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ABSTRACT 
  
The ongoing novel coronavirus disease (COVID-19) pandemic has rapidly spread in early 2020, 
causing tens of thousands of deaths, over a million cases and widespread socioeconomic 
disruption. With no vaccine available and numerous national healthcare systems reaching or 
exceeding capacity, interventions to limit transmission are urgently needed. While there is broad 
agreement that travel restrictions and closure of non-essential businesses and schools are 
beneficial in limiting local and regional spread, recommendations around the use of face masks 
for the general population are less consistent internationally. In this study, we examined the role 
of face masks in mitigating the spread of COVID-19 in the general population, using epidemic 
models to estimate the total reduction of infections and deaths under various scenarios. In 
particular, we examined the optimal deployment of face masks when resources are limited, and 
explored a range of supply and demand dynamics. We found that face masks, even with a 
limited protective effect, can reduce infections and deaths, and can delay the peak time of the 
epidemic. We consistently found that a random distribution of masks in the population was a 
suboptimal strategy when resources were limited. Prioritizing coverage among the elderly was 
more beneficial, while allocating a proportion of available resources for diagnosed infected 
cases provided further mitigation under a range of scenarios. In summary, face mask use, 
particularly for a pathogen with relatively common asymptomatic carriage, can effectively 
provide some mitigation of transmission, while balancing provision between vulnerable healthy 
persons and symptomatic persons can optimize mitigation efforts when resources are limited. 
  
BACKGROUND 
  
The rapid global spread of SARS-CoV-2 and the resulting coronavirus disease (COVID-19) 
pandemic has led to urgent efforts to contain and mitigate transmission, leading to significant 
and widespread socioeconomic disruption. As of April 3rd 2020, over one million cases have 
been reported worldwide, as well as over 60,000 deaths, with ongoing spread in most parts of 
the world [1]. While infection is frequently asymptomatic, or associated with only mild symptoms 
in many people [2,3], it can cause severe and life-threatening illness in the 
immunocompromised and the elderly, with a case fatality ratio of over 10% in the latter group 
[3–5]. The rapid spread of the virus has raised concerns that healthcare systems lack sufficient 
resources and will be unable to bear the burden of accommodating patients suffering from 
COVID-19, resulting in significantly increased morbidity and mortality. There is an urgent need 
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to better understand the effectiveness of potential interventions to limit the spread of the 
disease, especially in the context of resource limitations. 
  
In order to avoid overwhelming national healthcare resources and mitigate the burden of 
infection, many countries have imposed both international and domestic travel restrictions, 
closed schools and non-essential businesses, and strictly limited public gatherings [6]. Such 
measures are designed to minimize person-to-person exposures, reducing the effective 
reproduction number R0, and thus the growth rate of the epidemic. Furthermore, behavior such 
as social distancing, self-isolation while symptomatic, handwashing, disinfecting surfaces and 
hygienic etiquette around coughing and sneezing can further mitigate transmission on an 
individual level. Interventions such as these can offer protection (reduction in risk of infection) to 
susceptible individuals, and/or containment (reduction in risk of onward transmission) to infected 
individuals. While such measures are near universally encouraged by governments and public 
health departments, there is limited international consensus on the use of face masks among 
the general public. Face mask use is common in East and South East Asia, and is currently 
recommended by the government in China, Hong Kong and Taiwan for healthy persons in 
crowded public spaces, as well as for symptomatic persons in Japan and Singapore [7,8]. Face 
mask use was compulsory in public in Wuhan, China, during public lockdown at the height of 
the epidemic. In contrast, the WHO does not currently recommend mask use among the general 
population [9], and the US government did not [10] until April 3, 2020, at which point cloth face 
coverings were recommended by the CDC [11]. There is a growing recognition across Western 
countries that face mask use should be part of public health policy for mitigating the spread of 
Covid-19. Recently, the Czech Republic made it mandatory to cover the nose and mouth in 
public [12], while Austria required the use of face masks in supermarkets [13].  
  
Face masks may offer some degree of protection and containment; however, studies of mask 
effectiveness are relatively limited. While no studies to date have examined the effectiveness 
against transmission of SARS-CoV-2, the mechanisms of transmission via droplet and direct 
contact are likely highly similar to better characterized viruses. A cluster randomized household 
study examined the effectiveness of surgical and P2 (N95) masks in preventing transmission of 
influenza-like illness, finding a significant reduction associated with compliant mask use, 
although most participants failed to adhere to mask use sufficiently to see a benefit [14]. 
Cowling et al. showed that mask use and handwashing implemented within 36 hours of a case 
diagnosis could significantly reduce secondary household influenza cases (odds ratio 0.33) [15]. 
Mathematical models have also suggested that the number of influenza A cases can be 
reduced significantly even if just a small proportion of the population wear masks [16]. A 
systematic review on physical interventions to limit transmission of respiratory viruses, including 
severe acute respiratory syndrome, concluded that face mask use was effective [17]. In 
particular, N95 masks were slightly, but not significantly, more effective in reducing transmission 
than surgical masks, but were less comfortable to wear and caused skin irritation, potentially 
leading to lower compliance. Generally, the theoretical protective effect of masks may be 
diminished by a number of factors. Compliance and effective use may be inadequate [14], 
masks may not be replaced frequently enough to prevent contamination [18], and finally, Covid-
19 infection may even occur via alternative routes, such as ocular transmission [19]. 
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Although personal protection is a leading motivator for mask wearing [20], it is generally thought 
that face masks are more effective in providing containment, limiting onward transmission from 
infectious carriers. Surgical and N95 masks limit and redirect the projection of airborne droplets 
[21], and surgical mask wearing is estimated to be associated with a reduction in overall viral 
aerosol shedding [22] and coronavirus [23]. While diseases with a large proportion of 
symptomatic cases may result in most carriers reducing personal contacts (by choice or 
incapacity), Covid-19 is thought to have a high proportion of mildly symptomatic or 
asymptomatic cases, and therefore more infectious persons unaware of their status may 
continue to expose others. As such, even if masks offer limited personal protection, a general 
recommendation to wear masks in public may be particularly beneficial by containing 
transmission from unknowingly infectious persons. 
  
Some countries have seen an enormous demand for face masks from the public, with supplies 
being diminished and shortages reported [7], drawing criticism for limiting supplies in healthcare 
facilities. Even with lesser public demand, the United States reported mask shortages among 
healthcare workers [24]. Recognizing the need for masks, the Central Epidemic Command 
Center (CECC) in Taiwan made efforts to increase mask production from January and 
announced when, where, and how to wear masks [25]. In facing such resource shortages, it is 
vital that limited supplies are used effectively. Clearly, protection of staff at healthcare facilities is 
of critical importance, but allocating additional resources optimally among the general 
population can offer further benefits.  
  
In this study, we investigated the role of face mask use and distribution among the general 
public during a coronavirus outbreak, in order to better understand (i) the overall reduction in 
cases and deaths associated with mask distribution and use, (ii) how best to optimize 
distribution in a resource limited setting, and (iii) the role of dynamic supply and demand during 
an ongoing outbreak. With no available vaccine and limited options for treatment of COVID-19, 
it is crucial to allocate resources optimally to minimize cases and deaths worldwide. 
  
METHODS 
  
In order to explore both the population-level effects of distributing facemasks to different 
subpopulations, as well as capturing the supply and demand dynamics during an ongoing 
epidemic, we proposed two models. Firstly, the resource allocation model allows a limited 
number of masks to be distributed among the initial susceptible population, or allocated to 
symptomatic individuals while supplies are available. This allows us to compare distribution 
strategies in terms of final numbers of infections and deaths. Secondly, the supply & demand 
model captures dynamic mask availability, which varies in response to increased demand 
among the entire population as the number of reported cases increase, as well as mask 
production rates. 
  
Both models share the same basic epidemic SEIRD model structure (Figure 1) and the 
assumption of a closed, randomly mixing population of size N. Upon infection, susceptible 
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individuals (S) enter the exposed (E) compartment in which a person is non-infectious. 
Infections progress to pre-symptomatic (IP) in which a person is infectious, but exhibiting no 
symptoms, and then either mildly symptomatic/asymptomatic (IA) or symptomatic (IS), similar to 
the model structure described by Anderson et al. [6]. Infected persons in either category can 
then recover (R), or if symptomatic, may die (D). Each compartment is partitioned into those 
wearing masks, and those not. Masks reduce susceptibility to infection in healthy individuals; 
mask wearers’ susceptibility relative to non-wearers is denoted rs, where rs=0 represents a fully 
protective mask. Similarly, masks are assumed to decrease transmissibility in infectious 
persons; a mask wearer has a relative transmissibility of rt, with rt=0 representing a mask 
completely restricting onward transmission. For convenience, we also define the terms 
‘protection’ and ‘containment’ as 1– rs and 1– rt, respectively, and use ‘mask effectiveness’ to 
refer to these properties collectively. 
  
We obtained epidemiological 
parameter estimates from the 
available literature, and 
acknowledging the considerable 
uncertainty associated with many 
characteristics of disease spread, 
explored a range of values for certain 
key values. We assumed a basic 
reproduction number for symptomatic 
cases of R0=2.5 [6,26], and a 14 day 
period from symptoms to recovery 
[27]. Estimates for the proportion of 
asymptomatic cases vary 
considerably; including 18% based 
on data from the Diamond Princess 
cruise ship (with a high proportion of 
elderly people) [28], 25% according 
to the director of the US CDC [29], 
30% based on Japanese evacuees 
from Wuhan [30], and even up to 
78% based on limited reporting from China [31]. Given the importance of this parameter in 
determining allocation of resources, we allowed this parameter to vary over a plausible range. 
Mild/asymptomatic cases are assumed to have an infection rate 50% lower than fully 
symptomatic cases. While there is currently limited evidence on the progression of infection in 
different age groups, we assumed that the proportion of asymptomatic cases in the elderly (70+) 
was half the proportion in the younger population, and that the death rate among symptomatic 
elderly cases was 9.7%, versus 1.3% in younger cases [32]. All parameters used in the model 
are provided in supplementary table 1. 
  
 
 

 
Figure 1. The compartmental structure common to both 
models used in this study is shown at the top. Susceptible 
hosts (S) become exposed (E) and progress to pre-
symptomatic infectious (IP). Infected hosts can become 
either asymptomatic or mildly symptomatic (IA), or 
symptomatic (IS). Recovery (R) or death (D) follow. The 
resource allocation model and the supply & demand 
model then have unique additional features and 
dynamics. For a full description of each model and the 
specification of dynamics between compartments, see 
the Supplementary materials. 
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Resource allocation model 
  
In this model, the compartments described above are further partitioned by age group (young, 
<70, and elderly, 70+). We assume elderly persons are more likely to progress to symptomatic 
infection, and additionally are more likely to progress from symptomatic infection to death than 
young people. All symptomatic infections are assumed to be detected, while asymptomatic/mild 
infections are detected with a given probability. We assume a fixed supply of masks, sufficient 
to protect M0 persons in the population for the duration of the epidemic. Masks may be adopted 
by the healthy population at the start of the epidemic, while a certain proportion may be withheld 
for individuals with detected infection during the outbreak. We explore a variety of strategies to 
determine how masks may be optimally distributed such that total infections and deaths are 
minimized: 
  

●   Strategy 1: M0 of the susceptible population wear masks at the start of the epidemic. 
●   Strategy 2: M0 of the susceptible population wear masks at the start of the epidemic, 

with prioritized coverage of the elderly. 
●   Strategy 3a: 0.25M0 susceptible individuals wear masks at the start of the epidemic, 

prioritizing the elderly. Remaining masks are distributed to detected infectious 
individuals until supplies are diminished. 

●   Strategy 3b: 0.5M0 susceptible individuals wear masks at the start of the epidemic, 
prioritizing the elderly. Remaining masks are distributed to detected infectious 
individuals until supplies are diminished. 

●   Strategy 3c: 0.75M0 susceptible individuals wear masks at the start of the epidemic, 
prioritizing the elderly. Remaining masks are distributed to detected infectious 
individuals until supplies are diminished. 

●   Strategy 4: All available masks are distributed to detected infectious individuals. 
  
For a range of mask effectiveness parameters, we identify the mask distribution strategy which 
minimizes both the number of infections and the number of deaths in the population. The model 
details are described in Supplementary Materials and baseline parameter values are listed in 
the Supplementary Table. While we do not explicitly model individual mask use and 
manufacture here, this can be thought of as continuous production to provide an equilibrium 
number of masks which may effectively be used by the fraction M0 of the population for the 
duration of the epidemic. A more explicit model of mask use is described in the following model. 
  
Supply & demand model 
  
To understand the interplay between mask availability and disease dynamics, we modeled the 
supply and demand of face masks in a population, allowing masks to be produced at a given 
rate B, while demand may increase as the reported number of cases increases [7,33]. In this 
model, we allow for movement between mask-wearing and non-mask-wearing status, 
depending on availability and demand. Masks must be continually acquired to remain a mask 
wearer. We assumed that the mask is worn on average for μ days before requiring replacement, 
and the rate of non-wearers acquiring masks depends on both demand (ωA for healthy and 
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asymptomatic individuals, or ωS for symptomatic individuals) and current supply (M/N, the 
proportion of mask in the overall population). We assume that demand for masks increases with 
the number of reported cases in the population up to a certain plateau, and as such modeled 
the relationship between ωA and the number of symptomatic infections in the following sigmoidal 
function: 

 𝜔" =
$

$%&'() *+'(,
	

The range of ωA is [0, 1], k1 represents the rate of demand increase, and k2 represents the 
timing of demand, defined as the number of reported cases when half the population seeks face 
masks (i.e. higher k2 means mask demand increases later in the outbreak). We allow ωS to 
differ from ωA, in order to explore the effects of recommending face mask use to the general 
population (ωS=ωA), or specifically to symptomatic individuals (ωS>ωA). This parameterization 
allows us to explore different demand dynamics, for example, panic buying (high k1), delayed 
response to epidemic threat (high k2), limited interest in mask use (low k1, high k2) (Figure S3). 
  

 
 

 
Figure 2. Reduction in total deaths under each of the described resource allocation strategy 
for a range of resource availability levels. Each panel represents intervention effectiveness in 
terms of relative susceptibility and transmissibility, with the bottom left panel denoting the most 
effective intervention (75% reduction in susceptibility and transmissibility) and the top right panel 
representing the least effective intervention (25% reduction in susceptibility and transmissibility). 
Resources are provided naïvely (pink), prioritized to the elderly (green), saved for detected cases 
(red), or balanced at different levels between healthy individuals, prioritizing the elderly, and 
detected cases (blue). 30% of cases are assumed to be undetected. See Methods for further details. 
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RESULTS 
 
Resource allocation model 
  
We simulated outbreaks under a variety of parameter values associated with mask 
effectiveness (protection and containment) and mask supply, and identified the resulting total 
numbers of infections and deaths under each strategy described in the methods. Figure 2 
shows the impact of mask distribution under different strategies, for different levels of 
availability. Reduction in total deaths increased with mask effectiveness and availability. Even 
limited distribution of relatively ineffective masks could result in an appreciable reduction; 10% 
adoption in the population could result in 5% fewer deaths (Fig. 2, top right). While immediate 
provision to the healthy population provided maximal impact, delayed implementation of a 
general mask wearing policy could still provide reductions in total cases. The epidemic peak 
could be increasingly delayed with earlier adoption of mask use (Figure 3). 
 

Naïve distribution of masks among the 
general population (strategy 1) was 
usually suboptimal; indeed, for a mask 
providing better containment than 
protection (rt<rs), this is the least optimal of 
the strategies we tested unless resources 
were plentiful (Figure 2, bottom right 
panels). While prioritizing allocation to 
elderly persons (strategy 2) only slightly 
reduced the total number of infections 
beyond that achieved with naïve 
distribution (Figure S1), the number of 
deaths was generally much lower with this 
strategy. The benefit of prioritizing the 
elderly population was largest in scenarios 
with a limited supply of protective masks, 
diminishing gradually with masks offering 
more limited protection. With plentiful 
resources, the difference between 
prioritizing the elderly population and 
random distribution became limited. 
 

Providing masks only to detected cases was an effective strategy in some limited resource 
scenarios when containment was high (Figure 2, red lines). However, since many infections are 
not detected, this strategy fails to provide any containment to the large, undetected infective 
population, and the benefits associated with increasing supply reach a maximum once there are 
sufficient resources for all detected cases. As such, this policy offers the least optimal 
distribution for a range of mask effectiveness parameters when resources are abundant (e.g. 
>50% of the population can be covered). As an intervention that offers no protection to 

 
Figure 3. Rapid introduction of face masks to the 
general population can reduce cases and delay 
the epidemic peak. For a range of implementation 
dates, 25% of the general population adopt face 
masks conferring 25% protection and 50% 
containment. 
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susceptible individuals, the associated reduction in total infections only depends on mask 
containment. By providing a mask offering intermediate levels of containment (50%) to all 
detected infectious cases, the number of deaths can be reduced by up to 30%, reaching this 
level with resources to cover 25% of the population. Increasing the case detection rate can 
further increase the benefits of this strategy. 
 
In many scenarios, achieving a balance between providing resources to infective persons and 
the elderly population offers the optimal outcome in terms of total infections and deaths (Figure 
2, blue lines). These strategies (3a-c) offer containment focused on symptomatic cases, but also 
mitigating transmission from a proportion asymptomatic carriers. Additionally, some degree of 
protection is granted to susceptible individuals, with a focus on the more vulnerable elderly 
population. Figure 4 shows the optimal distribution strategy over the full range of mask 
effectiveness parameters with resources to cover 40% of the population, as well as the 
corresponding reduction in total infections and deaths, relative to the naïve strategy of random 
distribution. The optimal balance of mask distribution varied according to supply and mask 
effectiveness. Generally, while resources are plentiful, providing the majority of available 
supplies to the healthy population (prioritizing the elderly) at the start of the epidemic was 
optimal (e.g. strategy 3a) for reducing cases and deaths. Increasing the case detection rate 
among mild/asymptomatic cases will improve the effectiveness of these balanced strategies. 
 
Optimizing mask distribution offering limited protection and containment unsurprisingly had a 
minimal additional benefit beyond random distribution in the healthy population (Figure 4, right). 
However, we found that while total infections remained similar, optimizing distribution had the 
effect of delaying the peak week of the outbreak (e.g. Figure S2). In practice, this is highly 
desirable for providing additional time to scale up healthcare resources and infrastructure, and 
may result in an indirect reduction of morbidity and mortality associated with overstretched 
healthcare facilities. 
 
A far smaller supply of highly effective masks were required to achieve similar reductions in total 
infections compared to a large supply of less effective masks. Masks retained for provision to 
infectious persons are more rapidly exhausted when they provide either limited protection or 
containment. Deaths could be reduced by 65% with 15% coverage of a highly effective mask 
(75% containment), compared to a reduction of 30% with 25% coverage of an intermediate 
mask, and a reduction of 10% with 30% coverage of a low effectiveness mask (25% 
containment). In the resource allocation model, new mask production and ongoing supply is not 
explicitly considered. In the following model, we investigate the role of these dynamics. 
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Supply and demand model 
  
We explored different models of mask availability and demand by varying the parameterization 
of the demand function described in the methods, as well as the rate of production of new 
masks. Unsurprisingly, regardless of demand dynamics, a higher production rate of masks 
increased availability and therefore coverage of the population. Figure S4 shows the reduction 
in total infections given different levels of protection and mask production, highlighting that a 
greater number of less effective masks were required to achieve the same impact as fewer, but 
more effective, masks. For a given level of mask production, a ‘panic buying’ scenario, in which 
maximum demand for masks was attained very early in the epidemic, generally had a 
detrimental impact on the resulting outbreak (Figure S5). Unless production is ramped up during 
the outbreak, an inability to build a stockpile of available resources prevents infected persons 
obtain masks readily during peak transmission (Figure 5, left). In contrast, a more gradual 

 
Figure 4. Optimal distribution of resources for different levels of intervention 
effectiveness. The strategy which minimized the number of infections (top left) and the number 
of deaths (bottom left) is indicated for each level of intervention protection and suppression. 
With a supply of masks for 40% of the population, resources are provided under each of the 
strategies described in Methods. The reduction in infections and deaths under the optimal 
strategy is shown in the right column, relative to the numbers under the naïve strategy. The 
area shaded in gray represents complete suppression of the outbreak under the optimal 
strategy. Here we assume the probability of asymptomatic carriage to be 0.3 among cases 
<70y. 
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increase in demand, or equivalently, a managed distribution of resources such that a stockpile 
can be built up in the early stages of the epidemic, results in greater availability of masks during 
peak transmission, and fewer overall cases (Figure 5, right). Prioritizing provision to infectious 
cases (setting ωS>ωA) can reduce cases further (Figure 5, bottom), in line with our findings from 
the resource allocation model, under the assumption that masks offer a greater degree of 
containment than protection. This effect is smaller if the proportion of asymptomatic infections is 
high (Figure S6). While building up supplies in the early phase of the epidemic can be 
beneficial, high levels of production were required to avoid shortages during peak demand 
(Figure S7). 

 
DISCUSSION 
  
During a pandemic such as COVID-19, mitigating the spread of infections is essential in the 
absence of a vaccine and limited critical care resources. In this study, we have shown that face 
mask use in the general population can have a beneficial impact in reducing the total number of 

 
Figure 5. Managing resource demand in the early stages of the outbreak can limit the total 
number of infections. Epidemic curves (pink) under a ‘panic buying’ demand curve (left), and a more 
gradual managed demand curve (right) when prioritizing (top) and not prioritizing (bottom) masks for 
infectious cases. Demand is shown as a dashed grey line, while the relative available mask supply is 
shown in blue. The proportion of the susceptible and symptomatically infected population wearing masks 
are shown as green and red lines, respectively. (k1, k2) are shown on the top of each subfigure. The 
dynamics shown here are based on mask production rate, B/N, equal to 30%. 
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cases and deaths, and that this impact naturally increases with mask effectiveness. The 
benefits of mask deployment are apparent even with low effectiveness and limited resources. In 
such cases, though mask deployment may not have a large impact on total cases and deaths, 
indirect benefits for outbreak management are achieved by delaying the epidemic peak. 
Importantly, however, the overall impact of mask deployment hinges on appropriate distribution 
strategies. We consistently observed that the random distribution of masks throughout the 
general population is a suboptimal strategy. In contrast, prioritizing the elderly population, and 
retaining a supply of masks for identified infectious cases generally leads to a larger reduction in 
total infections and deaths than a naïve allocation of resources. While there remains much 
uncertainty around the true effectiveness of face masks - especially when factoring in 
differences in mask types, levels of adherence and patterns of human behavior - there is 
evidence to suggest that masks can provide a measure of protection and containment for 
respiratory viruses, likely a greater degree of the latter than the former.  
 
The more effective a mask is, the fewer masks are required to suppress an epidemic. Under a 
strategy in which masks are retained for infectious persons, this is particularly important. As a 
higher proportion of infectious persons - both symptomatic and asymptomatic (and possibly 
unaware of their status as a carrier) - are wearing masks offering a high level of containment, a 
smaller number of onward transmissions occur, requiring fewer masks to be provided for newly 
diagnosed individuals. While mask use can help to mitigate transmission, the supply & demand 
model suggests that panic buying at the very early phase of an epidemic can be detrimental, 
and that managing demand in the early stages of the outbreak could be beneficial. In Taiwan, 
the government implemented such a resource management strategy in early February 2020, 
limiting the number of masks each person can buy per week with their National Health 
Insurance cards [25]. As human behavior and compliance are a significant component of how 
effective mask use is, it is essential that public health recommendations concerning face masks 
in the general population occur in tandem with clear education on proper use and application, 
such that limited resources are used as effectively as possible.  
 
During a pandemic such as COVID-19, optimizing the deployment of resources is essential. Our 
models concern the distribution of resources in the general population, under the assumption 
that healthcare workers and key personnel have adequate protection - clearly it is essential that 
this subpopulation should have prioritized access to protective equipment. However, if 
production can be increased such that face masks may be available to the general population, 
an optimized deployment of these resources can limit spread. While we considered the elderly 
population in our model, we did not explicitly consider other vulnerable subpopulations, such as 
immunocompromised persons or those with other respiratory conditions. Such persons with 
increased risk of suffering severe infections, and perhaps more importantly, those interacting 
with them, should belong to the prioritized subpopulation we considered in the resource 
allocation. In addition, we did not consider heterogeneity in population mixing. In reality, there 
are clusters of particularly vulnerable persons (e.g. hospitals, nursing homes, long term care 
facilities, prisons, homeless shelters) which pose an elevated risk; failing to protect such 
communities could lead to rapid and highly localized spread. It is likely that face mask use is 
also more beneficial in populations with higher contact rates. Future modeling work could 
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consider meta-populations of different population densities to optimize resource deployment in 
urban vs. rural settings. 
  
The use of face masks in mitigating the spread of a pandemic disease such as COVID-19 is one 
of many strategies that are being implemented simultaneously, including social distancing, 
travel restrictions and self-isolation. Even during lockdown measures in which people are only 
rarely leaving their homes, many still face high exposure settings (e.g. conducting essential 
work, trips to the supermarket) albeit less frequently. Face mask use could be a particularly 
important component of transmission mitigation once social distancing measures are relaxed, 
and potential exposures rapidly increase. Preparing an adequate supply of face masks for such 
a transitionary period could help to prevent a potentially costly second peak. 
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SUPPLEMENTARY MATERIALS 
  
Resource allocation model 

  
Consider a population of size N, comprising Ny and No young (<70 years old) and elderly (70+ 
years old) respectively. At a given time, each individual has a status as a mask-wearer (m) or a 
non wearer (n). For each age group x (x=y for young, x=o for elderly), and status s (s=m for 
mask wearer, s=n for non wearer), let Sxs, Exs, be the number of susceptible and exposed (but 
not infectious) individuals. Let 𝐼/01, 𝐼"01 and 𝐼201 be the number of pre-symptomatic, 
asymptomatic/mildly symptomatic and fully symptomatic individuals respectively. Finally, let Rx 
and Dx be the number of recoveries and deaths. Fully symptomatic cases are associated with 
an infection rate of 𝛽2, while pre-symptomatic and mildly/asymptomatic cases have a lower 
infection rate 𝛽"; we assume 𝛽2 = 2𝛽". Progression from exposed to pre-symptomatic occurs at 
rate 𝛼$, and progression to either 𝐼2 or 𝐼" occurs at rate 𝛼6. The probability of developing only 
mild symptoms or no symptoms among age group x is 𝑃80. Removal occurs at rate 𝛾2 and 𝛾" 
respectively. The proportion of fatalities among fully symptomatic cases in age group x is 
assumed to be 𝑝0;. Dynamics are governed by the following system of differential equations: 

 
  
where m* is an indicator function equal to 1 when there is a remaining supply of masks M, and  
is the probability of detecting mild/asymptomatic infections. As masks are provided to newly 
diagnosed cases, supplies are depleted at the following rate: 
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Monotonically declining until zero is reached, at which point, no further masks are provided for 
detected cases. 
 
Supply & demand model 
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SUPPLEMENTARY FIGURES 

 
 Figure S1. Reduction in total infections under each of the described resource allocation 
strategy for a range of resource availability levels. Corresponds to Figure 2. Each panel 
represents intervention effectiveness in terms of relative susceptibility and transmissibility, with 
the bottom left panel denoting the most effective intervention (75% reduction in susceptibility 
and transmissibility) and the top right panel representing the least effective intervention (25% 
reduction in susceptibility and transmissibility). Resources are provided naïvely (pink), prioritized 
to the elderly (green), saved for detected cases (red), or balanced at different levels between 
healthy individuals, prioritizing the elderly, and detected cases (blue). 30% of cases are 
assumed to be undetected. See Methods for further details. 
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 Figure S2. Optimizing mask distribution strategy can delay epidemic peak. We 
demonstrate that, even low coverage (5% of the population) of a mask offering no protection 
and 40% containment, the epidemic peak can be delayed when retaining resources for detected 
cases. 

  
  
 Figure S3. Different parameterizations of demand dynamics. Different values of k1 and k2, 
provided as the title for each panel, result in different demand responses to increasing numbers 
of reported cases. A panic buying scenario can be approximated in the bottom right panel, 
where demand is maximal very early in the epidemic. A gradual increase in demand is shown in 
the top left panel, in which 50% of the population seek masks if and when cases reach 5 million. 
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Figure S4. Impact of mask production rates on final number of infections. For different 
levels of mask protection and mask production, to reduction in total numbers of infections. 
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Figure S5. Levels of reduction in total infection numbers compared to no mask condition 
under different demand functions. The level of total infection reduction (%) varies with the 
timing of 50% population demand on masks (k1) and the rate of demand increase (k2) given high 
(top; B/N= 30%) or low bottom; B/N= 1%) mask production when prioritizing (left) or not prioritizing 
(right) masks for infectious cases. Generally, ‘panic buying’ is detrimental and prioritizing to 
infectious cases (setting ωS>ωA) is beneficial.   
 

 
Figure S6. The effect of prioritizing masks to infectious cases is less apparent if the 
proportion of asymptomatic infections is high. 
 

 
Figure S7. Low mask production rate can limit the advantage of building up supplies. 
Epidemic curves (pink) under a ‘panic buying’ demand curve (left), and a more gradual 
managed demand curve (right) when prioritizing (top) and not prioritizing (bottom) masks for 
infectious cases. Demand is shown as a dashed grey line, while the relative available mask 
supply is shown in blue. The proportion of the susceptible and symptomatically infected 
population wearing masks are shown as green and red lines, respectively. (k1, k2) are shown on 
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the top of each subfigure. While supplies are built up in the early phase of the epidemic, 
shortage still occurs during the outbreak if mask production rate is low (B/N = 1% here). 
 
 
SUPPLEMENTARY TABLE 
  

Parameter Definition Baseline 
value 

References 

R0 Basic reproduction number for 
symptomatic individuals 

2.5 [6] 
[34] 
[26] 

1/α1 Time from exposed to pre-symptomatic 1 [6] 

1/α2 Time from pre-symptomatic to 
symptomatic/ asymptomatic 

5 [6] 
  

Pa The proportion of asymptomatic 
infections 

30% (varied in 
simulations) 

[30] 

1/	𝜸A	 Time to recovery for asymptomatic 
infections 

14 [6][27] 

1/	𝜸S	 Time to recovery for symptomatic 
infections 

14 [6][27] 

rt Relative transmissibility with mask Varied in 
simulations 
(=0.5 if not 
specified) 

  

rs Relative susceptibility with mask Varied in 
simulations 
(=0.6 if not 
specified) 

  

        

Resource 
allocation 
model 
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N70 Proportion of people age 70+ 7.6% Taiwan as 
an example: 
census.dgb
as.gov.tw 

  Death rate among symptomatics in 
70+ 
Death rate among symptomatics in 
<70 

9.7% 
  
1.3% 

[32] 
  

 Detection rate of non-severe infections 44%  [Japan] [35] 

Supply & 
demand 
model 

      

1/μ Average time of wearing disposable 
mask 

1   

B Daily mask production Varied in 
simulations 

  

d The ratio of rate of wearing mask 
between symptomatic infected 
individuals and others (ωS/ωA) 

Varied in 
simulations 
(=1000 if not 
specified) 
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