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Abstract 

I employ a simple mathematical model of an epidemic process to evaluate how three basic quantities: 

the reproduction number (R), the number of infectious individuals (I), and total community size (N) 

affect strategies to control COVID-19. Numerical simulations show that strict suppression measures 

at the beginning of an epidemic can create low infectious numbers, which thereafter can be managed 

by mitigation measures over longer periods to flatten the epidemic curve. The stronger the 

suppression measure, the faster it achieves the low levels of exposed and infectious numbers that are 

conducive to subsequent management. Our results point to a two-step control strategy that begins 

with some level of confinement to reduce R below 1, followed by sufficient mitigation measures that 

manage the epidemic by maintaining R at approximately 1. 

 

Introduction 

The COVID-19 pandemic is a major global threat. Spread of the SARS-CoV-2 virus began in China 

in late 2019, with 41 cases recorded according to the WHO as of January 11/12, 2020, attaining almost 

800,000 cases worldwide as of March 31st (1). By its highly transmissible and virulent nature, 

COVID-19 is putting considerable strain on health services, meaning that increasing numbers of 

patients in the most afflicted countries cannot be adequately cared for, which will likely further 

exacerbate disease morbidity and mortality. 

Research groups have mobilized to collect and analyze molecular (2) and epidemiological (3-5) data, 

and employ statistical and mathematical models to simulate regional and national outbreaks and the 

global pandemic, and evaluate possible control measures (e.g., 6-10). 

Particularly important in this effort is the projection of how different control measures will affect 

epidemics at different spatial scales and for the whole pandemic itself. Conducting such studies 

without delay is crucial, both because most countries are in early outbreak stages and thus open to 
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management options, and since some nations are days or even weeks behind in their epidemics 

compared to others. The latter property is important, because the lockstep nature of COVID-19 

epidemic trends mean that nations can ‘peer into the future’ to predict how their own outbreaks will 

unfold. This information and the efficacy of control strategies already adopted by other ‘future’ 

countries can be instrumental in giving the time to plan and logistically organize effective measures. 

Here, we employ a simple epidemiological model to elucidate some of the basic parameters and 

processes that arbitrate control measure outcomes. The model’s intuitive results emphasize the 

necessity to adopt one or both of two strategies: ‘suppression measures’ that are engaged early and 

decisively to lower the reproduction number, R0, as close as possible to 0. When successful, this 

results in low, manageable numbers of infections, and can then be followed by ‘mitigation measures’ 

that flatten the epidemic curve by maintaining the reproduction number to approximately 1. The 

Imperial College COVID-19 Response Team (11-13) recently analyzed realistic scenarios of each 

approach to show how they could influence morbidity and mortality trends and the impact on health 

services. The objective of the present study is to emphasize how strategic lowering of the reproduction 

number is central to a rational management plan to minimize the impacts of COVID-19. 

 

Model 

We employ a simple SEIR model of Susceptible → Exposed → Infectious → Removed states (14). 

The ordinary differential equations take the form: 
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Where Rt is the reproduction number at time t, Tinf is the infectious period, Tinc is the incubation 

period, and N is a constant equal to S+E+I+R. 𝑅'/𝑇)*+ is equivalent to the transmission parameter b 

employed in random-mixing infectious disease models. In the numerical studies below, Rt will either 

be noted at the beginning of an epidemic (at time t=0, yielding ‘the basic reproduction number’, R0) 

or will be the level of Rt as affected by control measures (denoted RS for suppression and RM for 

mitigation).  

 

Numerical methods 

We employ this general model for COVID-19 to explore how some of its central properties could 

affect outbreak control efforts. The over-simplicity of the model means that it should not be used to 
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make precise predictions for actual epidemic management situations, but rather serve as a conceptual 

tool that can serve as a first step towards more realistic analyses for specific scenarios or situaitons.  

Epidemic management strategies were investigated using the Epidemic Calculator package (15) 

(Supplementary Material). This platform is rich in possibilities for varying key parameters such as 

the reproduction number (Rt) and temporal scales of infection (Tinf and Tinc), as well as initial sub-

population of infections individuals (I0) and the total population size (N0=S0+I0). The platform also 

permits the user to experiment with different “clinical” parameters, including hospitalization rate, 

case fatality rate, and recovery time for mild cases.  

The results presented below are based on the parameter values provided on the website simulator 

page (Table 1). Given the recent emergence of COVID-19, these parameter values should be viewed 

as preliminary and possibly inaccurate, since for example, they may be based on limited data or be 

time- or location-specific. This reinforces the above call for caution in interpreting the findings 

presented here, and in using the precise model output for any specific management actions. 

Parameter Value 

Length of incubation period (Tinc) 5.2 days 

Duration patient is infectious (Tinf) 2.9 days 

Case fatality rate 2% 

Time from end of incubation to death 32 days 

Length of hospital stay 28.6 days 

Recovery time for mild cases 11.1 days 

Hospitalization rate 20% 

Time to hospitalization 5 days 

Table 1. Parameters and their baseline values employed in this study. See (15) for details. 

The Epidemic Calculator package, although very flexible, has some limitations in its use for scientific 

study. First, the accuracy of the simulator output is untested with respect to analytical results, 

independent computational studies, and other SEIR platforms. The only test conducted here did 

verifiy that the simulated equilibrium fraction of susceptible individuals (S¥) followed the predicted 

relation: -ln(S¥/S0)=R(1-S¥/S0) (14). The results presented below – even if consistent with intuition 

– nevertheless need to be viewed as preliminary and contingent on future testing. Second, precision 

in the intervals for input parameters and platform output were not always to the last decimal places, 
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and for large numbers, such as the total community size N, a limited number of choices were 

available. Therefore, for example, there was no choice for exactly N=70 million, and as such the next 

highest option (70,420,854) was employed. The same was true for simulations with the lower 

population size of N=70K (70,263 was used). Moreover, the data presented below (i.e., y-axis data 

point readings) were in some cases closest interpolations of closely neighboring values that resulted 

in the simulation target. Varying the input and reading rules to neighboring values was found to have 

negligible effects on the trends reported, and did not change the main conclusions of this study. 

 

Results 

We first explored how the trigger number of infectious cases (I) for suppression measures to be 

engaged, affected the critical level of RS necessary to keep infectious cases at or below 100 after 60 

days. We chose 60 days because it is the approximate period that areas of China (as the first affected 

country), decided to enter lockdown.  

 

Figure 1. Suppression levels required to meet objectives, given different starting conditions. Simulations begin with 
R0=2.5 and 1 infectious individual in a population of c. 70 million unexposed individuals. The suppression strategy starts 
when the number of infectious individuals attain a given number (x – axis), which correlates with the time elapsed in the 
outbreak. Rs is the observed maximum level of R needed to result in 100 or fewer infectious individuals after 60 days of 
confinement (y – axis). See text for further details. 

 

Figure 1 shows that larger numbers of infectious individuals require stricter measures to attain the 

(arbitrary) objective of 100 or fewer numbers after two months of measures. According to our 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 2, 2020. .https://doi.org/10.1101/2020.03.31.20048835doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.31.20048835
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

simulations, a population the approximate size of Western European nations such as France, Spain, 

the UK and Germany would need to reduce transmission probabilities to near zero to attain the 

objective, should infectious numbers be on the order of 100,000. Early interventions in populations 

with 1 to 100 infectious individuals would still require considerable measures, with reductions in 

baseline R0=2.5 of 25% to 60%, respectively. Given cumulative case number doubling times observed 

in some countries of about 3 to 5 days (16) (and therefore c. 2 weeks between each log integer on the 

x-axis of Figure 1), the choice of measures without knowing their true impacts on the reproductive 

number could have resulted in insufficient flattening of the epidemic curve and valuable time lost. 

The data in Table 2 support the above basic insights, whereby suppression measures need to be 

increasingly strict in order to reduce the time necessary to obtain low target case numbers. 

Duration (days) 
  

RS=0.1 
E,I  

RS=0.5 
E,I  

RS=0.9 
E,I  

0 11643,4645 11643,4645 11643,4645 

10 2392,2261 5240,3643 9480,5475 

20 492,500 2563,1801 8339,4829 

30 102,105 1257,884 7340,4251 

40 21,22 617,434 6460,3741 

50 4,5 303,213 5684,3292 

60 1,1 148,104 5000,2896 

Table 2. Effect of suppression measure intensity and duration on the number of cases in incubation (E) and infectious (I) 
stages. N=70,420,854. R0=2.5. Start day of intervention=64. E64=11,643, I64=4,565. 

We then asked how population size and the effectiveness of suppression measures would condition 

how subsequent mitigation measures could attain objectives after 200 days. We conducted a 2 x 2 

numerical experiment. The first variable was community size, taken either to be a small city of about 

70,000 inhabitants or a medium-sized nation of about 70 million. (Additional numerical experiments 

not presented here indicate that the observed trends apply at least in the total population range of 104 

to 108). The second variable explored was the effectiveness of previous suppression measures; we 

evaluated high effectiveness (a reset to a single infectious case) and a less, but still acceptable reset 

to 100 infectious cases. Clearly, any subsequent mitigation measures yielding RM<1 would result in 

infectious cases decreasing over time (and therefore be a successful outcome), but given the impacts 

of such measures on society, below we consider strategies that seek to contain a second epidemic by 

tuning RM to between 1 and R0. 
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Figure 2. Effect of mitigation measures on 
(A) The fraction of initially unexposed 
people who are eventually exposed (E+I+R) 
at 200 days after the measure starts; (B) The 
maximum daily fraction of the population 
needing hospitalization for any single day, 
up to 200 days after the measure starts; (C) 
The fraction of initially unexposed people 
who eventually die at 200 days after the 
measure starts. Lines linking points are 
intended to aid visualization. Although not 
explored here, numerical simulations for 
parameter values associated with points 
above the dashed line in (A) were influenced 
by ‘herd immunity’ (21), i.e., when the 
proportion of the population in the 
susceptible class, S<(1-1/R). Herd immunity 
reduces the per capita force of infection on 
the susceptible class. Moreover, note that the 
result in (A) appears to contrast with the 
results in Steir et al. (5), who showed higher 
case growth rates with city size. The 
discrepancy can be explained by the 
different units employed in each study (case 
growth rate in (5) vs. fraction of total 
population infected at some point during a 
fixed time interval (this study)) and how R 
was estimated in (5) (found to be city-size 
dependent) vs. assumed invariant in the 
present study. Case growth rate (number of 
new cases on day t – number of new cases on 
day t-1 / number of new cases on day t-1) 
was found to increase with community size 
in the present study (not shown). Numbers 
above points in (B) refer to the day that 
maximum hospitalization occurs, and are 
only shown for the Black line conditions 
(note that when RM=1, maximum levels 
begin on day 90 and are constant thereafter; 
for RM=1.1, maximum levels occur after 200 
days). Yellow line: mitigation starts when 1st 
infection is observed; c.70 million 
inhabitants; Gray line: starts at 100th 
infection; c.70 million; Red line: starts at 1st 
infection; c.70K inhabitants; Black line: 
starts at 100th infection; c.70K inhabitants. 
See main text for additional details. 
 

 

Figure 2 shows how the effectiveness of suppression strategies and community size influence how 

strict subsequent mitigation measures must be to result in a given level of epidemiological and clinical 

parameters. For example, regulating the infectious population to less than 10% of the total population 

requires RM less than c.1.5, which is about a 40% reduction in the R0 assumed here (Fig. 2A). Peak 
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levels of hospitalization can reach c.7%-10% should mitigation measures be 20% or less effective at 

reducing R0 (Fig. 2B). Such levels would exceed hospital bed capacity in most countries by at least 

an order of magnitude (17). Reducing peak hospitalization levels well below 1% (which is still too 

high for many health services) would require RM close to 1. Finally, similar to the trends in Figs. 2A 

and B, fatalities are sensitive to the effectiveness of prior suppression measures and community size, 

indicating that RM needs to be reduced towards unity for smaller communities and those unable to 

reduce infectious cases sufficiently during suppression measures (Fig. 2C). These results emphasize 

that epidemics could be contained by tuning RM close to 1, which would be acceptable to many cities 

and nations, should levels below 1 not be logistically or socially attainable. 

 

Conclusions and future directions 

The lockstep nature of COVID-19 outbreaks in different regions, countries and cities means that 

management practices in places further along the epidemic curve can inform those in earlier stages. 

Control strategies in one country, however, are not always applicable in others, due for example to 

cultural and logistical differences (18). Mathematical models based on empirical data have a role to 

play in adapting capacities to address epidemics, both as conceptual aids and management tools. The 

present study explored two types of intervention that can contribute to reducing the impact of COVID-

19 epidemics. The first would be adopted by communities that either initially decided not (or did, but 

were unable) to sufficiently control the exponential increase of new cases. These ‘suppression 

measures’ reduce the reproduction number sufficiently below 1 and in so doing lower the number of 

infectious cases to a manageable level. The second tactic – ‘mitigation measures’ – may either be 

gradually introduced towards the end of suppression, or as a preventive approach, whereby 

communities begin to manage very early in the outbreak. Actual application of these measures is 

likely to be complex (11,12), and in particular, mitigation measures could go through multiple 

successive adjustments so as to approach desired levels of RM.  

We found that the level of stringency in suppression measures (i.e., Rsà0) results in shorter periods 

necessary to attain a given case growth rate objective, as expressed by the number of currently 

exposed and infectious individuals in the community. Greater suppression stringency also means that 

with slightly longer confinement periods, ever-lower numbers of infectious individuals can be 

obtained, permitting reduced mitigation stringency (Rm>1, but not too high). The latter may be 

important given both logistical constraints and the desire to reduce the many negative impacts that 

control measures have, for example, on mental health and the economy.  

Analysis using the Epidemic Calculator platform yielded three main results. First, increasingly 

stringent tactics are needed to obtain a given level of reset, as the number of infectious cases at the 
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start of suppression measures increase. Communities with more than 100,000 infectious cases 

essentially have to reduce transmission to zero in order to have about 100 cases after 60 days. Second, 

the duration of suppression measures to attain an objective, decreases to some extent with the severity 

of measures. Lowering RS to or below 0.1 (i.e., a 96+% drop from R0=2.5) from just over 10,000 

infectious cases, would meet the objective of 100 after 30 days, and this indeed what was the Chinese 

data would suggest (1), indicating that they succeeded in lowering their RS to less than 0.1. According 

to these simulations, an RS>0.5 would require more than 60 days to meet this same objective. Third, 

epidemic management is most effective if engaged when infectious cases are low enough to preserve 

the capacities of health services, which, as above, is best done either near the start of an epidemic or 

once a suppression reset has succeeded. Although in this scenario, RM<1 is a sufficient condition for 

successful management, tactics that give weight to individual freedoms, yet keep RM above, but 

sufficiently close to 1 can successfully contain epidemic consequences, such as morbidities and 

mortalities and the saturation of health service capacities. Recent data analysis of 11 European 

countries (13) supports the basic quantitative predictions set out in the present study, and similar 

analyses of richer, near-future data sets will be needed to refine target parameter values so as to yield 

regional epidemic and global pandemic management objectives.   

Of the many limitations in the analysis presented here, two in particular merit further study. First, the 

model assumes random mixing of individuals. Real infection networks are far more complex, and 

may involve (i) significant spatial structuring, (ii) different numbers of contacts per individual and 

through time and travel, (iii) epidemiological class effects (such as age, quarantined, hospitalized), 

and (iv) persistence of the SARS-CoV-2 virus in the external environment. Mathematical models 

incorporating heterogeneous contact structures (e.g., 5, 7, 19) will have a role to play in indicating 

the effectiveness of different control measures. Analyses similar to (13) should explore both realistic 

contact structures and community-specific values of epidemic and health service parameters.  

Second, future analyses will need to translate actual tactics into their effects on different 

epidemiological parameters, and principally RS and RM. A number of tactics have been proposed and 

some variously adopted by different communities, including: spatial distancing, quarantining, hand 

washing, wearing masks, gloves; diagnostics such as contact tracing, and virus and antibody testing; 

and interventions such as employing repurposed drugs and developing vaccines. Such approaches 

will need to be employed in a complementary way, since no single one on its own is likely to attain 

reset or management objectives. Moreover, calibration of RM in particular will require accurate 

assessments of the contribution of asymptomatic transmission to the propagation of the virus, the 

latter having been recently demonstrated in mathematical models to potentially influence COVID-19 

dynamics (20). 
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In conclusion, the simple model analyzed here is not an instrument to develop precise, actionable 

strategies. Rather, it is a conceptual tool that identifies some of the important parameters, and 

generates testable hypotheses of how these could affect outbreak management outcomes. 
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