
High-throughput multivariable Mendelian randomization
analysis prioritizes apolipoprotein B as key lipid risk

factor for coronary artery disease

Verena Zuber
1,2

, Dipender Gill
1
, Mika Ala-Korpela

3,4
, Claudia Langenberg

5
,

Adam Butterworth
6,7,8,9,10,11

, Leonardo Bottolo
12,13,2

, and Stephen Burgess
2,6

1
Department of Epidemiology and Biostatistics, School of Public Health,

Imperial College London, London, UK
2
MRC Biostatistics Unit, School of Clinical Medicine, University of

Cambridge, Cambridge, UK
3
Computational Medicine, Faculty of Medicine, University of Oulu &

Biocenter Oulu, Oulu, Finland
4
NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern

Finland, Kuopio, Finland
5
MRC Epidemiology Unit, School of Clinical Medicine, University of

Cambridge, Cambridge, UK
6
British Heart Foundation Cardiovascular Epidemiology Unit, Department of
Public Health and Primary Care, University of Cambridge, Cambridge, UK

7
British Heart Foundation Centre of Research Excellence, University of

Cambridge, Cambridge, UK
8
National Institute for Health Research Blood and Transplant Research Unit
in Donor Health and Genomics, University of Cambridge, Cambridge, UK
9
National Institute for Health Research Cambridge Biomedical Research
Centre, University of Cambridge and Cambridge University Hospitals,

Cambridge, UK
10

Health Data Research UK Cambridge, Wellcome Genome Campus and
University of Cambridge, Cambridge, UK

11
Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK

12
Department of Medical Genetics, School of Clinical Medicine, University of

Cambridge, Cambridge, UK
13

The Alan Turing Institute, London, UK

February 10, 2020

1

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2020. .https://doi.org/10.1101/2020.02.10.20021691doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.10.20021691
http://creativecommons.org/licenses/by/4.0/


Background: Genetic variants can be used to prioritize risk factors as potential therapeutic

targets via Mendelian randomization (MR). An agnostic statistical framework using Bayesian

model averaging (MR-BMA) can disentangle the causal role of correlated risk factors with

shared genetic predictors. Here, our objective is to identify lipoprotein measures as mediators

between lipid-associated genetic variants and coronary artery disease (CAD) for the purpose

of detecting therapeutic targets for CAD.

Methods: As risk factors we consider 30 lipoprotein measures and metabolites derived from

a high-throughput metabolomics study including 24,925 participants. We fit multivariable

MR models of genetic associations with CAD estimated in 453,595 participants (including

113,937 cases) regressed on genetic associations with the risk factors. MR-BMA assigns to

each combination of risk factors a model score quantifying how well the genetic associations

with CAD are explained. Risk factors are ranked by their marginal score and selected using

false discovery rate (FDR) criteria. We perform sensitivity and replication analyses varying

the dataset for genetic associations with CAD.

Results: In the main analysis, the top combination of risk factors ranked by the model score

contains apolipoprotein B (ApoB) only. ApoB is also the highest ranked risk factor with

respect to the marginal score (FDR< 0.005). Additionally, ApoB is selected in all replication

analyses. No other measure of cholesterol or triglyceride is consistently selected otherwise.

Conclusions: Our agnostic genetic investigation prioritizes ApoB across all datasets con-

sidered, suggesting that ApoB, representing the total number of hepatic-derived lipoprotein

particles, is the primary lipid determinant of CAD.

Wordcount: 249/250

Key messages

• It is a common consensus that lipoproteins increase cardiovascular disease risk, yet little

is known about the exact mechanisms.

• We use genetic associations with high-throughput metabolomics features to draw a de-

tailed picture of lipid traits and characteristics allowing for an unprecedented resolution

when considering lipids as risk factors for cardiovascular disease.

• This study integrates genetic data from a large scale metabolomics study including

25,000 samples and the largest study on cardiovascular disease risk including 113,937

cases and 339,658 controls.

• MR-BMA, a novel algorithm for multivariable MR (Zuber and Burgess, Nature Com-

munications 2020; 11(1):29) is used to identify the most likely causal lipid determinants
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of cardiovascular disease from a large set of candidate risk factors with shared genetic

predictors.

• Our agnostic genetic investigation prioritizes apolipoprotein B across all datasets consid-

ered, suggesting that apolipoprotein B, representing the total number of hepatic-derived

lipoprotein particles, is the primary lipid determinant of cardiovascular disease risk.

Introduction

Genetic variants have the potential to contribute greatly to our understanding of mechanisms

underlying disease processes, and to guide target validation for pharmacological and clinical

interventions that reduce disease risk [1]. Coronary artery disease (CAD) is the most common

cause of death globally. While it has been shown that genetic variants predisposing individu-

als to higher levels of low-density lipoproteins (LDL)-cholesterol also associate with increased

CAD risk [2], genetic variants predisposing individuals to higher levels of high-density lipopro-

teins (HDL)-cholesterol are not associated with CAD risk [3] after accounting for other lipid

traits. These genetic analyses may suggest that LDL-cholesterol is a causal risk factor for

CAD risk, but HDL-cholesterol is not − as has generally been observed in clinical trials of

lipid-altering therapies [4, 5, 6]. Genetic studies have also suggested that triglyceride levels are

an independent risk factor for CAD risk [7]. Triglycerides are another component of body fat

which are transported by lipoprotein particles, and in particular by very low density lipopro-

teins (VLDL). However, two recent studies showed that genetic associations with CAD risk

are proportional to the change in apolipoprotein B (ApoB), the primary protein component of

VLDL, LDL, and intermediate-density lipoprotein (IDL) particles, and that LDL-cholesterol

and triglycerides do not appear to be independent risk factors for CAD after accounting for

ApoB [8, 9].

Genome-wide association studies (GWAS) are increasingly used to combine genomic pro-

filing with high-throughput molecular measures on a large scale, including tens of thousands

of samples, to explore the genetic regulation of molecular processes. For example, Kettunen et

al. have combined high-throughput metabolomics with genomic profiling on nearly 25 000 in-

dividuals [10]. Given the large sample size, these studies are well powered to explore the causal

role of molecular mechanisms. The metabolomics study by Kettunen et al. was conducted

using nuclear magnetic resonance (NMR) spectroscopy to provide a detailed characterization

of lipid-related traits, including 14 size categories of lipoprotein particles ranging from small

HDL to extra-extra-large VLDL. For each lipoprotein category, measurements are available of

cholesterol, triglycerides, cholesterol ester, and phospholipid content. Additional mean diame-

ter of the lipoprotein particles is measured for some lipoprotein size categories. Measurements

also include apolipoprotein A1 and ApoB, sphingomyelins, fatty acids, and phosphoglycerides

(Supplementary Table A1).

Previous MR studies on lipid determinants for CAD risk have included only a few curated

lipid traits at a time [8, 9]. In this study, we build on a high-throughput metabolomics data

resource [10] to investigate a much wider set of lipoprotein measurements as candidate risk

factors for CAD. We use a recently published algorithm called Mendelian randomization with
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Bayesian model averaging (MR-BMA) [6] that applies principles from high-dimensional data

analysis and machine learning to detect causal risk factors from a large set of candidate risk

factors. Our goal is to select the lipoprotein measures that are the most likely causal risk

factors for CAD.

Methods

Variable selection method for finding likely causal risk factors

We provide a brief outline of the MR-BMA method here. More details are given in the

Supplementary Material, and a diagram illustrating the method is shown in Figure 1.

We consider each set of risk factors in turn: all single risk factors, all pairs of risk factors,

all triples, and so on. For each set of risk factors, we undertake a multivariable MR analysis

using weighted regression based on summarized genetic data. We assess goodness-of-fit in

the regression model, and assign a score to the risk factor set that is the model posterior

probability of that set being the true causal risk factors. We repeat this to get a posterior

probability for all models (i.e. all sets of risk factors). Then, for each of the candidate risk

factors, we sum up the posterior probability over models including that risk factor to compute

the marginal inclusion probability for the risk factor, representing the probability of that risk

factor being a causal determinant of disease risk. We also calculate the model-averaged causal

effect, representing the average causal effect across models including that risk factor. P-values

are calculated for each risk factor using a permutation method, with adjustment for multiple

testing via the Benjamini and Hochberg false discovery rate (FDR) procedure [10].

Study design

A summary of our study design is given in Figure 2. The three key steps in designing a

two-sample multivariable MR study are instrument selection, risk factor selection, and the

choice of outcome data, including main and replication analysis.

Selecting lipid-associated variants as instrumental variables

We took an initial list of 185 variants associated with blood lipids (LDL-cholesterol, HDL-

cholesterol or triglycerides) in the Global Lipid Genetics Consortium at a genome-wide level

of significance (p < 5 × 10
−8

) [7] which was pruned at a linkage disequilibrium threshold of

r
2
< 0.05, and further refined by genomic distance, excluding variants that are less than 1

megabase pair apart, to provide a list of n = 150 genetic variants. We selected these lipid-

associated genetic variants as instrumental variables because we wanted to investigate lipid

determinants of CAD risk. This is important to keep in mind when interpreting the results as

the prioritization of risk factors by MR-BMA is conditional on the genetic variants selected as

instrumental variables. There are two direct consequences of this choice. Firstly, this choice

of instrumental variables will downweight non-lipid risk factors, and so results should not be

interpreted as evidence that those risk factors are not on the causal path to CAD. Secondly,
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basing the selection of instrumental variables on an external dataset (e.g. the Global Lipid

Genetics Consortium) reduces the risk of winner’s course [13].

Lipoprotein measures as risk factors

Genetic associations with lipoprotein measures and metabolites are taken from Kettunen et al.

[10] who measured 118 variables on 24,925 European individuals using the high-throughput

Nightingale NMR platform. Estimates were obtained by linear regression of each NMR mea-

surement on each of the genetic variants in turn, with adjustment for age, sex, time from

last meal (if available), and ten genomic principal components. NMR measurements were in-

verse rank-based normal transformed, so that association estimates are presented in standard

deviation units for the relevant risk factor throughout.

Several measurements from the Nightingale platform were highly correlated, judged by the

correlation between the genetic associations for the 150 genetic variants. While MR-BMA

was able to identify the causal risk factors reliably in a simulation study when risk factors

were highly correlated (up to ∣r∣ = 0.99) [6], several risk factors were more highly correlated

than this. We therefore pruned the set of risk factors to avoid inaccurate results due to

collinearity. For each lipoprotein diameter category representing the size of lipoproteins, we

retained only the measurement of cholesterol and/or triglyceride content, and mean particle

diameter where available. We also included only total fatty acid content and not other fatty

acid measurements, as genetic predictors that were able to distinguish reliably between these

risk factors were not included as instruments. Other non-lipoprotein metabolite measurements

were retained in the analysis as they had substantially weaker correlations with lipoprotein

measurements, and so would only be selected by MR-BMA if they mediated CAD risk from the

genetic predictors included in the model. No pair of risk factors included in the final analysis

were more highly correlated than ∣r∣ = 0.99 (see correlation heatmap in Supplementary Figure

A1). Finally, we only included risk factors into the MR analysis that had at least one genetic

variant that was a strong predictor (genome-wide significant). The final list of 30 lipoprotein

measures and metabolites included in the analysis is provided in Supplementary Table A1.

Coronary artery disease as outcome

Our primary analysis was based on genetic associations with CAD risk taken from the 2017

CARDIoGRAMplusC4D data release meta-analysed together with UK Biobank [14] includ-

ing 453,595 individuals mostly of European descent, of whom 113,937 had a CAD event.

Genetic association estimates with CAD risk were obtained in each study of the CARDIo-

GRAMplusC4D consortium by logistic regression with adjustment for at least five genomic

principal components, and then meta-analysed across studies. There was one rare genetic

variant (rs1998013, effect allele frequency 0.8%, in the PCSK9 gene region) and one common

intergenic genetic variant (rs894210, effect allele frequency 43.5%) for which there was no

association estimate with CAD available. After excluding the missing genetic variants, we

performed MR-BMA with 148 variants and 30 risk factors.

As sensitivity analyses, we repeated the same analysis steps on the 2017 CARDIoGRAM-

plusC4D data release except: 1) we omitted the variant in the APOB gene region from the
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analysis, to assess whether this variant was overly influential in determining the top ranked

models and 2) we omitted the ApoB measurement from the list of risk factors to see if any

other risk factor reached a similar level of evidential support. If it is the case that ApoB was

selected as representative for a group of highly correlated traits, then upon removal of ApoB

another risk factor of this group should be selected as representative instead.

As replication, we considered 1) an earlier release of CARDIoGRAMplusC4D consortium

[15] including 60,801 CAD cases and 123,504 controls of European descent, but not including

UK Biobank participants and 2) a UK Biobank GWAS on CAD outcomes which includes

29,278 cases and 338,425 controls of European descent (defined by self-report and genomic

principal components). Quality control procedures were performed and related individuals

were excluded from the analysis as described previously [16]. For the main and the two

replication analyses we report the results including all variants and after excluding genetic

variants that are influential points and outliers.

Results

Main analysis using outcome data from CARDIoGRAMplusC4D

and UK Biobank

Results are provided in Table 1. We show the top 10 models (i.e. sets of risk factors) ranked

according to their model posterior probability, and the top 10 risk factors according to their

marginal inclusion probability. We also present the model-averaged causal effect estimate for

each risk factor. The top-ranked model contains ApoB and no additional risk factors (model

posterior probability 0.464). ApoB is also the risk factor with the strongest overall evidence

(marginal inclusion probability 0.868, FDR< 0.005). A diagnostic scatterplot of the genetic

associations with the outcome against the genetic associations with ApoB is given in Figure 3.

Our primary analysis was performed after model diagnostics, which removed influential and

outlying genetic variants from the analysis. Similar results were obtained including all variants

in the analysis (Supplementary Table A2).

Sensitivity analysis

As sensitivity analyses, we first repeated the primary analysis excluding the genetic variant

in the APOB gene region, to ensure that this variant was not driving the selection of ApoB

as a risk factor. This exclusion did not impact the results (Supplementary Table A3) –

ApoB remained the highest ranking individual model (model posterior probability 0.455) and

the risk factor with the strongest marginal evidence (marginal inclusion probability 0.862).

Secondly, we repeated the primary analysis excluding ApoB from the list of risk factors.

No alternative risk factor had similar strength of evidence, suggesting that ApoB is indeed

the most important risk factor and not just a representative of a group of highly correlated

lipoprotein measures with similar evidence. On exclusion of ApoB, the top risk factors were

triglycerides content in small HDL particles (marginal inclusion probability 0.461, FDR< 0.05)

and LDL cholesterol (marginal inclusion probability 0.417, FDR< 0.05). Yet, the evidence
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for these two lipoprotein measures is much weaker compared to the evidence for ApoB in the

main analysis.

Replication analysis

As replication, we used genetic associations with CAD risk from two alternative datasets.

Results are shown in Table A5. For the earlier release of CARDIoGRAMplusC4D [15], the

top ranked model includes ApoB alone (model posterior probability 0.455), and ApoB is the

top ranked risk factor overall (marginal inclusion probability 0.673, FDR< 0.005). For UK

Biobank, ApoB (marginal inclusion probability 0.325, FDR< 0.05) was ranked second after

triglycerides in very small VLDL-cholesterol (marginal inclusion probability 0.456, FDR<

0.01). When looking at the individual models, triglycerides content in very small VLDL-

cholesterol particles is ranked first followed by models including both ApoB and a measure of

triglycerides content, suggesting an additional causal pathway via triglycerides when deriving

genetic associations from UK Biobank analysis.

Discussion

Our results add to the growing evidence that ApoB is the primary causal determinant for

CAD risk amongst lipoprotein measurements [17, 18, 19]. These results do not invalidate

LDL-cholesterol as a causal risk factor for CAD risk. Indeed, LDL particles contain an

apolipoprotein B molecule, as do IDL and VLDL particles. ApoB (in particular ApoB-100)

represents the total number of hepatic-derived lipoprotein particles [20]. However, this in-

vestigation suggests clinical benefit of lowering triglyceride and LDL-C levels is proportional

to the absolute change in ApoB. ApoB measurements are independent of particle density,

and are not affected by heterogeneity of particle cholesterol content [21]. This is particularly

important for accurately capturing the number of small dense LDL particles, which are be-

lieved to be associated with atherosclerosis. ApoB has been shown to be a superior measure

to LDL-cholesterol in the prediction of CAD risk [22], and in prediction of coronary artery

calcification [23]. From a clinical perspective, statins target LDL-cholesterol levels rather

than ApoB, suggesting that greater benefit might be obtained from lipid-lowering drugs that

target lipoprotein particle number [24]. When analysing data from UK Biobank only, there

was also some evidence for triglyceride content measures as an additional risk factor. This

was not evident in the main analysis or the replication analysis including data from the ear-

lier CARDIoGRAMplusC4D release. This finding should therefore be interpreted with some

caution.

There are some caveats to the interpretation of the results of this study. Although we

were able to distinguish between measures of cholesterol content and triglyceride content

for some categories of lipoprotein particles, we were not able to distinguish between other

lipoprotein measures, such as cholesterol ester and phospholipid content, which correlated

almost perfectly with cholesterol content.

In conclusion, our agnostic investigation to identify risk factors for CAD strongly prior-

itized ApoB, suggesting that ApoB, representing the number of hepatic-derived lipoprotein
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particles, is the key determinant of CAD risk amongst lipid-related measurements. This

analysis demonstrates the potential of publicly-available genetic association data from high-

throughput experiments combined with modern data-adaptive statistical learning techniques

for obtaining biological insights into disease aetiology.
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[2] P. Linsel-Nitschke, A. Götz, J. Erdmann, I. Braenne, P. Braund, C. Hengstenberg,

K. Stark, M. Fischer, S. Schreiber, N.E. El Mokhtari, et al. Lifelong reduction of LDL-

cholesterol related to a common variant in the LDL-receptor gene decreases the risk of

8

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2020. .https://doi.org/10.1101/2020.02.10.20021691doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.10.20021691
http://creativecommons.org/licenses/by/4.0/


coronary artery disease — a Mendelian randomisation study. PLoS One, 3(8):e2986,

2008. doi: 10.1371/journal.pone.0002986.

[3] B.F. Voight, G.M. Peloso, M. Orho-Melander, R. Frikke-Schmidt, M. Barbalic, M.K.
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Rajesh Rawal, Anika Vaarhorst, Antti J Kangas, Leo-Pekka Lyytikäinen, Matti Pirinen,

et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel

systemic effects of LPA. Nature Communications, 7:11122, 2016.

9

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2020. .https://doi.org/10.1101/2020.02.10.20021691doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.10.20021691
http://creativecommons.org/licenses/by/4.0/


[6] Verena Zuber, Johanna Maria Colijn, Caroline Klaver, and Stephen Burgess. Select-

ing likely causal risk factors from high-throughput experiments using multivariable

Mendelian randomization. Nature Communications, 11(1):29, 2020. doi: 10.1038/

s41467-019-13870-3.

[10] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical

and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series

B (Methodological), 57(1):289–300, 1995.

[13] Philip C Haycock, Stephen Burgess, Kaitlin H Wade, Jack Bowden, Caroline Relton,

and George Davey Smith. Best (but oft-forgotten) practices: the design, analysis, and

interpretation of Mendelian randomization studies. The American Journal of Clinical

Nutrition, 103(4):965–978, 2016. doi: 10.3945/?ajcn.115.118216.

[14] Christopher P Nelson, Anuj Goel, Adam S Butterworth, Stavroula Kanoni, Tom R Webb,

Eirini Marouli, Lingyao Zeng, Ioanna Ntalla, Florence Y Lai, Jemma C Hopewell, et al.

Association analyses based on false discovery rate implicate new loci for coronary artery

disease. Nature Genetics, 49(9):1385–1391, 2017. doi: 10.1038/ng.3913.

[15] CARDIoGRAMplusC4D Consortium. A comprehensive 1000 Genomes-based genome-

wide association meta-analysis of coronary artery disease. Nature Genetics, 47:1121–

1130, 2015. doi: 10.1038/ng.3396.

[16] Elias Allara, Gabriele Morani, Paul Carter, Apostolos Gkatzionis, Verena Zuber, Christo-

pher N Foley, Jessica M B Rees, Amy M Mason, Steven Bell, Dipender Gill, Sara Lind-

ström, Adam S Butterworth, Emanuele Di Angelantonio, James Peters, Stephen Burgess,

and INVENT consortium. Genetic determinants of lipids and cardiovascular disease out-

comes: A wide-angled mendelian randomization investigation. Circulation. Genomic

and precision medicine, 12(12):e002711–e002711, 12 2019. doi: 10.1161/CIRCGEN.119.

002711. URL https://www.ncbi.nlm.nih.gov/pubmed/31756303.

[17] PJ Barter, CM Ballantyne, R Carmena, M Castro Cabezas, M John Chapman, P Cou-

ture, J De Graaf, PN Durrington, O Faergeman, J Frohlich, et al. Apo B versus choles-

terol in estimating cardiovascular risk and in guiding therapy: report of the thirty-

person/ten-country panel. Journal of Internal Medicine, 259(3):247–258, 2006.

[18] Mika Ala-Korpela. The culprit is the carrier, not the loads: cholesterol, triglycerides and

apolipoprotein b in atherosclerosis and coronary heart disease. International Journal of

Epidemiology, 48(5):1389–1392, 1/22/2020 2019. doi: 10.1093/ije/dyz068. URL https:

//doi.org/10.1093/ije/dyz068.

[19] Allan D. Sniderman, George Thanassoulis, Tamara Glavinovic, Ann Marie Navar,

Michael Pencina, Alberico Catapano, and Brian A. Ference. Apolipoprotein b parti-

cles and cardiovascular disease: A narrative review. JAMA Cardiology, 4(12):1287–1295,

1/22/2020 2019. doi: 10.1001/jamacardio.2019.3780. URL https://doi.org/10.1001/

jamacardio.2019.3780.

10

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2020. .https://doi.org/10.1101/2020.02.10.20021691doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.10.20021691
http://creativecommons.org/licenses/by/4.0/


[20] T Ji Knott, RJ Pease, LM Powell, SC Wallis, SC Rall Jr, TL Innerarity, B Blackhart,

WH Taylor, Y Marcel, R Milne, et al. Complete protein sequence and identification of

structural domains of human apolipoprotein B. Nature, 323(6090):734, 1986.

[21] John H Contois, G Russell Warnick, and Allan D Sniderman. Reliability of low-density

lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B

measurement. Journal of clinical lipidology, 5(4):264–272, 2011.

[22] Carl E Orringer. Non-HDL cholesterol, ApoB and LDL particle concentration in coronary

heart disease risk prediction and treatment. Clinical Lipidology, 8(1):69–79, 2013.

[23] John T Wilkins, Ron C Li, Allan Sniderman, Cheeling Chan, and Donald M Lloyd-Jones.

Discordance between apolipoprotein B and LDL-cholesterol in young adults predicts

coronary artery calcification: the CARDIA study. Journal of the American College of

Cardiology, 67(2):193–201, 2016.

[24] Terry A Jacobson. Opening a new lipid “apo-thecary”: incorporating apolipoproteins as

potential risk factors and treatment targets to reduce cardiovascular risk. Mayo Clinic

Proceedings, 86(8):762–780, 2011.

11

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2020. .https://doi.org/10.1101/2020.02.10.20021691doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.10.20021691
http://creativecommons.org/licenses/by/4.0/


Tables and Figures

Figure 1: Diagram illustrating multivariable Mendelian randomization for selecting causal
risk factors from a large number of candidate risk factors. Legend: G = genetic variants,
X1, ..., Xd = risk factors, Y = outcome, U = confounders, θj = causal effect of risk factor j
on the outcome.
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Risk	factors
30	metabolite	measurements	
(mostly	lipids	and	lipoproteins)

Genetic	variants
Genetic	variants	associated	with	

major	lipid	fractions

Main	analysis:	CARDIoGRAMplusC4D	 and	UK	Biobank
(113,937	cases and	339,658	controls)

• Selected	risk	factor:	ApoB (inclusion	probability	0.868,	FDR	p	<	0.005)

Replication	analyses:

1. CARDIoGRAMplusC4D
(60,801 cases and	123,504	controls)
Selected	risk	factor:
• ApoB (inclusion	probability	

0.673,	FDR	p	<	0.005)

2. UK	Biobank
(29,278 cases and	338,425 controls)
Selected	risk	factors:
• XS.VLDL.TG (inclusion	

probability	0.456,	FDR	<	0.01)
• ApoB (inclusion	probability	

0.325,	FDR	<	0.05)

Sensitivity	analyses:

1. Remove	genetic	variant	in	
APOB gene	region

Selected	risk	factor:
• ApoB (inclusion	probability	

0.862,	FDR	p	<	0.005)

2. Remove	ApoB metabolite	from	
candidate	risk	factors

Selected	risk	factors:
• S.HDL.TG (inclusion	probability	

0.461,	FDR	<	0.05)
• LDL.C (inclusion	probability	

0.417,	FDR	<	0.05)	

Figure 2: Schematic diagram of the study design and results for the main, sensitivity, and
replication analyses. Selected risk factors are those which had a empirical p-value of less than
0.05 after correction for multiple testing.
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Figure 3: Estimates of genetic associations with coronary artery disease (CAD) risk (y-axis)
against genetic associations with apolipoprotein B (x-axis) for each genetic variant from the
primary analysis using CARDIoGRAMplusC4D and UK Biobank. Outliers removed from the
analysis are highlighted as diamonds (◆) and their annotated gene-region is displayed.
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CARDIoGRAMplusC4D and UK Biobank
Posterior Causal Marginal inclusion Model-averaged Empirical

Model probability effect Risk factor probability causal effect p−value FDR
1 ApoB 0.480 0.464 ApoB 0.868 0.392 0.0001 0.003
2 ApoB,S.HDL.TG 0.043 0.349,0.175 S.HDL.TG 0.136 0.033 0.0165 0.247
3 LDL.C,S.HDL.TG 0.021 0.276,0.301 LDL.C 0.075 0.015 0.0882 0.882
4 ApoB,M.HDL.C 0.020 0.437,-0.111 XXL.VLDL.TG 0.047 0.010 0.4823 0.995
5 ApoB,S.LDL.C 0.014 0.570,-0.121 Serum.C 0.045 0.011 0.2295 0.995
6 ApoB,XXL.VLDL.TG 0.014 0.419,0.112 IDL.C 0.042 0.008 0.2401 0.995
7 ApoB,XS.VLDL.TG 0.011 0.375,0.099 S.LDL.C 0.040 0.001 0.3745 0.995
8 ApoB,S.VLDL.C 0.011 0.480,-0.017 M.HDL.C 0.038 -0.005 0.2885 0.995
9 ApoB,LDL.C 0.011 0.522,-0.062 HDL.C 0.036 -0.006 0.2266 0.995
10 ApoB,HDL.C 0.011 0.453,-0.073 Serum.TG 0.035 0.006 0.7583 0.995

Table 1: Main analysis: Top 10 models (combination of risk factors) ranked by the model posterior probability and top 10 risk factors
ranked by the marginal inclusion probability in the primary analysis based on n = 138 genetic variants after model diagnostics. Causal
effects are log odds ratios for coronary artery disease per 1 standard deviation increase in the risk factor. Empirical p-values are computed
using 1, 000 permutations and adjusted for multiple testing using False Discovery Rate (FDR) procedure.
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Supplementary Material

Abbreviation Lipoprotein and metabolite measurements included

XXL.VLDL.TG Triglyceride content in chylomicrons and extra-extra large VLDL
XL.VLDL.TG Triglyceride content in extra-large VLDL
L.VLDL.TG Triglyceride content in large VLDL
M.VLDL.TG Triglyceride content in medium VLDL
S.VLDL.TG Triglyceride content in small VLDL
XS.VLDL.TG Triglyceride content in extra-small VLDL
IDL.TG Triglyceride content in IDL
XL.HDL.TG Triglyceride content in extra-large HDL
S.HDL.TG Triglyceride content in small HDL
Serum.TG Serum total triglycerides

L.VLDL.C Cholesterol content in large VLDL
M.VLDL.C Cholesterol content in medium VLDL
S.VLDL.C Cholesterol content in small VLDL
LDL.C Cholesterol content in LDL
S.LDL.C Cholesterol content in small LDL
IDL.C Cholesterol content in IDL
XL.HDL.C Cholesterol content in extra-large HDL
L.HDL.C Cholesterol content in large HDL
M.HDL.C Cholesterol content in medium HDL
HDL.C Cholesterol content in HDL
Est.C Esterified cholesterol
Serum.C Serum total cholesterol

VLDL.D VLDL diameter
LDL.D LDL diameter
HDL.D HDL diameter

ApoA1 Apolipoprotein A1
ApoB Apolipoprotein B

SM Sphingomyelins
Tot.FA Total fatty acids
Tot.PG Total phosphoglycerides

Supplementary Table A1: List of lipoprotein and metabolite measurements included in the
analyses.
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CARDIoGRAMplusC4D and UK Biobank
Posterior Causal Marginal inclusion Model-averaged

Model probability effect Risk factor probability causal effect
1 ApoB 0.347 0.432 ApoB 0.706 0.298
2 ApoB,M.HDL.C 0.048 0.392,-0.17 M.HDL.C 0.124 -0.024
3 XS.VLDL.TG 0.039 0.411 XS.VLDL.TG 0.103 0.032
4 ApoB,S.LDL.C 0.015 0.613,-0.208 IDL.TG 0.079 0.021
5 ApoB,SM 0.014 0.501,-0.139 XXL.VLDL.TG 0.076 0.02
6 IDL.TG 0.014 0.38 IDL.C 0.074 0.018
7 ApoB,S.HDL.TG 0.014 0.334,0.151 LDL.C 0.052 0.005
8 ApoB,XS.VLDL.TG 0.014 0.287,0.163 Serum.TG 0.049 0.014
9 ApoB,XXL.VLDL.TG 0.013 0.37,0.156 Serum.C 0.048 0.009

CARDIoGRAMplusC4D only
Posterior Causal Marginal inclusion Model-averaged

Model probability effect Risk factor probability causal effect
1 ApoB 0.24 0.438 ApoB 0.488 0.197
2 XS.VLDL.TG 0.058 0.42 IDL.TG 0.159 0.048
3 IDL.TG 0.033 0.395 XS.VLDL.TG 0.153 0.05
4 S.VLDL.C 0.015 0.447 Serum.TG 0.095 0.036
5 ApoB,XS.VLDL.TG 0.014 0.272,0.186 Tot.FA 0.088 0.026
6 ApoB,S.HDL.TG 0.012 0.331,0.163 IDL.C 0.076 0.016
7 ApoB,IDL.TG 0.012 0.283,0.167 S.HDL.TG 0.07 0.016
8 IDL.TG,XXL.VLDL. 0.012 0.319,0.256 XXL.VLDL.TG 0.067 0.016
9 ApoB,M.HDL.C 0.01 0.407,-0.127 Serum.C 0.065 0.016
10 ApoB,Serum.TG 0.01 0.318,0.16 S.LDL.C 0.064 0.011

UK Biobank only
Posterior Causal Marginal inclusion Model-averaged

Model probability effect Risk factor probability causal effect
1 XS.VLDL.TG 0.205 0.459 XS.VLDL.TG 0.388 0.161
2 S.VLDL.C 0.032 0.488 Tot.FA 0.321 0.139
3 HDL.C,Tot.FA 0.03 -0.255,0.475 ApoB 0.147 0.047
4 ApoB 0.023 0.452 IDL.TG 0.145 0.045
5 IDL.TG 0.019 0.425 HDL.C 0.103 -0.023
6 ApoB,XS.VLDL.TG 0.014 0.191,0.294 S.VLDL.C 0.099 0.033
7 L.HDL.C,Tot.FA 0.013 -0.221,0.448 S.HDL.TG 0.097 0.026
8 S.HDL.TG,Tot.FA 0.011 0.329,0.259 TotPG 0.089 -0.032
9 Tot.FA,TotPG 0.01 0.883,-0.504 IDL.C 0.073 0.015
10 LDL.C,XS.VLDL.TG 0.009 0.129,0.369 Serum.TG 0.072 0.026

Supplementary Table A2: Analysis including all genetic variants: Top 10 models ranked by
the model posterior probability and top 10 risk factors ranked by the marginal inclusion
probability including all genetic variants before removing influential genetic variants and
outliers. Causal effects are log odds ratios for coronary artery disease per 1 standard deviation
increase in the risk factor.
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CARDIoGRAMplusC4D and UK Biobank
Posterior Causal Marginal inclusion Model-averaged

Model probability effect Risk factor probability causal effect
1 ApoB 0.472 0.46 ApoB 0.862 0.385
2 ApoB,S.HDL.TG 0.043 0.343,0.177 S.HDL.TG 0.136 0.033
3 LDL.C,S.HDL.TG 0.02 0.272,0.301 LDL.C 0.076 0.015
4 ApoB,M.HDL.C 0.019 0.435,-0.11 XXL.VLDL.TG 0.05 0.011
5 ApoB,XXL.VLDL.TG 0.015 0.408,0.123 Serum.C 0.045 0.01
6 ApoB,S.LDL.C 0.015 0.571,-0.127 IDL.C 0.043 0.008
7 ApoB,XS.VLDL.TG 0.012 0.367,0.102 S.LDL.C 0.041 0.001
8 ApoB,Serum.TG 0.011 0.385,0.098 Serum.TG 0.038 0.007
9 ApoB,LDL.C 0.011 0.525,-0.071 M.HDL.C 0.037 -0.004
10 ApoB,S.VLDL.C 0.011 0.474,-0.015 HDL.C 0.035 -0.005

Supplementary Table A3: Sensitivity analysis 1: After excluding the genetic variant in the
APOB gene region, these are the top 10 models judged by posterior probability and top 10
risk factors judged by marginal inclusion probability in the primary analysis based on n = 137
genetic variants. Causal effects are log odds ratios for coronary artery disease per 1 standard
deviation increase in the risk factor.

A3

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2020. .https://doi.org/10.1101/2020.02.10.20021691doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.10.20021691
http://creativecommons.org/licenses/by/4.0/


CARDIoGRAMplusC4D and UK Biobank including all genetic variants (n = 148)
Posterior Causal Marginal inclusion Model-averaged

Model probability effect Risk factor probability causal effect
1 XS.VLDL.TG 0.127 0.411 XS.VLDL.TG 0.263 0.094
2 IDL.TG 0.046 0.38 IDL.C 0.213 0.059
3 S.VLDL.C 0.041 0.44 IDL.TG 0.204 0.063
4 IDL.C,XXL.VLDL.TG 0.03 0.299,0.347 XXL.VLDL.TG 0.168 0.05
5 IDL.TG,XXL.VLDL.TG 0.022 0.304,0.267 M.HDL.C 0.162 -0.037
6 M.HDL.C,Serum.C 0.015 -0.317,0.367 Serum.C 0.116 0.034
7 LDL.C,XS.VLDL.TG 0.015 0.178,0.286 LDL.C 0.114 0.026
8 IDL.C,S.HDL.TG 0.012 0.241,0.282 Serum.TG 0.107 0.038
9 IDL.C,Serum.TG 0.011 0.219,0.287 S.VLDL.C 0.096 0.031
10 S.LDL.C,XS.VLDL.TG 0.011 0.175,0.294 S.HDL.TG 0.079 0.019

CARDIoGRAMplusC4D and UK Biobank after model diagnostics (n = 138)
Posterior Causal Marginal inclusion Model-averaged Empirical

Model probability effect Risk factor probability causal effect p−value FDR
1 LDL.C,S.HDL.TG 0.156 0.261,0.3 S.HDL.TG 0.461 0.144 0.0021 0.025
2 IDL.TG 0.063 0.436 LDL.C 0.417 0.119 0.0013 0.025
3 S.HDL.TG,S.LDL.C 0.049 0.294,0.266 Serum.C 0.17 0.056 0.0143 0.087
4 IDL.C,S.HDL.TG 0.048 0.237,0.325 IDL.TG 0.159 0.055 0.0151 0.087
5 L.HDL.C,Serum.C 0.032 -0.272,0.381 S.LDL.C 0.156 0.038 0.0274 0.101
6 HDL.C,Serum.C 0.027 -0.277,0.441 IDL.C 0.128 0.029 0.0296 0.101
7 S.HDL.TG,Serum.C 0.021 0.354,0.23 L.HDL.C 0.118 -0.026 0.0181 0.087
8 LDL.C,XS.VLDL.TG 0.016 0.233,0.249 HDL.C 0.095 -0.019 0.0384 0.115
9 Est.C,S.HDL.TG 0.014 0.197,0.393 XS.VLDL.TG 0.076 0.017 0.0682 0.182
10 LDL.C,XXL.VLDL.TG 0.012 0.337,0.273 XXL.VLDL.TG 0.073 0.016 0.2636 0.575

Supplementary Table A4: Sensitivity analysis 2: After excluding the ApoB measurement as risk factor from the set of candidate risk
factors these are the top 10 models ranked by the posterior probability and top 10 risk factors ranked by the marginal inclusion probability
in the primary analysis based on all available genetic variants (n = 148) and after model diagnostics (n = 138). Causal effects are log
odds ratios for coronary artery disease per 1 standard deviation increase in the risk factor.
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CARDIoGRAMplusC4D only
Posterior Causal Marginal inclusion Model-averaged Empirical

Model probability effect Risk factor probability causal effect p−value FDR
1 ApoB 0.394 0.455 ApoB 0.673 0.293 0.0001 0.003
2 ApoB,M.HDL.C 0.018 0.425,-0.121 LDL.C 0.107 0.027 0.0544 0.461
3 S.VLDL.C 0.018 0.464 S.LDL.C 0.097 0.027 0.0709 0.461
4 IDL.TG 0.014 0.444 Serum.TG 0.084 0.028 0.0599 0.461
5 HDL.C,Serum.C 0.014 -0.263,0.464 Serum.C 0.072 0.021 0.1176 0.510
6 LDL.C,Serum.TG 0.012 0.276,0.263 HDL.C 0.062 -0.012 0.0974 0.506
7 ApoB,Serum.TG 0.011 0.369,0.115 S.VLDL.C 0.059 0.015 0.1667 0.542
8 ApoB,IDL.TG 0.011 0.358,0.109 IDL.TG 0.056 0.015 0.1539 0.542
9 S.LDL.C 0.010 0.461 M.HDL.C 0.055 -0.008 0.1889 0.546
10 ApoB,S.VLDL.C 0.010 0.402,0.06 IDL.C 0.052 0.010 0.2423 0.630

UK Biobank only
Posterior Causal Marginal inclusion Model-averaged Empirical

Model probability effect Risk factor probability causal effect p−value FDR
1 XS.VLDL.TG 0.195 0.435 XS.VLDL.TG 0.456 0.169 0.0002 0.006
2 ApoB,S.HDL.TG 0.056 0.281,0.233 ApoB 0.325 0.102 0.0010 0.015
3 ApoB,XS.VLDL.TG 0.043 0.207,0.258 S.HDL.TG 0.222 0.060 0.0061 0.061
4 ApoB 0.039 0.437 IDL.TG 0.109 0.027 0.0157 0.103
5 LDL.C,XS.VLDL.TG 0.024 0.14,0.338 LDL.C 0.108 0.018 0.0446 0.191
6 S.VLDL.C 0.024 0.467 Serum.TG 0.104 0.032 0.0171 0.103
7 LDL.C,S.HDL.TG 0.015 0.216,0.334 S.VLDL.C 0.086 0.024 0.0444 0.191
8 S.LDL.C,XS.VLDL.TG 0.015 0.133,0.346 Tot.FA 0.079 0.018 0.0677 0.254
9 IDL.C,S.HDL.TG 0.012 0.201,0.345 IDL.C 0.063 0.009 0.0994 0.331
10 ApoB,Serum.TG 0.012 0.273,0.218 S.LDL.C 0.059 0.003 0.1739 0.522

Supplementary Table A5: Replication analysis: Top 10 models ranked by the posterior probability and top 10 risk factors ranked by the
marginal inclusion probability after model diagnostics (including n = 144 genetic variants for CARDIoGRAMplusC4D and n = 141 for
UK Biobank). Causal effects are log odds ratios for coronary artery disease per 1 standard deviation increase in the risk factor.
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CARDIoGRAMplusC4D and UK Biobank
rs gene region Cd1 Cd2 Cd3 max Cd

1 rs10903129 TMEM57 0.108 0.054 0.018 0.108
2 rs2923084 AMPD3 0.049 0.069 0.068 0.069
3 rs6489818 MAPKAPK5 0.051 0.029 0.004 0.051
4 rs1515110 NR 0.013 0.042 0.027 0.042
5 rs515135 APOB 0.013 0.003 0.041 0.041
6 rs6859 APOE 0.035 0.018 0.039 0.039
7 rs2326077 intergenic 0.039 0.027 0.015 0.039
8 rs5880 CETP 0.001 0.038 0.023 0.038
9 rs799160 intergenic 0.004 0.002 0.037 0.037

10 rs4465830 ZNF335 0.005 0.037 0.037 0.037
threshold 0.457 0.696 0.457

CARDIoGRAMplusC4D only
rs region Cd1 Cd2 Cd3 max Cd

1 rs261342 LIPC 0.008 0.024 0.911 0.911
2 rs5880 CETP 0.006 0.164 0.057 0.164
3 rs515135 APOB 0.116 0.129 0.125 0.129
4 rs2923084 AMPD3 0.081 0.109 0.096 0.109
5 rs10903129 TMEM57 0.078 0.012 0.025 0.078
6 rs4530754 CSNK1G3 0.076 0.001 0.001 0.076
7 rs6489818 MAPKAPK5 0.062 0.005 0.009 0.062
8 rs2326077 intergenic 0.039 0.016 0.015 0.039
9 rs12133576 DR1 0.036 0.006 0.004 0.036

10 rs4465830 ZNF335 0.005 0.036 0.000 0.036
threshold 0.457 0.457 0.457

UK Biobank only
rs region Cd1 Cd2 Cd3 Cd4 max Cd

1 rs10401969 SUGP1 0.302 0.224 0.248 0.096 0.302
2 rs2923084 AMPD3 0.124 0.064 0.026 0.079 0.124
3 rs5880 CETP 0.107 0.033 0.025 0 0.107
4 rs2297374 SLC22A1 0.024 0.054 0.091 0.057 0.091
5 rs10903129 TMEM57 0.012 0.051 0.005 0.071 0.071
6 rs7703051 HMGCR 0.006 0.053 0.009 0.065 0.065
7 rs6489818 MAPKAPK5 0.005 0.032 0.001 0.055 0.055
8 rs894210 intergenic 0.05 0.051 0.019 0.039 0.051
9 rs687339 intergenic 0.038 0.044 0.039 0.045 0.045

10 rs998584 VEGFA 0.041 0.039 0.037 0.036 0.041
threshold 0.457 0.457 0.696 0.457

Supplementary Table A6: Influential genetic variants: This table displays for each study the
10 variants with the largest Cook’s distance (Cd) and the annotated genomic region based
on the best individual models (model posterior probability > 0.02). The maximum Cd of
each variant in all models is used for diagnostics. The final row gives the suggested cut-off
for Cook’s distance and genetic variants with Cd above the threshold are marked in bold.
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CARDIoGRAMplusC4D and UK Biobank
rs gene region q1 q2 q3 max q

1 rs1250229 FN1 55.077 54.867 57.211 57.211
2 rs6489818 MAPKAPK5 19.308 20.150 12.288 20.150
3 rs12801636 PCNX3 15.124 14.625 15.845 15.845
4 rs1515110 NR 14.697 10.106 11.196 14.697
5 rs2290547 SETD2 13.361 14.316 8.53 14.316
6 rs2297374 SLC22A1 11.075 11.676 14.204 14.204
7 rs10903129 TMEM57 13.910 12.503 7.369 13.910
8 rs2925979 CMIP 13.787 11.646 10.338 13.787
9 rs2240327 RBM6 13.213 11.505 11.223 13.213

10 rs4465830 ZNF335 8.194 2.964 12.962 12.962
11 rs6450176 ARL15 8.271 6.936 12.705 12.705
12 rs731839 PEPD 12.596 10.504 10.14 12.596
13 rs4148218 ABCG8 11.789 12.03 12.032 12.032
14 rs2247056 HLA 8.710 9.897 11.563 11.563
15 rs9930333 FTO 7.213 6.599 11.191 11.191

threshold 12.84801

CARDIoGRAMplusC4D only
rs gene region q1 q2 q3 max q

1 rs4530754 CSNK1G3 24.505 15.468 15.292 24.505
2 rs6489818 MAPKAPK5 19.513 14.598 13.255 19.513
3 rs12801636 PCNX3 16.290 16.800 16.810 16.810
4 rs4148218 ABCG8 14.936 14.107 15.098 15.098
5 rs1250229 FN1 9.932 12.776 10.769 12.776
6 rs952044 AC090771.2 10.333 12.468 11.714 12.468
7 rs2297374 SLC22A1 9.125 9.187 11.492 11.492
8 rs4465830 ZNF335 7.196 5.401 11.390 11.390
9 rs998584 VEGFA 8.781 11.195 7.745 11.195

10 rs2923084 AMPD3 8.404 10.802 9.845 10.802
threshold 12.84801

UK Biobank only
rs gene region q1 q2 q3 q4 max q

1 rs2297374 SLC22A1 38.863 34.587 27.820 34.345 38.863
2 rs1250229 FN1 25.528 22.807 31.310 24.057 31.310
3 rs6489818 MAPKAPK5 14.222 18.563 12.616 20.625 20.625
4 rs2240327 RBM6 15.063 16.844 16.278 17.034 17.034
5 rs687339 intergenic 16.284 15.452 7.003 15.328 16.284
6 rs2925979 CMIP 10.424 15.160 9.803 13.903 15.160
7 rs4148218 ABCG8 14.250 14.512 11.681 14.137 14.512
8 rs4921914 NAT2 13.259 10.640 10.262 11.642 13.259
9 rs1186380 HNF1A-AS1 9.758 12.067 11.982 13.168 13.168

10 rs2241210 UBE3B 12.630 11.045 10.759 9.015 12.630
threshold 12.87313

Supplementary Table A7: Outlying genetic variants: This table displays for each study the
10 variants with the largest maximum q and the annotated genomic region based on the best
individual models (model posterior probability > 0.02). The maximum q of each variant in all
models is used for diagnostics. The final row gives the suggested threshold for the q−statistic
and variants with q above this threshold are given in bold.
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Supplementary Figure A1: Genetic correlation between lipoprotein measures and metabolites
based on the n = 148 lipid-associated genetic variants as used in the main analysis. Color-
code indicates correlation strength (darkblue=strong positive correlation to darkred=strong
negative correlation). The size of the square is proportional to the absolute correlation.
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Supplementary Figure A2: Diagnostic plots with Cooks distance: Estimates of genetic asso-
ciations with the outcome against predicted genetic associations with the outcome from the
primary analysis based on n = 138 genetic variants after exclusion of outliers. Here we show
the diagnostics for all four top models with posterior probability > 0.02 as given in Main Table
1. Colour code of points indicates influence, as measured by the variant’s Cook’s distance.
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Supplementary Figure A3: Diagnostic plots with Cooks distance: Estimates of genetic asso-
ciations with the outcome against predicted genetic associations with the outcome from the
primary analysis based on n = 138 genetic variants after exclusion of outliers. Here we show
the diagnostics for all four top models with posterior probability > 0.02 as given in Main Table
1. Colour code of points indicates heterogeneity, as measured by the variant’s q-statistic.
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Supplementary Methods

Mendelian randomization using summarized data

A genetic variant can be used to make causal inferences about the effect of a risk factor on
an outcome if it satisfies the three instrumental variable assumptions:

IV1 The variant is associated with the risk factor;

IV2 The variant is not confounded in its associations with the outcome;

IV3 The variant does not influence the outcome directly, only potentially indirectly via its
association with the risk factor.

These assumptions imply that a genetic variant behaves analogously to random assignment
to a treatment group in a randomized controlled trial, in that it divides the population into
subgroups that differ only with respect to their average level of the risk factor [1]. Any
difference in the outcome between these groups implies a causal effect of the risk factor on
the outcome, analogous to an intention-to-treat effect in a randomized trial [2].

We consider an extension of the Mendelian randomization paradigm known as multivari-
able Mendelian randomization, in which genetic variants are allowed to influence multiple risk
factors, provided that any causal pathway from the genetic variants to the outcome passes
via one or more of the measured risk factors [3]. The assumptions for genetic variants to be
valid instruments in multivariable Mendelian randomization are:

MV-IV1 Each variant is associated with at least one of the risk factors;

MV-IV2 Variants are not confounded in their associations with the outcome;

MV-IV3 Variants are not associated with the outcome conditional on the risk factors and con-
founders.

In turn, the assumptions for a risk factor to be included in a multivariable Mendelian ran-
domization model are:

RF1 No risk factor can be linearly explained by any other included risk factor or a combina-
tion of multiple risk factors.

RF2 Each risk factor is associated with at least one of the genetic variants.

Assumption RF1 is needed to distinguish between correlated risk factors [4]. RF2 ensures
that each risk factor is adequately predicted by the genetic variants selected as instrumental
variables in the analysis.

For a particular set of risk factors, causal effects are estimated by weighted linear regression
of the genetic associations with the outcome on the genetic associations with the risk factors

βY = θ1βX1 + θ2βX2 + . . . + θdβXd + ε, ε ∼ N(0, diag(se(βY )2)),

where βY is the vector of genetic associations with the outcome of length n, with n the
number of genetic variants used as instrumental variables, se(βY ) is the vector of standard
errors of these associations of length n and diag the diagonal operator. βX1, βX2, . . . , βXd are
the genetic associations with the d risk factors, and θ1, θ2, . . . , θd are the causal effects of the
d risk factors on the outcome. If there are causal relationships between the risk factors, then
these parameters represent the direct effects of the risk factors, i.e. the effect of changing the
target risk factor keeping all other risk factors constant [4, 5].
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Variable selection and Bayesian model averaging

The model averaging approach is implemented by considering different sets of risk factors
in turn [6]. For each risk factor set, MR-BMA fits the relevant multivariable Mendelian
randomization model and assigns a score to the set of risk factors considered that captures
the posterior probability that this particular model represents the true causal risk factors for
the outcome given the observed genetic association data [6].

When considering many candidate risk factors, the model space (including all possible
combinations of risk factors) may be prohibitively large to consider all possible combinations
of risk factors. To alleviate this we have implemented a stochastic search algorithm [7] to
explore the relevant model space (all models with a non-negligible posterior probability) in
an efficient way.

When the number of risk factors considered is large, the evidence for each particular
model may be small. Hence, we average over the models visited and for each risk factor
compute its marginal inclusion probability, which is the sum of the posterior probabilities
for all models visited that include this particular risk factor. Further, we provide the model-
averaged causal effect estimate, representing the average causal effect estimate for the given
risk factor across models in which it is included. As is common for variable-selection methods,
this is a conservative estimates of the true causal effect and underestimates its magnitude,
but may be used for the interpretation of effect direction and for comparison among the risk
factors.

Resampling to compute empirical p−values

Empirical p-values for the marginal inclusion probability of each risk factor are obtained using
a permutation procedure, where the risk factor association data are held constant and the
outcome associations of the genetic variants are randomly perturbed [8]. The empirical p-value
for risk factor j quantifies how extreme the actual observed marginal inclusion probability is
with respect to all permuted marginal inclusion probabilities for that particular risk factor.
Formally, the empirical p-value is computed by the rank (rj) of the actual observed marginal
inclusion probability for risk factor j among all permuted marginal inclusion probabilities for
risk factor j over the total number of permutations (nperm = 1,000). Following [9] we add
one to the computation to obtain the probability that under the null hypothesis the observed
marginal inclusion probability has the observed or a higher rank

pj = (rj + 1)/(nperm + 1).

Multiple testing adjustment is done using the Benjamini and Hochberg false discovery rate
(FDR) procedure [10].

Model diagnostics

Two approaches are considered for model diagnostics. Firstly, to identify influential variants
for each visited model with a model posterior probability larger than 0.02, we calculated
Cook’s distance for each genetic variant [11] and excluded all variants that have in any selected
model a Cook’s distance which exceeds the median of a central F -distribution with d and n−d
degrees of freedom, where d is the number of risk factors and n the number of genetic variants
used as instrumental variables.
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Secondly, to identify outlying variants, we consider for each visited model with a model
posterior probability larger than 0.02 a version of Cochran’s Q statistic used to detect het-
erogeneity in meta-analysis [12]

Q =

n

∑
i=1

qi =
n

∑
i=1

se(βYi
)−2(βYi

− β̂Yi
)2,

where i indexes the genetic variants and β̂Yi
is the predicted value of the genetic association

with the outcome βYi
based on the relevant multivariable Mendelian randomization model. A

genetic variant with a high value of qi (compared to the 0.05/nth upper tail of a χ
2

distribution
with one degree of freedom representing Bonferroni multiple testing adjustment by the number
of variants included) in any of the models visited (with a model posterior probability larger
than 0.02) was considered to be an outlying variant.

We then repeated the analyses excluding such variants. The reason for excluding outliers
and influential variants is that a single genetic variant can have a strong impact on the
models visited and subsequently on variable selection. However, in this case for both main
and replication analyses, excluding these variants did not change the headline results.
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