
and we also do not rely on doubling times.

The Gaussian model maps time to the bell-shaped Gauss
function to fit existing data of deaths per day and country, and
to use this fit to extrapolate the deaths per day to future times.
Though the GM may appear too simple to be predictive, and
it most likely is, we can justify its use by several arguments:
1) the GM captures the data available today well, including
the entire first epidemic wave in China, and 2) epidemics are
initially exponential and eventually saturating processes in
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cumulative quantities and thus give rise to bell-shaped daily
quantities, like the Gaussian function – all of which we will
explain in detail.

Please keep in mind that we are no epidemiologists and
have no prior expertise in the modelling of diseases. Also,
with the here presented GM we dare, by no means, to present
a model capable of similar mechanistic and causal richness
compared with existing infectious disease models. Our only
addition is to note and use for predictions the macroscopic
Gaussian nature of the time evolution of cumulative fatalities
that is universal among all countries.

II. Results

A. Gauss model (GM)

We model the time-dependent daily change of infections and
daily change of deaths with their own, a priori independent,
time-dependent Gaussian functions denoted by i(t) and d(t).
Each Gaussian is a bell-shaped curve, the black line in Fig.
1(a), characterized by three independent parameters: a width,
a maximum height and a time at which the Gaussian curve
attains this maximum height. For any value of these parame-
ters, the general form of the Gauss function – the bell-shaped
curve in Fig. 1(a) – is preserved, but the concrete fit to given
data can be optimized, as illustrated in Fig. 1(b) for varying
parameters.

It must be emphasized that we model the daily change of
deaths, in contrast to the cumulative number of deaths, more
frequently available in public, because the change of deaths
allow for a more stable fit around its maximum, i.e. the time
of interest for predicted quantities. We will explain this point
in the discussion. The cumulative deaths are the sum of all
previous daily deaths up to today, while the number of daily
deaths in turn is the difference of two consecutive days in
cumulative deaths. In Fig. 1(a), the red plot illustrates the
cumulative number of deaths as a function of time for the
respective daily number of deaths in the same panel.
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Fig. 1: (a) GM for time evolution of a daily quantity x(t) (black) and the corresponding total quantity X(t) (red), which is the cumulative
sum of x(t) until time t. (b) Consequences of varying the three parameters describing the GM: width wx, maximum height xmax and time of
maximum height tmax for both the daily (top) and total (bottom) rates. In this work x stands for either deaths (x = d) or confirmed infections
(x = i).

B. Logarithmic daily fatalities are quadratic
Next, we fit a polynomial of second order to the logarithm of
d of 14 countries as a function of time using a χ2-fit. The
resulting quadratic fit is plotted in Fig. 2. For the remaining
11 countries, similar fits could only be performed for the daily
number of infections.
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Fig. 2: Logarithmic reported number of daily fatalities (squares)
and the quadratic fits of number of daily fatalities (lines) over time
for some countries. The plots demonstrate the quadratic nature of the
logarithmic fatalities per day.The meaning of the GM parameters is
highlighted in the inset. Raw data taken from Ref. [2].

We prefer to base any quantitative conclusions only on the
number of deaths, and not on the number of infections per
day. Deaths are better documented than monitored infections
in nearly all countries. A death caused by Covid-19 is easier
to count than an infection, which might as well cause none
to moderate symptoms and hence might remain uncounted.
Statistically, a constant fraction of infected die from Covid-
19 at a later time after being registered as infected [4, 19].
Thus, infection and death curves are equivalent descriptions
of time evolution of Covid-19, and the coefficients character-
izing their shape can be expected to be closely related. To
demonstrate that both, infections and deaths, follow the GM,
we analyzed and show results for both measures.

C. The fitted parameters
Using the fitted polynomial coefficients we compute the three
parameters of the GM, i.e. maximum height, time of maxi-
mum height and curve width, for each country. For mathemat-
ical details, please refer to the appendix. To demonstrate the
universal Gaussian nature of the daily fatalities over time d,
we display them in Fig. 3(a,b), normalized so that all curves
have unit width, maximum and time of maximum. The same

plots for the cumulative fatalities D are shown in Fig. 3(c,d).
Daily infections i, daily fatalities d, cumulative infections I
and cumulative fatalities D, all fit neatly onto the unit GM
curve or its cumulative function, plotted in gray in the back
for reference. China, which is the only country to provide
data from its first pandemic wave for times greater than 0.6
(in normalized units), fits to the GM well over the entire sig-
nificant course of infections and fatalities. This sparks the
hope that the used GM will have predictive power for the re-
maining countries also after the maximum. The fits already
provide sufficient evidence that the part prior to the maximum
is captured well by the GM. The resulting GM parameters are
listed and plotted in Fig. 4. For most countries the GM width
is within 10 and 15 days, roughly half of all countries have
passed their peak of daily fatalities already and the peak is
roughly below 20 fatalities per day and per million people.
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Fig. 3: Shifted and rescaled data separately for each of the 25 coun-
tries. (a) number of daily infections and fatalities. (b) obtained
from (a) by averaging over entries at same (t− td,max)/wd (bin size
0.01). (c) Number of cumulative infections and fatalities over time
in normal scale, and (d) in logarithmic scale to appreciate differ-
ent regimes with better resolution. (a)-(d) Thick gray is the theory
expression (1) for daily, and (A7) for cumulative casualties. Data
beyond (t− td,max)/wd = 0.6 is from China alone. Raw data taken
from Ref. [2].
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Fig. 4: Fitted GM parameters wd, td,max, and dmax for those countries, for which sufficient data about fatalities is available by the time or
writing. Error bars reported for 95% confidence intervals. (a) Table listing the three fitted GM parameters, followed by estimated cumulative
number of fatalitiesDtotal, the same quantity per million people (MP), and the projected dates Tη (A10) by which the number of daily infected
people had reduced to the level of η of its maximum value. Number of inhabitants according to OECD [1]. (b) Plot of the fitted parameters.
The horizontal lines marks the day of this study, April 2nd. China is missing on this plot as its td,max occurred on about Feb 17 according to
our calculation. (c) Peak daily number of fatalities per 1 million inhabitants, i.e., dmax divided by the number of inhabitants times 106. ∗) For
China we considered only the data during the first pandemic wave, i.e., until a minimum in daily fatalities was clearly reached on March 12.

D. Additional predictions
Using the GM, one can obtain predictions for the further
course of the Covid-19 pandemic analytically from the three
descriptors. We here present two possible applications: cu-
mulative fatalities as a function of time and the maximum re-
quired number of respiratory equipment as well as its time
point.

First, the time evolution of the number of cumulative fatal-
ities D, plotted in Fig. 5, can be obtained by summing daily
number of deaths d, predicted by our model. In this figure,
we rescaled all curves back to normal times so that the future
course of cumulative deaths can be easily read-off. One can
compute analytically that the date after which the new deaths

per day have decreased to 1% of their maximum lies roughly
2 widths after the maximum of daily deaths, and the values,
denoted by Tη , for each country can be found in Fig. 4(a).
Already from visual inspection Fig. 5 suggests for Italy and
Spain to plateau first, while France will have to face increas-
ing number of fatalities considerably longer. It also antici-
pates the cumulative number of fatalities per million people
over the entire course of the Covid-19 disease to be highest
for France, Spain and Italy.

Next, we estimate the number of required respiratory ma-
chines per date for the Covid-19 epidemic. We start by assum-
ing the number of respiratory machines per day to be equal to
the cumulative number of active seriously sick persons on the
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Fig. 5: Measured cumulative number of deaths per one million in-
habitants (symbols), compared with the GM predictions (A7) for se-
lected fits of Fig. 4. The cumulative number of fatalities determining
the height of the future plateau is given by the product of width wd
and dmax, times

√
π ≈ 1.77.

given date, where active means not yet recovered by that date.
Each new seriously sick person per day (SSP) requires a res-
piratory machine for some days or even weeks before passing
away or recovering from Covid-19. According to other works
[19], people to have died from Covid-19 occupied respira-
tory equipment for an average of 7 days prior to their death,
but respiratory equipment may be in use for up to about one
month for cases that later recovered. Thus, we may roughly
estimate the number of active SSPs per date as the sum of peo-
ple that became seriously sick within the past 10 days. Please
note, however, that we try to only conceptually link the GM
to useful quantities, we leave a thorough search of exact num-
bers to the reader.
As a final step, we need relate SSPs and deaths. Assume that
each SSP dies with a constant probability γ after some days,
i.e. γ times SSPS gives the daily fatalities some days ahead.
Taking again numbers from Ref. [19], we could use that each
deceased patient had used a respiratory machine for an aver-
age of 7 days prior to death and thus estimate the daily num-
ber of SSPs at a given date by the number of daily fatalities 7
days in the future divided by probability γ.
The result of the above estimate reveals that the required
number of respiratory equipment itself is a Gaussian curve,
roughly centered around the same date as the daily fatality
curve, and its peak value is proportional to a multiplicative
factor that depends on the width of the Gaussian and ranges
between 0.5 and 0.9 for the widths we found, the total number
of fatalities Dtotal, and the ratio of passing away as a SSP γ.

III. Discussion
The preceding section demonstrated how a GM can be used
to obtain statistical predictions for a pandemic such as the
corona pandemic. The presentation was intentionally concep-
tual, to convey only the principle idea of such a model. It is
clear that such predictions might work better for some coun-
tries than others. This is also why the reader should not be
distracted too much by the large error in the fitted or derived
parameters of Fig. 4.

The question remains, though, how the GM could be jus-
tified? In the following we aim to present a number of argu-

ments in favor of the GM that make use of sigmoidal nature
of saturating processes such as pandemics and include a nu-
merical argument on the stability of models.

First, let us list some other ’microscopic’ models that can
lead to a Gaussian dynamics of fatalities or infections. One
of more prominent ones recently appeared in the Washington
Post [14]. Stevens investigated what happens when simulitis
spreads in a town, if everyone in the town starts at a random
position, moving at a random angle, infecting others upon
collision, and recovering after a certain time. The simulated
number of infected people rises rapidly as the disease spreads
and tapers off as people recover – a bell-shaped curve. We
recreated the simulations and found evidence for the applica-
bility of the GM under many circumstances. These results are
not reported here, but support our central assumption. From
another recent work using a holistic agent-based model [3],
where the agents adapt their behavior through artificial intel-
ligence as part of the solution, there seems also evidence from
the numerical results presented, that the number of newly in-
fected may be well captured by a Gaussian function.

The key of these behavior lies in the sigmoidal nature of
saturating processes. Intuitively, we know that the cumu-
lative number of cases for a wave of any pandemic must
start from a constant (often 0), then increase exponentially
and eventually saturate at a higher constant level. Functions
that capture such a behavior, i.e. a smooth change from a
lower constant to a higher constant over a finite duration,
are called sigmoidal. The derivative of sigmoidal functions
have a bell-shaped form, similar to a Gaussian function, but
may be asymmetric in general. We here model the daily fa-
talities d, formally the derivative of the cumulative fatalities
D. Since we expect cumulative cases D to be sigmoidal,
from common-sense reasoning as argued above, this fixes the
derivative, the daily fatalities d, to a bell-shaped form.
Even though all pandemics thus give rise to bell-shaped d by
this argument, the curve’s parameters might differ, influenced
mostly by policy, health system and culture. The predictive
power of our model rests on the assumption that these influ-
ences are encoded already into the early data of casualties,
combined with the assumption that the principal shape of all
pandemics is fixed. This is of course an unjustified assump-
tion or, if at all, justified only in a statistical sense when con-
sidering large number of trials.
Why do we choose a symmetric bell-shaped form, the Gaus-
sian function? We recognize that other models, such as Pois-
son functions that fade out slower after their maximum, might
be more realistic. However, a symmetric function is the sim-
plest model among all bell-shaped functions and works well
enough to convey the idea of such models. Second, the times
of greatest interest to policy makers are until the bell-curve’s
peak since once passed the health system should be able to
cope.

Sigmoidal functions are popular to model saturation pro-
cesses such as cellular growth [20, 21] or enzyme (Michaelis-
Menten) kinetics. Numerous sigmoidal functions exist and
they have been used in many variations to predict infectious
diseases [8] and have even been linked directly to models such
as the SIR model [17]. Not surprisingly, sigmoidal models are
frequently used in times of coronavirus [7, 15, 18], most of-
ten using a (generalized) logistic function (Richard’s curve).
One model particularly similar to our GM [12] also uses the
Gaussian integral as sigmoidal function with similar parame-
ters. However, the study only applies to the US, for which we
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noticed a bimodal Gaussian nature of d and thus decided not
to model it here. Moreover, the precise methodology remains
elusive as of today when we submitted this manuscript, but
we assume the author fitted the sigmoidal Gaussian integral
function, not its Gaussian derivative. We believe this to be a
crucial difference to our procedure, to be discussed in the next
paragraph.

A major issue with sigmoidal models is that they are often
prone to overfitting [6] and also we in our preliminary ex-
periments found such sigmoidal fits to be sensitive to initial
conditions and to often require a large number of parameters.
Previously, people have tried to experiment with regulariza-
tions [17] to account for such instabilities. Instead, we here
choose to fit the logarithm of daily change of cases d, not the
cumulative cases D. The logarithm of d weights more evenly
values close to the functions maximum and disregards other
values. We believe this leads to a more stable model of d
around its maximum, the turning point of D, and the time of
interest since most relevant predictions such as peak of the
pandemic, time point and width of peak are focused around
this maximum.

The above arguments explained our believe in sigmoidal
models, but we also see mechanistic problems in other type of
models, such as exponentials. Many exponential models rely
on doubling times [13], which require intense preprocessing
of data, such as smoothing, and are model dependent. Please
refer to the methods in the appendix for further discussion
of doubling times in the context of the here presented GM.
Other exponential models report considerable deviations from
an exponential nature, e.g. a power law behavior as the curve
flattens [16]. Sigmoidal functions automatically account for
exponential growth and subsequent flattening and we thus be-
lieve them to be a better predictor.
We must note that we aim to be compared with descriptive
models, i.e. models that work only in the statistical limit of
large data. In contrast, mechanistic models for infectious dis-
eases [4] are able to study the effect of parameters such as
policies, health system or culture on the outcome of a pan-
demic, and thus to provide more detailed predictions and rec-
ommendations.

IV. Conclusion
The here presented GM allows for simple predictions of fu-
ture course of the Covid-19 disease and we have provided first
evidence that a GM is able to capture the time evolution of the
daily fatalities and infections per country. Fitted models de-
scribe past data well, including data from China.

The model is so simple that it can be reproduced and ap-
plied without detailed knowledge of epidemiology, statistics
or programming languages. There are many countries not yet
drastically affected by Covid-19, which will likely change for
many in the coming weeks, and the GM could for example
be used to apply it to such countries as soon as sufficient data
is available. Using the recipe presented here, interested read-
ers are in the position to obtain estimates for the shape of the
Gaussian curve for their country, state, community, and use
this model to compute more quantities of interest, such as our
sketch of how to estimate the maximum number of required
respiratory machines and the date of this maximum demand.
Knowing the time of maximum rush days of SSPs, the max-
imum number of SSPs and width could help the government
and medical agencies in these countries to optimize the man-
aging of the disease wave by appropriate drastic actions for

limited time. Moreover, fortunately, as our study here demon-
strates, the time of peak of the disease wave differs among
countries. Knowledge of these peak times and their durations
allows other countries to help those who undergo the peak of
the wave at a significantly later time, with breathing apparati
and trained medical personal for a brief predictable time.

Besides that we hope to make the public aware of the Gaus-
sian or sigmoidal nature emerging from Covid-19 infections,
similar to the numerous discussions of exponential functions
in recent times. No pandemic is ever exponential, in the long
run it is sigmoidal, and thus makes for a good discussion.

On one hand we are afraid our predictions will become re-
ality, on the other they are more optimistic than all (few) pre-
dictions we came across so far. Confronting these predictions
and the method with reality will help to either establish or
rule out the presented approach within a very short time. It
is the simplicity of the model and its missing freedom which
will allows us to quickly decide on its usefulness for future
applications.

We conclude with a word of caution. We are certainly no
experts in this field and a GM is simply a description of a
smooth time evolution of deaths. We leave it to the reader to
treat the here presented observations and claims with enough
care.
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A. Methods
In this section we make the concepts used intuitively in the
main text rigorous by introducing the necessary mathematical
language.

Gauss model — Denote the number of daily fatalities as a
function of time by d(t) and the cumulative number of fatali-
ties by D(t). We model the time evolution of fatalities using
the GM, i.e. a Gaussian function of time,

d(t) = dmax exp

{
− (t− td,max)

2

w2
d

}
, (A1)

where wd denotes the width of the Gaussian, dmax denotes the
maximum value of fatalities and td,max the time point at which
this maximum is attained. The identical model and notation
applies to the number of daily infections i(t), cumulative in-
fections I(t) and parameters imax, ti,max, wi.

We use publicly available data of monitored cumulative
death rates Dm(t), where the subscript m is used to distin-
guish data from our model, to derive the daily death rates by
taking the first time derivative

dm(t) =
dDm(t)

dt
(A2)

and calculated its natural logarithm ln dm(t). The GM dy-
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namics (A1) implies

ln dm(t) = ln dmax−
(
t− td,max

wd

)2

= c0+c1t−c2t2, (A3)

which is a polynomial function of degree 2 with coefficients

c0 = ln dmax −
t2d,max

w2
d

, c1 =
2td,max

w2
d

, c2 =
1

w2
d

. (A4)

The relevant parameters determining the number of deaths per
day, the width of the distribution, as well as the position of the
peak are then given by

dmax = ec0+c
2
1/(4c2), td,max =

c1
2c2

, wd =
1
√
c2
. (A5)

Fitting & errors — Using a second order polynomial fit
to the data we obtained the coefficients c0, c1, c2 as well
as their confidence intervals. For this, the MatlabR func-
tion [P,S,M]=polyfit(t,log(Im),2) on the natu-
ral logarithm of the monitored death rates ln Im(t) yields
the coefficients P=[c2,c1,c0] of the fit as well as information
about the confidence intervals. We made use of the func-
tion polyparci that uses only core MatlabR functions and
does not require the Statistics Toolbox. It uses the procedures
outlined in the polyfit documentation to calculate the co-
variance matrix, and uses functions betainc and fzero
to calculate the cumulative t-distribution and the inverse t-
distribution for a given probability and degrees-of-freedom.
Within the limited amount of time we had to prepare this doc-
ument, we were unable to compare error estimates from dif-
ferent approaches.

Deaths vs. infections — We have applied the same pro-
cedure to the measured number of infected people, im(t),
giving rise to another set of parameters imax, ti,max, and wi.
We found that the GM widths for infections wi and fatalities
wd are similar in magnitude, within errors, and that τd,max
and τi,max differ by a number of days τ ≈ 10 [5], that can
be considered constant for practical purposes. Our analysis
confirms this estimate. It is also useful to introduce the frac-
tion of fatalities among the truly infected (not the reported
infected) f = Dtotal/Itotal, as this fraction can be expected to
vary within limited bounds. We thus write

imax =
dmax

f
, ti,max = td,max − τ, wi ≈ wd (A6)

This reduces the number of parameters for a combined study
of daily deaths and infections to four, as f cannot be con-
sidered constant, or further down to three, employing f ≈
5 × 10−3 suggested by Fig. 1 of Ref. [5]. We did not make
use of these relationships and numbers anywhere in this work,
but they can still be used to estimate quantities mentioned be-
low.
While this study mostly focuses on the number of fatalities,
we had also included data from 11 countries for the reported
number of infections in some of the previous figures that pro-
vide evidence for the applicability of the GM. Table I lists the
corresponding parameters.

Data used — Only countries which as of April 2nd, have
reported more than 20 infected or 7 deceased people for more
than 10 days. Also, outliers that are better described by a

multimodal extension of the GM have been omitted (includ-
ing the United States) with the exception of China, for which
there was a clear end of the first wave on about March 12.
This resulted in the 25 counties used here. Using the identical
approach, many more countries will be available for analysis
within the next few days.

Cumulative fatalities — The accumulated number of fa-
talities at time t, which we refer to as cumulative number of
fatalities, is the integral of the daily fatalities (A1)

D(t) =

∫ t

−∞
d(t′) dt′ =

Dtotal

2

[
1 + erf

(
t− td,max

wd

)]
,

(A7)
where Dtotal = dmaxwd

√
π is the projected total number of

fatalities at t → ∞ and erf is the error function. Using (A7)
the time t0 by which a first patient died from the virus is im-
mediately estimated via D(t0) = 1. Similarly via I(t0) = 1
for the first infected person, so-called patient 0, if one takes
into account a time shift τ and ratio f between dmax and imax,
cf. (A6), and one ignores the fact that the gaussian is likely
to break down in this limit. The explicit expression is t0 =
ti,max −wi erf−1(1− 2/Itotal) for the time of first appearance
of Covid-19, and this time is specific for each country. Here,
erf−1 is the inverse error function. For values close to unity it
is well approximated by erf−1(1− ε) ≈

√
− ln(1− ε2).

Occupation of respiratory equipment — Most people
that died from Covid-19 required respiratory equipment un-
til their death for a period of length τr and we assumed this
period τr to be constant. If γ people out of all that require res-
piratory equipment die, we can estimate the daily occupation
of respiratory equipment r(t) by summing over the past τr
days of newly seriously sick persons per day (SSPs), which
are related to the daily deaths shifted by the typical time T
from being diagnosed as seriously sick until death. For that,
we divide the sum of deaths over the past τr days by γ to
extrapolate to active SSPs at time t and hence required respi-
ratory equipment

r(t) =
1

γ

∫ t

t−τr
SSP(t′) dt′ =

1

γ

∫ t+T

t+T−τr
d(t′) dt′

=
D(t+ T )−D(t+ T − τr)

γ
.

(A8)

The number of required respiratory machines r(t) attains
its maximum at time tr,max = td,max − T + τr/2 and thus
the peak number of required respiratory machines is rmax =
r(tr,max) = (Dtotal/γ) erf(τr/2wd), where Dtotal is the total
number of deceased people. This peak rmax increases with
larger occupation times of respiratory machines τr, larger to-
tal number of fatalities Dtotal and narrower GM widths wd.
For the fitted values of wd and a τr of 10 days, the error func-
tion roughly is in the range 0.5 ≤ erf(τr/2wd) ≤ 0.9. Flatten
the curve!

Percentiles of infection numbers — From td,max and wd
we can estimate dates at which time the number of daily in-
fected people i will have reduced to the level of η ∈ [0, 1] of
its maximum value. These times denoted as Tη are given by

Tη = td,max − τ + wd
√

ln 1/η. (A9)
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For η = 1% and η = 1‰ these times are explicitly given,
employing the typical delay time τ ≈ 10 days (A6), by

T1% = td,max − 10 + 2.146wd,

T1‰ = td,max − 10 + 2.628wd.
(A10)

The corresponding dates are listed in Fig. 4. It is also pos-
sible to estimate dates, for which less than a certain η of the
total population remains infected and potentially dangerous
to initiate another outbreak. This time is given by

T ∗η = ti,max + wi erf−1
(
1− ηf

2Dtotal/MP

)
, (A11)

where Dtotal/MP had been tabulated (Fig. 4), erf−1 is the in-
verse error function, and f defined by (A6) may be approxi-
mated by the value mentioned there. In this expression ti,max
and wi can also be approximated by using the values calcu-
lated from fatalities, as described already. For η = 10−6 (one
per million inhabitants), and a typical wi = 10, T ∗y − ti,max ≈
46 days for Dtotal/MP = 100.

Doubling times — Doubling times, here denoted by k, are
used to characterize the strength of an exponential growth

process, independent of the exponential amplitude. A dou-
bling time quantifies the time span required for the exponen-
tial to double (or, up to convention, to have doubled). Assum-
ing a purely exponential growth, both d(t) = dmax exp(νt)
and D(t) = d(t)/ν increase mono-exponentially with time,
and the doubling time k is a constant, k = ν−1 ln 2, while
ν = d′(t)/d(t) = D′(t)/D(t). For the GM the doubling
time based on d(t) is thus given by

k(t) =
k(0)

1− t/td,max
, k(0) =

(ln
√
2)w2

d

td,max
, (A12)

while the doubling time based on D(t) is given by k(t) =
(ln 2)/[k lnD(t)/dt] = (ln 2)D(t)/d(t). It is thus easy to
calculate two versions of doubling times with the GM param-
eters at hand, using either daily or total measures, which differ
if the growth is not ideally exponential. While doubling times
are convenient as they alter only weakly during exponential
growth, they are difficult to extract from data directly without
applying smoothing procedures that differ from publication
to publication, and they are not uniquely defined. For this
reason we do not recommend to proceed with an analysis on
reported doubling times, as done in [13], unless the raw data
is unavailable.
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α3 code Country wi ti,max imax Itotal Itotal/MP
BRA Brazil 11.1 ± 0.2 04-03 ± 8 800 ± 350 16000 ± 7000 78 ± 35
CHL Chile 11.7 ± 0.2 04-02 ± 7 321 ± 33 6600 ± 800 370 ± 45
GBR Great Britain 20.0 ± 0.7 04-27 ± 14 — — —
JPN Japan 38.0 ± 2.3 04-27 ± 22 195 ± 90 13000 ± 7000 104 ± 54
SAU Saudi Arabia 15.4 ± 0.6 04-02 ± 13 140 ± 23 3900 ± 700 120 ± 24
SRB Serbia 10.3 ± 0.3 04-01 ± 8 113 ± 50 2100 ± 1000 290 ± 130
PAK Pakistan 10.3 ± 0.3 03-28 ± 11 170 ± 80 3200 ± 1600 16 ± 8
PER Peru 16.8 ± 1.3 04-09 ± 28 148 ± 64 4400 ± 2300 140 ± 70
POL Poland 15.0 ± 0.4 04-07 ± 10 340 ± 50 9100 ± 1500 240 ± 40
ROU Romania 18.9 ± 1.3 04-19 ± 26 690 ± 90 23200 ± 4600 1200 ± 250
USA United States 14.8 ± 0.2 04-14 ± 5 — — —

TABLE I: GM parameterswi, ti,max, and imax for those countries, for which sufficient data about infections, but insufficient data about fatalities
is available to us, as of April 2. The coefficient imax we could not extract from the existing data with an error less than 100%.¨Parameters wi,
ti,max, imax were used to create Fig. 3.
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