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Abstract

An important task during the current Covid-19 pandemic is to predict the re-
mainder of the epidemic, both without preventive measures and with. In the current
paper we address this question using a simple estimation-prediction method. The
input is the observed initial doubling time and a known value of R0. The simple
General epidemic model is then fitted, and time calibration to calendar time is done
using the observed number of case fatalities, together with estimates of the time
between infection to death and the infection fatality risk. Finally, predictions are
made assuming no change of behaviour, as well as for the situation where preven-
tive measures are put in place at one specific time-point. The overall effect of the
preventive measures is assumed to be known, or else estimated from the observed
increased doubling time after preventive measures are put in place. The predictions
are highly sensitive to the doubling times without and with preventive measures,
sensitive to R0, but less sensitive to the estimates used for time-calibration: ob-
served number of case fatalities, typical time between infection and death, and the
infection fatality risk. The method is applied to the urban area of Stockholm, and
predictions show that the peak of infections appear in mid-April and infections start
settling in May.

Introduction

The covid-19 is currently spreading at rapid pace in most countries world-wide, resulting
in scary number of case fatalities and healthcare systems being overwhelmed. In the
present paper we present a simple method for predicting the progress of the epidemic in
a community which is fairly well-mixed, an urban region being a typical example.

We focus on predicting of the main phase of the epidemic, and not on the very beginning or
end (when very few are infectious implying that randomness plays a crucial role). For this
reason we use a deterministic epidemic model. More specifically we use the General epi-
demic model [4] because it allows for more heterogeneity in how many infectious contacts
different infected have, and when in time these happen, in comparison to generation-time
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models such as the Reed-Frost model [4]. The model hence allows for heterogeneity in
terms of infections, but all individuals are equally susceptible and mix homogeneously.

As input to our prediction model we use the observed doubling time d during the initial
(random) phase of the epidemic and the basic reproduction number R0. Estimation of d
is straightforward (e.g. [1]) and many estimates of R0 for covid-19 can be found in the
literature, most of them lying in the range 2.2-2.8 (e.g. [9], [8]). We start by describing
the different steps in the methodology, including also how to time-calibrate the model
to calendar time, and the apply our method by predicting the Covid-19 outbreak in the
Stockholm region.

Methods

We now present our estimation-prediction procedure. We start by predicting the be-
haviour of the outbreak based on knowing the basic reproduction number R0 and the
doubling time d in the initial phase of the epidemic. We then time-calibrate the model in
the sense of estimating where in the epidemic outbreak we are on a given date t1 by using
cumulative case fatalities and knowledge of the typical time between infection and death
sD. Finally, we predict the time calibrated epidemic outbreak under the assumption that
a set of preventive measures are put in place a given date tp during the early phase of
the epidemic outbreak. This is done either assuming the overall reduction in spreading
is known, or else by assuming that the increased doubling time after prevention, dp, is
observed.

Prediction based on R0 and initial doubling time d

As input for our prediction we use the observed doubling time d during the initial growth
rate and the basic reproduction number R0, both valid before any preventive measures
were put in place. The doubling time can for example be estimated from the empirical
doubling time of case fatalities as described in [1]. The doubling time relates to the
exponential growth rate r of the epidemic by the relation erd = 2, so r = ln(2)/d. The
basic reproduction number can be estimated using other data sources, for example using
contact tracing giving information about the (random) generation time G and its mean
g = E(G) (this is however not trivial, cf. [2], [12]). Here we assume the initial doubling
time d and the basic reproduction number R0 to be known.

We assume the epidemic progresses according to the General epidemic model (GEM) [4].
For this model, the mean generation time relates to r and R0 by the relation [11]

R0 = 1 + rg. (1)

We hence have that the mean generation time equals g = (R0 − 1)/r. The GEM has two
model parameters: the rate of infectious contact λ that infectious individuals have, and the
rate of recovery γ (e.g. [4]). The basic reproduction number for GEM equals λ/γ (the rate
of infectious contacts multiplied by the mean duration of the infectious period 1/γ. The
rate of infecting someone s time units after infection is λe−γs, and since the mean number
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of contacts equals R0 = λ/γ, it follows that G has density fG(s) = λe−γs/(λ/γ) = γe−γs.
It hence follows that G is exponential with parameter γ with mean E(G) = 1/γ.

From our input data, d and R0, we hence conclude that g = (R0 − 1)d/ ln(2) and hence
that γ = ln(2)/(d(R0 − 1)).

The contact rate λ can also be obtained from our input values R0 and d from the fact that
R0 = λ/γ for the GEM [4]. We immediately have that λ = R0γ = (R0/(R0−1))(ln(2)/d).

Once we have calibrated our parameters λ and γ to R0 and the observed initial doubling
time d we simply use the GEM to predict the epidemic (assuming no preventive measure
are put in place). Suppose the community size is N (assumed large) and that we start
with a small fraction (but fairly large number) infected and the rest being susceptible, for
example i0 = 50 s0 = N − 50, where st and it denote the number of susceptible and the
number of infectious individuals respectively (the index t is hence relative to the start of
the epidemic and not calendar time). The transitions of the GEM are given by

st+1 = st − λstit/N (2)

it+1 = it + λstit/Nγit. (3)

The interpretation is that each infectious individual at time t has on average λ infectious
contacts per day, and with probability st/N each such contact results infection. Those
susceptibles who get infected move to the infectious state. The other transition is for an
infectious individual to stop being infectious and recovering and becoming immune (a few
also die). The number of individuals who have recovered (also including the few who die)
equals N − st− it. This system can be iterated forward sequentially until the first time T
when the number of infectious individuals drops below 1: iT ≤ 1 (it never reaches exactly
0 but asymptotes to 0). The number of individuals who have been infected by t equals
N − st.

By solving the iterative system it is easy to plot the number of infectives it and the number
of infected N − st over time, as well as the daily incidence st−1 − st.

Time calibration based on initial case fatality data

In the previous subsection an epidemic model was fitted to the observed initial doubling
time d and the known basic reproduction number R0. An important remaining task is to
identify where in this outbreak the epidemic is at calendar time t1 (”today”) (cf. [1]). We
hence want to know which relative time t since the start of the epidemic that corresponds
to the calendar time t1. In order to do so we use the observed total number of case
fatalities up to calendar time t1, denoted Λ(t1). We further need approximate knowledge
of two quantities: the typical duration sD between getting infected and dying (for those
who die) and the infection fatality ratio f being defined as the probality that an individual
who gets infected dies. For covid-10 sD ≈ 21 days but estimates of f vary in the range
0.2% − 1% (e.g. [13], [12]). Fortunately it turns out that the time calibration is not too
sensitive to these numbers.

Given Λ(t1), sD and f we know that the Λ(t1) who have died by t1 were all infected by
t1− sD. But these ”to-die” infected individuals only make up a fraction f of all who were
infected by t1 − sD, so the number of infected individuals at calendar time t1 − sD equals
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Λ(t1)/f . This means that we calibrate calendar time to time relative to the start of the
epidemic by equating t1 − sD to the relative value t∗ for which N − st∗ = Λ(t1)/f .

Given this time calibration between relative and calendar time, t∗ = t1−sD, the estimated
number of infected people at present time equals it∗+sD and e.g. the predicted number of
infectious individuals three weeks later (calendar time t1 + 21) equals it∗+sD+21.

Prediction with preventive measures put in place

Suppose that a set of preventive measures are put in place at some calendar time tp still
assumed to be in the early phase of the epidemic. Here we assume that this effects the
rate of infectious contacts but not the (mean) generation time g = 1/γ. Most preventive
measures agree with this: school closure, self-isolation, closing (or reduced activities) of
restaurants, bars, cinemas. There are also some preventions which aim at reducing g,
such as contact tracing followed by isolation, but here we restrict ourselves to preventions
reducing λ. We assume that the new preventive measures have the overall effect of
reducing λ by a factor ρ, so that the new effective rate of contact equals λE = λ(1 − ρ),
and the new effective reproduction number equals RE = (1 − ρ)R0. For covid-19 there is
currently no available vaccine, but for situations where there is it is also possible to include
vaccination of a fraction of the community as a preventive measure. In this case, the factor
ρ also includes effects from vaccination. If for example a fraction v are vaccinated with
a vaccine giving perfect immunity then this results in ρ = v if this is the only preventive
measure.

In applications it is close to impossible to know the overall magnitude of the preventive
measures ρ when a set of preventive measure are put in place jointly. In [1] it is shown how
to estimate ρ by observing the change in the doubling time once the preventive measures
have influenced e.g. fatality rates. Applying Equation (3) in [1] it follows that

ρ = (r − rE)
g

R0

=

(
ln(2)

d
− ln(2)

dE

)
g

R0

.

Above r is the exponential growth rate before preventive measures and rE is the growth
rate after preventive measures have affected case fatality rates, and similarly for the
doubling times d and dE.

The preventive measure hence induce a lower growth rate rE = ln(2)/dE. We assume
the same mean generation time g = 1/γ, and since rE = λE − γ it follows that the new
contact rate λE = rE+γ. The new reproduction number equals RE = 1+rEg = 1+rE/γ.

To sum up, if R0 and d = ln(2)/d are known from before preventive measures, and
preventive measures are put in place on day tp resulting in a new longer doubling time dE,
then the time calibrated prediction model should change from λ = (ln(2)/d)R0/(R0 − 1)
to λE = (ln(2)/dE) + γ.

Predicting the outbreak in Stockholm

We illustrate our methods on the Stockholm region in Sweden. Greater Stockholm urban
area has around N = 2 million people, and the initial doubling time of cumulative case
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fatalities was around d = 3.5 days before preventive measures were put in place [7],
and we assume that R0 = 2.5 this being a common estimate [9]. A number of (mainly
but not exclusively) preventive measures were put in place around the date tp = March
16. We assume the typical time between infection and death (for those who die from
covid-19) equals sD = 21 days. These preventive measures will start affecting fatality
rates at tp + sD = April 6. We are now (April 14) one week later so the effect is still
very (!) uncertain, but dE = 9 days seems to be a reasonable estimate based (only)
on case fatalities between April 4 and April 13 where the total number has close to
doubled [7]. To calibrate the relative time to calendar time we finally assume that the
cumulative number of case fatalities on March 31, before effect of preventive measures,
equals Λ(March 31) = 200. We emphasize that the quantities are by no means precisely
estimated, so results contain a lot of uncertainty.

To start, the evolution of the epidemic outbreak is simulated using the system defined
above with λ = (ln(2)/3.5)∗2.5/1.5 = 0.330. The rate of recovery equals γ = λ−ln(2)/d =
0.132. Finally, the new contact rate λE induced by the new bigger doubling time dE = 9
equals λE = (ln(2)/dE) + γ = 0.209. As a consequence, the iterative prediction model
should have λ = 0.330 replaced by λE = 0.209 on March 16 and onwards. As a side remark
we note that this change of doubling time from 3.5 days to 9 days corresponds to changing
R0 = 2.5 to RE = 1 + (ln(2)/dE)/γ = 1.58 giving the magnitude of preventive effects of
ρ = 1 − RE/R0 = 0.37 so a 37% overall reduction in contact rates. Since the estimate
dE = 9days of the new doubling time after preventive measures are put in place is highly
uncertain we do similar calculations assuming the new doubling time instead equals 6 and
14 days respectively, and also for the situation where the preventive measures reduces RE

to 0.8 implying that it directly starts decaying.

Finally the time calibration. For this we set the infection fatality risk to f = 0.3% as a
guess. As mentioned above it will not change the time calibration more than a week if the
true fatality risk is 0.1% or 1%. The 200 case fatalities by March 31 would hence imply
that the number of infected three weeks earlier, March 10, equals 200/0.003 = 67 000.
We therefore calibrate March 10 to the relative day t at which the cumulative number of
infected equals 67 000 (or as close to as possible). This turns out to be on day t = 31 of
the epidemic.

Once the calibration is performed it is possible to predict relevant quantities of the out-
break, both with and without preventive measures of different magnitudes. The results
are summarized in Figure 1 and Figure 2 below. Figure 1 reports the daily incidence of
new infections for the different scenarios. For example, considering our main prediction
curve, assuming the new doubling time equals de = 9 days (blue curve) shows that the
peak day when most individuals get infected is April 3 when as many as 27 000 (=1.3%)
get infected. Further, 75% of all infections have happened by April 19 and 90% of all
infections have occurred by May 5. Comparing the different scenarios, without preven-
tions and with preventions of different magnitude, it is seen that the peak is reduced the
higher magnitude of preventive measures, and slightly shifted forward in time. Had the
preventive measures happened earlier in relation to the outbreak, as for example was the
case with other parts of Sweden, the peak heights would have been lower and further
shifted forward in time.

Figure 2 shows the cumulative numbers of infected (with overall percentages to the right)
for the different scenarios. It is seen that without preventive measures slightly more 1.8

5

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2020. .https://doi.org/10.1101/2020.04.15.20066050doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.15.20066050
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: Plot of the daily number of new infections over time, with preventive measures,
and for a variety of magnitude of preventive measures.

million get infected, corresponding to 90%, and our main prediction curve reduces this
number to 1.32 million corresponding to 66%.

Another important observation is that in the first three scenarios, the final fraction in-
fected exceeds the critical immunity level vC = 1 − 1/R0 = 0.6 [4]. This implies that in
these three situations the community has reached herd immunity and is hence protected
from additional outbreaks when preventive measures are relaxed (assuming infection in-
duce complete immunity!). For the two latter scenarios, a new doubling time of dE = 14
days and the situation where preventive measures give RE = 0.80, the final fraction
infected is even smaller which of course is positive. However, since the corresponding
fractions lie below herd immunity, the community is at risk for additional outbreaks if all
preventive measures are relaxed. This is particularly the case for the last scenario where
less than 20% are infected during the first outbreak.

Needless to say, there are several uncertainties in the presented predictions. One uncer-
tainty is the time calibration which is affected by the choice sD = 21 (typical time between
infection and death) and the infection fatality risk f = 0.3%. However, changing sD say
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Figure 2: Plot of the cumulative number infected over time. Note that the two preventive
measures with largest magnitude do not reach herd immunity.

4 days up or down only shifts the time calibration by the same number of days, and
changing f to 0.1% or 1% only moves the time calibration by less than a week forward or
backward.

The initial doubling time d = 3.5, and even more so the new doubling time after preven-
tion, play a more significant role, more so than changing R0 = 2.5 by 10% up or down.
If the initial doubling time instead was set to d = 4 this would have slowed down the
entire epidemic by about a week. The big effect of having different doubling times after
preventive measures are put in place, corresponding to different magnitude of preventive
measures, is illustrated by the alternative predictive curves.

Finally, our model allows only for heterogeneity in terms of infectiousness. If heterogeneity
in susceptibility as well as mixing patterns was included (thus making the model more
realistic and complex) the result will typically be that the outbreak is slightly slower and
less peaked. To investigate the exact effect, simulations from a realistic models are needed
(and recommended!), but a rough estimate of the effect of heterogeneity is that the peak
height is reduced by 25% and the left side of the peak is shifted about 1 week forward in
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time and the right side of the peak is shifted 2 weeks forward in time. This is of course
a very crude correction. However, several assumptions in this, as well as other more
complicated models, are very crude so there is a lot of uncertainty anyway. The purpose
of the current method was more on comparing effects of various preventive measures on
the predictions.

Specific predictions for the Stockholm region have not been published elsewhere as far
as we know. Predictions for Sweden have however been performed in [6] and [10]. In [6]
predictions are only for a short period and not to the end of the outbreak. The main
comparison to be made is their statement that by March 28 they estimate the fraction
infected to 3.1% of the Swedish population (with credibility bound 0.85%-8.4%). Our best
prediction (as described above) would be to look one week earlier, so March 21, and the
blue curve of Figure 2, which then has 13.3% infected. We note that our prediction is for
Stockholm which had the vast majority of all infections in the beginning of the outbreak,
and since the Stockholm region makes up 20% of the country population, 13.3% infected
in Stockholm could very well agree with 3.1% (or slightly more) in all of Sweden.

Comparing our predictions with those of [10] is hard because their focus is on hospi-
talization and case fatalities for the whole country of Sweden rather than Stockholm.
Hospitalization and case fatalities shift the curves forward in time by about 2 and 3
weeks respectively. The fact that they consider Sweden and we consider Stockholm will
make their curve more spread out in time, and with a peak shiftet forward in time (since
covid-19 hit Stockholm first). Given these qualitative differences our result agrees quite
well with [10]: their peak for intensive care being around June 1 with most hospital burden
being between mid-April and mid-July.

Conclusions and Discussion

We have demonstrated a simple method to estimate and predict an on-going epidemic
outbreak both with and without preventive measures put in place. As input data we
use the basic reproduction number R0 and the doubling time during the early stage of
the epidemic, and its new doubling time after preventive measures are put in place. The
method also uses the reported cumulative number of deaths at a given time Λ(t1), the
typical time between infection and death sD, and the infection fatality risk f , in order to
time-calibrate the model to calendar time. The method is most sensitive to the doubling
times, to some extent also to R0, but fortunately less sensitive to the latter quantities
which are often equipped with high uncertainty.

The model used was the simple SIR General epidemic model. This model only allows
for heterogeneity in terms of infectiousness (when and how many to infect), but not in
terms of susceptibility or mixing-patterns. To include such heterogeneities is of course
important and often done (e.g. [5],[3]). The purpose of the present paper is however to
keep things simple enough in order to make procedures more transparent. Another feature
in the model that would make it more realistic is to include a latent state before becoming
infectious by instead using SEIR models [4].

When analysing effects of prevention it was observed that the total number getting infected
was reduced as expected. An even bigger difference was however the reduction in the size
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of the peak, and infections being more spread out in time. Since healthcare systems are
directly affected by incidence, and peak incidence (with some delay for severe symptoms
to develop) being the most problematic time for hospitals, this effect is very important.
Quantifying the positive effect of prevention is hence not straightforward: should it be
in terms of how many fewer that ultimately get infected, how much the peak is reduced,
or something else? We have no clear answer to the question but one comparison that
can be misleading is to compare the number of infections for two different scenarios at
a given time point [6]. As an illustration, out main predictive curve (the blue curve) is
clearly favourable compared to no preventive measures (the black curve). The peak size
is reduced by 65%, and the final number infected is reduced from 1.80 million to 1.32
million. However, if we compare the cumulative number of infections on e.g. April 10,
there are 1.59 million infected with no preventive measures and 0.79 million according to
our main prediction. However, to say that these preventive measures have reduced the
number of infections by 0.8 million is misleading. The curve for the preventive scenario
is shifted to the right, and at the end of the outbreak the number of saved infections is
0.48 million rather than 0.80 million (of course still a substantial reduction!). The same
reasoning applies when comparing the number of infected having required intensive care
or case fatalities: to compare on a specific date during an outbreak can be misleading [6].

In the current paper the focus has been on predicting the number of infected over time.
Clearly, the burden on the health care system measured by hospitalized patients or case fa-
talities, are more relevant quantities. When predicting these quantities, an age-structured
model is advantageous since the risk for severe symptoms and death increases with age.
However, there is also high uncertainty in what fraction of all infected that will require
health care at different levels, as well as the infection fatality risk f . For example, current
estimates of f (not to be mixed up with case fatality risk, cfr) vary between 0.2% up to
1% (e.g. [13], [12]). Clearly, any prediction of the number of fatalities will be equipped
with very large uncertainty due to uncertainty in f let alone all other uncertainties, and
this big uncertainty is most often not acknowledged by instead picking just one published
estimate of f .

There are several papers doing more advanced and realistic modelling/prediction (e.g. [3],
[6], [10]). However, our estimation-prediction methodology is much simpler and straight-
forward to implement, and we feel it is a useful complement to the more advanced methods
referred to. As a consequence, it is much more transparent to see how the few model as-
sumptions affect the results, and it is easy to vary the few parameters to see their effect
on predictions. We hope the method will increase understanding about which parameter-
uncertainties that have biggest impact on predictions, and which parameter-uncertainties
that are less influential. Finally, we expect this simple method to give predictions being
quite similar to the more complicated models (and even more similar if reducing peak size
and shifting epidemic curve forward in time as described in the Stockholm prediction),
and if they don’t there is strong reasons to investigate why this is not the case.

There are of course also obvious advantages with more realistic models containing e.g. age-
structure, households, work places, symptom response and different preventive measures.
Spatial aspects are less important since we consider one city-urban area. More advanced
models will give better fit if correct parameter estimates are used, and also more questions
can be addressed, such as infection risk in different age-groups, which means of spread
is most common, and the effectiveness of different preventive measures as well as when
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making statements about case fatalities and hospitalization. The general effect of making
a more realistic model with more heterogeneities is that slightly fewer will get infected
and that the peak height is slightly lowered and shifted a week or two later.
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