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Abstract  
 
A novel corona virus (2019-nCoV) was identified in Wuhan, China and has been causing an 
unprecedented outbreak in China. The spread of this novel virus can eventually become an 
international emergency.  During the early outbreak phase in Wuhan, one of the most important 
public health tasks is to prevent the spread of the virus to other cities. Therefore, full-scale border 
control measures to prevent the spread of virus have been discussed in many nearby countries. At 
the same time, lockdown in Wuhan cityu (border control from leaving out) has been imposed. The 
challenge is that many people have traveled from Wuhan to other cities before the border control. 
Thus, it is difficult to forecast the number of imported cases at different cities and estimate their 
risk on outbreak emergence. 
  
Here, we have developed a mathematical framework incorporating city-to-city connections to 
calculate the number of imported cases of the novel virus from an outbreak source, and the 
cumulative number of secondary cases generated by the imported cases. We used this number to 
estimate the arrival time of outbreak emergence using air travel frequency data from Wuhan to 
other cities, collected from the International Air Transport Association database. In addition, a 
meta-population compartmental model was built based on a classical SIR approach to simulate 
outbreaks at different cities.  
 
We consider the scenarios under three basic reproductive number 𝑅"  settings using the best 
knowledge of the current findings, from high (2.92), mild (1.68), to a much lower numbers (1.4). 
The mean arrival time of outbreak spreading has been determined. Under the high 𝑅", the critical 
time is 17.9 days after December 31, 2019 for outbreak spreading. Under the low 𝑅", the critical 
time is between day 26.2 to day 35 after December 31, 2019. To make an extra 30 days gain, under 
the low 𝑅" (1.4), the control measures have to reduce 87% of the connections between the source 
and target cities. Under the higher 𝑅"  (2.92), the effect on reducing the chance of outbreak 
emergence is generally low until the border control measure was enhanced to reduce more than 
95% of the connections.  

Introduction 

On 31 December 2019, WHO was alerted to several cases of pneumonia infections in Wuhan City, 
Hubei Province of China [1]. The cause of the pneumonia was later identified as a novel 
Coronavirus (2019-nCoV) genetically very closely related to the Middle Eastern Respiratory 
Syndrome virus (MERS-CoV) and the Severe Acute Respiratory Syndrome virus (SARSCoV) [2]. 
This marks the third time in 20 years that a member of the family of coronaviruses (CoVs) has 
caused an epidemic employing its zoonotic potential, for example, from bats [3]. The novel virus 
was able to establish between person-to-person transmission [4]. 
 
The outbreak caused by the novel coronavirus (2019-nCoV) is currently occurring in Wuhan and 
affecting many neighboring cities and countries [5]. During the early phase of the outbreak, it 
poses a severe threat to many other regions due to frequent transportation services linking Wuhan 
to the other cities. About 2 weeks later after 31 December, using the number of cases detected 
outside China, it has been inferred that more than a thousand individuals (with an estimated mean 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2020. .https://doi.org/10.1101/2020.02.01.20019984doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.01.20019984
http://creativecommons.org/licenses/by-nd/4.0/


1723) had had an onset of symptoms by January 12, 2020 [6]. This number, which was estimated 
based on certain assumptions, was about 40 times higher than the reported number by January 12, 
2020. Given that most of the members of the coronavirus family cause mild flu-like symptoms 
during infection and most people have not yet received nation-wide alert about the novel virus 
during that period, it could be possible that the confirmed case number among actual infected cases 
is very low, probably similar to influenza reporting rate, which is only about 1% [7]. 
 
During this early outbreak phase in Wuhan, one of the most important preventive tasks is to prevent 
the outbreak potential to spread to other cities. If outbreaks also occur in other cities, the prevention 
of nCoV becomes even more difficult in China or at the global level. From disease control 
perspective, the major questions here are whether we can i) estimate the waiting time for nCoV to 
spread to other cities in China; and ii) evaluate the impacts of disease control by cessation of 
population movement (e.g., lockdown measures) on the outbreak spreading. The importance of 
prediction of infectious diseases based on transportation network information has already been 
highlighted previously [8, 9]. Studies have been done to estimate the probability of emergence and 
the arrival time of the emergence [10]. In addition, the required condition for a virus to spread to 
other cities is through secondary infections from the imported cases. In our study, imported case 
was defined as an infected individual migrating from other cities to a particular city. In order to 
evaluate the infectious disease control measures during the spreading of the virus, it is important 
to know how many secondary cases has been caused  by the imported cases. Thus, there is a need 
to estimate the probability of emergence and the arrival time of the emergence through estimating 
the number of secondary infections caused from imported cases using transportation data. 
 
In this study, we derived a simple mathematical formula to estimate the outbreak potential at 
neighboring cities and built a meta-population model based on a classical SIR approach to 
understand the outbreak spreading dynamics at different cities. Gain of time before outbreak 
emergence is predicted under different infectious disease control rates.  

Methods 

Calculating Imported & their secondary infected cases  

Assuming that the newly emergence of 2019-nCoV causes an outbreak at location 𝑖, during the 
emergence, the number of infectious cases is changing following this formula:  
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where b is the baseline transmission rate that can be estimated from 56
01

 , 𝑅"is the basic reproductive 
number, 𝑇8 is the generation time, 𝑀*4 is the contact mixing from the location 𝑖 to 𝑗, and 𝐼4* is the 
secondary infected at the location 𝑗  transmitted by imported cases from 𝑖 . During the early 
outbreak phase, the susceptible population (𝑆) is nearly constant, therefore we can assume +

,
≈ 1, 

where 𝑁 is total population size. Set L* = b𝑀** −
/
01

, then $%&
$'
= L𝐼* and we will have the infected 

number at 𝑖 as a function of time	𝑡, such that 𝐼*(𝑡) = 𝐼"𝑒L'. Because before the outbreak occurs at 
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a different location 𝑗, the infection can only happen when transmission events occur between the 
imported cases and the individuals at	𝑗, it is essential to estimate the expected number of cumulated 
secondary cases in the population 𝑗 transmitted from the imported cases originally at 𝑖. To solve 
the number of cumulated cases until time 𝑡, we have the number of cumulated secondary infected 
cases generated by the imported cases 	𝐶𝐼4 𝑡 = b𝑀*4𝐼*

'
" (𝑠)𝑑𝑠. We can derive the following 

formula:  

𝐶𝐼4 𝑡 = b𝑀*4 𝐼* 𝑠 𝑑𝑠
'

"
 

													= b𝑀*4 𝐼"𝑒LE𝑑𝑠
'
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= b𝑀*4𝐼"
FLGH/
L

.        (3) 
 
The total number of the imported cases during a period of time is derived as: 𝐼𝑚𝑝𝑜𝑟𝑡𝑒𝑑 =
𝑀*4 𝐼* 𝑠 𝑑𝑠

'
" . Note that we can incorporate the effect of latent period. For example, if we consider 

infected people during latent state or within incubation period can pass the border screening, during 
each time point 𝑠, only newly infected indiviauls within inbucation period t can have chance to 
move to a different city, thus 𝐼*N 𝑠 = b𝑀** 𝐼* 𝑢

E
EHt .	The total number of imported cases at a 

specific time point can also be derived as 𝐼𝑚𝑝𝑜𝑟𝑡𝑒𝑑_𝑑𝑖𝑠𝑐 = 	𝑀*4 (𝐼*∗ 𝑡 − 𝑎 )t
TU" . 𝐼*∗ 𝑡  is the 

daily new infected, which can be calculated as 𝐼* 𝑡 − 𝐼* 𝑡 − 1 . We adopt a discrete form here 
because it is easier to explain. 𝐼*(𝑡 − 𝑎) represents the number of new cases that were infected 𝑎 
days ago but will still not be detected at time 𝑡. If we assume 𝐼*(𝑡 − 𝑎) is constant for all possible 
𝑎 and t is the time to disease detection for each infected individual, the result is exactly same as 
the total number of imported cases estimated in a recent study [6]. Therefore, this framework 
provides a more generalized expression to estimate the imported cases and the secondary infected 
cases generated by the imported cases when the the incidence is still exponentially increasing in 
the source region.  
 
Incorporation border control measures 
 
To incorporate the border control measure into our model, we introduce a control factor 𝑐 such 
that 
                                                    𝐶𝐼4 𝑡 = 1 − 𝑐 b𝑀*4𝐼"

FLGH/
L

.  
 
where 𝑐 is the border control measure ranging from 0 to 1, representing no control to full-scaled 
control.  
 
Determining outbreak  potentials 
 
We consider the outbreak potential, defined as the probability of outbreak emergence given the 
number of cumulated cases. At the initial stage, if there is only one single infected individual, the 
chance of this virus to cause an outbreak is  𝑝4,/ = 1 − /

56
 . We set 𝑅" for location 𝑗 to be a low 

number 1.1 for the secondary infected cases generated by the imported cases at location at 𝑗 
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because the nation-wide alert has already been received at different cities after December 31, 2019. 
When the number of cumulative cases reaches a higher number, the probability of outbreak 
emergence is    

𝑝4,W%3 = 1 − 1 − 𝑝4,/
W%3.						               (4) 

 
We obtain a critical threshold number of cases, 𝑛 = NY ".Z

NY /H[3,\
, representing the threshold of having 

higher outbreak probability. We set the critical time  𝑡$  such that the probability of outbreak 
emergence 𝑝4,W%3UY is larger than 50% can be solved.   
 
Airline frequency data is collected from the International Air Transport Association (IATA) 
database. Although we do not have data for rail and other forms of transport, we assumed that the 
total number of travelers is 3.37 times higher than that of air transport except for certain cities on 
Hainan island. The total travel volume between different cities was then used for the contact 
mixing 𝑀*4 between locations 𝑖 and	𝑗. For example, we divided daily passenger numbers by total 
population size in Wuhan to represent the contact rate between Wuhan city and any connected city 
𝑗.  
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Results 
 
Outbreak spreading during early phase in a higher 𝑹𝟎 scenario 
 
We first calculated the cumulative number of secondary infected cases by import cases from 
Wuhan under two parameter settings, each corresponding to a higher or lower 𝑅". For higher 𝑅" 
scenario, a generation time of 8.4 days [11] and 𝑅" of 2.92 for the outbreak in Wuhan city were 
used [12]. We predicted the border control impacts on nation-wide disease spreading in two 
different scenarios, without any other control and with some control measures. During the early 
stage of the outbreak without any control measures (no mask wearing, isolation, or contact tracing, 
etc.), the cumulative number of secondary infections generated by imported cases through 
transportation was estimated (Figure 1A).  We obtain the critical threshold number of cases 𝑛 =
7.27 in a city, representing the outbreak will occur with 50% chance if the cumulative number of 
secondary infections is over that critical value. The arrival time of secondary infections to reach 
above this value for the top 10 cities most connected to Wuhan are between 14 – 18 days (Figure 
1A). The outbreak potential in the  nearby cities can be assessed. Using the average of the airline 
frequencies among the 10 top connected cities, we calculated the average arrival time of outbreak 
emergence 𝑡$, which is 17.9 days after 31 December 2019. At the time 𝑡$, all the top 10 connected 
cities have a probability of outbreak emergence larger than 50% (Figure 1B).   
 

 
Figure 1. Outbreak potential estimated from the secondary cases contacted by imported cases under a higher 𝑅" 
scenario. (A) Number of cumulative secondary cases generated by imported cases. The secondary infecteds are 
listed among the top 10 visiting cities from Wuhan. 𝑛 = 7.27 is the critical threshold number.  (B) Probability 
of outbreak emergence in different cities at mean critical time (17.9 days).  
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For each city, the critical time at which the cumulative number of secondary cases generated by 
the imported cases larger than the critical threshold were determined (Table 1). Beijing, Shanghai, 
Guangzhou and and Chengdu had the shortest required time periods. As stated before , the mean 
critical time for the top 10 visiting cities was 17.9 days. As shown in Figure 1,only eleven cities 
had higher risk of outbreak emergence (probability larger than 0.5).  

Table 1. Critical time of outbreak arrival at top 20 connected cities in China under a higher 𝑅". 𝐶𝐼4 
is the cumulated number of secondary infected cases generated by the imported cases. 
 

City 
Critical 

time 
(days) 

𝑪𝑰𝒋  at mean 
critical time 
(day 17.9) 

𝑪𝑰𝒋 at 
day 
35 

Probability of 
outbreak at mean 
critical time (day 

17.9) 
Beijing 15 18.4 918.1 0.827 
Shanghai 15 16.0 796.7 0.782 
Guangzhou 15 15.2 758.3 0.766 
Chengdu 15 14.7 732.8 0.754 
Kunming 17 11.6 577.3 0.669 
Xiamen 17 11.1 552.3 0.652 
Shenzheng 17 11.0 548.7 0.650 
Nanning 18 8.2 408.7 0.543 
Qingdao 18 7.9 394.0 0.529 
Shenyang 18 7.4 368.9 0.506 
Xian 18 7.3 365.9 0.503 
Chongqing 19 7.1 352.8 0.491 
Enshi 19 6.7 334.1 0.472 
Dalian 19 6.6 329.0 0.467 
Suzhou 19 6.4 317.7 0.456 
Hangzhou 19 6.0 298.7 0.435 
Tianjin 19 6.0 298.1 0.435 
Harbin 20 4.9 242.2 0.371 
Fuzhou 20 4.8 240.6 0.369 
Urumqi 21 4.1 204.6 0.324 

 
 
 
Outbreak spreading during early phase in a lower 𝑹𝟎 scenario 
 
In reality, the 𝑅" or real-time effective 𝑅 will decrease after many control measures are conducted 
[13]. Therefore, we made the same calculation under a mild transmission condition. We assumed 
that after 31 December 2019, the generation time was as short as 7 days and 𝑅" was as low as 1.4, 
which was the lower bound of World Health Organization’s estimate [14]. The lower 𝑅" can be 
caused by different estimation procedure or can be caused by isolation and mask wearing measures. 
Under this scenario, following the suggestion from a recent study [15], we consider the reporting 
rate to be near 5% and set initial infected number as 1000 on 31 December. Using model simulation, 
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the infected number reached the recent estimated number 1723 on 9 January 2020 (Figure 2). 
Considering the incubation period to be 3 days, the number of infected persons with symptoms 
onset will be revealed on 12 January, 2020, same as the value estimated from the study [6]. The 
infected number was slowly increasing linearly within the first 30 days. In the following study, we 
use this mild 𝑅"	parameter setting to evalulate the impact of border control on outbreak spreading.  
 

 
Figure 2. Number of infected cases and number of secondary cases generated by the imported cases. The blue 
line represents the number of infected cases of nCoV after 31 December 2019 and the orange lines represent the 
number of secondary cases generated by the imported cases through contact between cross-province 
transportation. 

We further calculated the cumulative number of secondary cases 𝐶𝐼4 at the 𝑗th city generated by 
the imported cases. The changes of 𝐶𝐼4 by time at each city are plotted from day 1 to 50 (Figure 
3A). After 50 days since the outbreak, the cumulative cases can reach rapidly above 40 cases for 
many cities. After 30 days, most of the cities have secondary cases above a critical threshold of 
7.27, calculated from eq(4) using 𝑅" = 1.1.  The current estimate of 𝑅"  is 2.92 for the initial 
outbreak period in Wuhan when citizens had not received any alert. However, the current 𝑅" would 
be lower because people have since been aware of the disease. This setting will apply when about 
62.3% of infections events can be prevented, due to different control policies, comparing to the 
Wuhan outbreak before the emergence of outbreak on other cities.  
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Figure 3. Outbreak potential estimated from the secondary cases contacted by imported cases under a lower 𝑅" 
scenario. (A) Number of cumulative secondary cases generated by imported cases. The secondary infecteds are 
listed among the top 10 visiting cities from Wuhan. 𝑛 = 7.27 is the critical threshold number. (B) Probability of 
outbreak emergence in different cities at mean critical time (26.2 days).  

The outbreak potential of nearby cities can be assessed. For each city, the critical time at which 
the cumulative number of secondary cases generated by the imported cases larger than the critical 
threshold was determined (Table 2). Beijing, Shanghai, Guangzhou had the shortest required time 
periods. The mean critical time from the top 10 visiting cities was 26.2 days. Only five cities had 
higher risk of outbreak emergence (probability larger than 0.5). We further calculated the 
probability of outbreak emergence at mean critical time and at day 35. 17 cities had higher risk of 
outbreak emergence (Table 2). We further compared the predicted cumulated infected case number 
at day 26 using model simulation with the actual observed reports in the top 10 visitng cities. 
Among top 5 high risk cities, four of them had higher case numbers than other cities. The higher 
number of predicted numbers confirmed that the actual case number can be 20 times higher than 
the reported numbers ( see suplemnetary Table S1).  
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Table 2. Critical time of outbreak arrival at top 20 frequently-visited cities in China under a lower 
𝑅". 𝐶𝐼4 is the cumulated number of secondary infected cases generated by the imported cases. 
 

City Critical 
time 

𝑪𝑰𝒋 at mean 
critical time 
(day 26.2) 

𝑪𝑰𝒋 at day 
35 

Probability 
of outbreak 

at mean 
critical time 
(day 26.2) 

Probability 
of outbreak 

at day 35 

Beijing(北京)  20 11.96 22.36 0.680 0.881 
Shanghai(上海) 22 10.38 19.41 0.628 0.843 
Guangzhou(廣州) 23 9.88 18.47 0.610 0.828 
Chengdu(成都)  23 9.55 17.85 0.598 0.818 
Kunming(昆明) 26 7.52 14.06 0.512 0.738 
Xiamen(廈門) 27 7.20 13.45 0.496 0.723 
Shenzhen(深圳) 27 7.15 13.37 0.494 0.720 
Nanning(南寧) 31 5.33 9.96 0.398 0.613 
Qingdao(青島) 31 5.13 9.60 0.387 0.599 
Shenyang(瀋陽) 32 4.81 8.99 0.368 0.575 
Xi’an(西安) 32 4.77 8.91 0.365 0.572 
Chongqing(重慶) 33 4.60 8.59 0.355 0.559 
Enshi(恩施) 34 4.35 8.14 0.340 0.540 
Dalian(大連) 34 4.29 8.01 0.335 0.534 
Suzhou(蘇州) 35 4.14 7.74 0.326 0.522 
Hangzhou(杭州) 35 3.89 7.27 0.310 0.500 
Tianjin(天津) 36 3.89 7.26 0.309 0.500 
Harbin(哈爾濱) 39 3.16 5.90 0.260 0.430 
Fuzhou(福州) 39 3.13 5.86 0.258 0.428 
Urumqi(烏魯木齊) 41 2.67 4.98 0.224 0.378 

Probability of outbreak emergence and spreading 

Under this parameter setting, the critical time  𝑡$ (arrival time for emergence) when the probability 
of outbreak emergence at different cities larger than 0.5 were calculated. The probability of 
outbreak emergence at each of the top 20 frequently-visited cities at the average 𝑡$ (Figure 4A) 
and day 35 (Figure 4B) were plotted. 
 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2020. .https://doi.org/10.1101/2020.02.01.20019984doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.01.20019984
http://creativecommons.org/licenses/by-nd/4.0/


 

 
Figure 4. Outbreak potential at different cities in mainland China. Outbreak potential at different cities at day 
26.2 (A) and day 35 (B).  
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Evaluation of the impacts of border control 

Under the no-border control scenario, assuming all other cities have the same population as Wuhan, 
model simulation results showed that nearly 2 months were required for generating the same level 
of epidemics in other frequent visiting cities (Figure 5). Ideally, complete cessation of population 
movement between cities or isolation of every susceptible case from the source city can reduce 
transmission events.  
 

 
Figure 5. Epidemic outbreaks under no disease control scenario. Blue line represents the number of infected 
cases from Wuhan city. Orange lines represent the number of infected cases from top 3 visiting cities from 
Wuhan. 

We evaluated the impact of border control measures by introducting a control rate 𝑐 to reduce the 
transporation rate between two cities, such that 𝐶𝐼4 𝑡 = b(1 − 𝑐)𝑀*4𝐼"

FLGH/
L

. We can thus 
recalculate the cumulative number of secondary infections under different levels of border control. 
To achieve the gain time of control for transportation of a particular city, we calculate critical time 
given the control such that the cumulative number of secondary cases generated by the imported 
cases is greater than critical threshold number 𝑛. Finally, subtraction of the critical time without 
control from the critical time with control returns gain of the control system. To make an extra 30 
days gain, under the low 𝑅" (1.4), the control measures have to reduce 87% of the secondary 
infections generated by the imported cases (Figure 6A). Under the higher 𝑅" (2.92), the effect on 
reducing the chance of outbreak emergence is low until the border control can reduce more than 
95% of the secondary infections (Figure 6B). Under the mild 𝑅"	condition, we set 𝑅" = 1.68 with 
generation time 8.4 days, and found that the border control effect is similar but a little bit weaker 
than that in the lower 𝑅" scenario. This allows us to calculate how much extra time a connected 
region through mobility can gain and gives an indicator what scale of border control is necessary.  
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Figure 6. Gain time of outbreak emergence by the rates of successful infectious disease border control. (A) The 
impact of border control under the lower 𝑅" (1.4); (B) under the higher 𝑅" (2.92); (C) under mild 𝑅" (1.68). 
 
  

A	

B	

C	

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2020. .https://doi.org/10.1101/2020.02.01.20019984doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.01.20019984
http://creativecommons.org/licenses/by-nd/4.0/


 
Discussion 
 
The 2019-nCoV is currently spreading from Wuhan to many nearby cities and countries. It is 
hypothesized that the rate of transmission between different cities or countries is proportional to 
the number of people moving from different locations to Wuhan. Until recently, very few studies 
have been done to predict the spreading of the outbreaks of newly emerging diseases using air and 
other forms of transport information . Our study provides an analytical solution to calculate the 
cumulative number of secondary cases generated by the imported cases with an estimated 𝑅", with 
which we are able to predict the arrival time of the outbreak.  
 
Two most important parameters, generation time and basic reproduction number are still unknown. 
The generation time we used was adapted from a previous study. Since 𝑅" is not known, and can 
be different using different approaches [16], here we use 𝑅" = 1.4  for Wuhan and we set 𝑅" for 
other locations 𝑗 a low number 1.1. This number was used because the nation-wide alert has 
already been received at different cities after 31 December, 2019. The control measures and self 
awareness make the initial infection to occur less easily. We have learnt from the previous SARS 
outbreak that it is crucial to implement rapid infection control measures to limit the impact of 
epidemics, both in terms of preventing more casualties and shortening of the epidemic period. The 
other important lesson is that a timely public alert against a new spreading epidemic is also most 
essential [17]. 
 
Previous study shows that control measures at international cross-borders and screening at borders 
have influential effect in mitigating the spread of infectious diseases [18]. They strongly 
recommend to strengthen cross-boarder screening system to prevent infectious disease outbreak 
due to imported cases as China has increased number of imported cases over the years. Besides, 
[19] studied the effectiveness of border screening for influenza detection among airline passengers 
in New Zealand. Here the model we constructed is easy to understand and simple to use when 
transportation data is available. The framework can be extended to multiple infected sources to 
one single target city. Hence, the model proposed in the current study could help to prevent 
infectious diseases caused by imported cases from different parts of China moving to neighbouring 
territories and countries including Hong Kong, Taiwan, Vietnam and so on. 
 
Ideally, complete cessation of population movement between cities will be a way to block outbreak 
spreading. However, the effect is difficult to measure given that it is not easy to make a 
comparative study. But a lesson we learnt from the previous SARS outbreak is that it is crucial to 
estimate the transmission potential of a new emerging disease as soon as possible and to establish 
whether additional, more stringent control measures are required [17]. Recent studies have shown 
the importance of modeling in infectious disease control [20]. We have evaluated the impact of 
these control measures under different levels of infectious disease control scenarios. To make an 
extra 30 days gain, the control measures have to reduce 87% of secondary infections generated by 
the imported cases. This gives an indicator whether certain control or prevention measures, such 
as wearing masks, quarantine, etc., are necessary. 
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