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Abstract 
 
We present a method for predicting the recovery time from infectious diseases outbreaks 
such as the recent CoVid-19 virus. The approach is based on the theory of learning from 
errors, specifically adapted to the control of the virus spread by reducing infection rates 
using countermeasures such as medical treatment, isolation, social distancing etc. When 
these are effective, the infection rate, after reaching a peak, declines following a given 
recovery rate curve. We use presently available data from China, South Korea and others to 
make actual predictions of the time needed for securing minimum infection rates in the 
future. 
 

1. Introduction and Background 
 
We develop a new way to predict the recovery rate of infections following a pandemic 
outbreak, using the basic postulates of learning theory. This theory has been previously 
applied to outcome, accident and event data from multiple socio-technological systems,  like 
transportation, medicine, military, power grids, aviation, mining, and manufacturing.  
Learning theory simply postulates that humans learn from experience in correcting their 
mistakes and errors (sometimes even just by trial and error), as they gain knowledge on the 
problem and skill for addressing it. The theory is consistent with the models and data in 
cognitive psychology of how humans behave and the brain operates (Ohlsson, 1996;  
Fiondella and Duffey, 2015; Anderson, 1990; Duffey, 2017b). The importance of this theory 
stands in that human errors and incorrect decisions are the dominant contributors to 
accidents, crashes, system failures, errors, and operational incidents.  
 
The theory is based on the fact that human learning demonstrably reduces error rates 
(Ohlsson, 1996): wisdom is gained after an accident. Evidence on this relates to even highly 
hazardous industries like the nuclear one. A good example is that the safe operation of 
nuclear power plants has been, and continuous to be, improved from lessons learned from 
nuclear accidents and incidents. These accidents and incidents, in addition to highlighting 
the role of human errors in their occurrence and progression, have helped identifying 
various critical technical elements and contributed to the safer operation of nuclear power 
plants. Similarly, the observation is applicable to outbreaks of infectious diseases.  
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Improving health systems following epidemic outbreaks and enhancing reliability and safety 
measures following nuclear power plant accidents have to be handled with objective data 
and accurate calculations. However, whereas nuclear power plant operation has done this 
by a world-accepted, high standard of procedures, the “protection system” against 
pandemics is not there yet. The key is how to design, evaluate and implement the procedures, 
for reaching a high standard. 
 
Learning theory has been successfully applied to quantify error and learning rates in 
technical systems, casualties in large land battles, everyday accident and event data, and to 
human, software and hardware reliability (Duffey and Saull, 2008; Duffey & Ha, 2010; 
Fiondella & Duffey, 2015; Duffey, 2017a). The novel feature is to replace calendar time or 
test interval, which has always been used before, with a measure for the accumulated 
experience and/or risk exposure, thus defining rate trends and quantifying effectiveness  of 
responses to errors and accidents, and allowing totally different systems to be directly 
intercompared. Additionally, the trend is governed by two parameters that are physically 
based: the learning rate constant and the minimum achievable error rate. This is in contrast 
with statistical analysis ,where fitting to learning data is typically done on three empirical 
parameters (Bush and Mosteller, 1955 ), and with the inverse “power laws” extensively fitted 
in  cognitive psychology data ( e.g. Anderson, 1990 and the references therein). 
 
The theory shows the Learning Hypothesis that humans learn from their mistakes and 
reduce outcomes in such a way that the rate of decrease of the outcome (in the present case 
of interest, the infection rate, R) with the rate of accumulated experience, ε, (in the present 
case the advancement in the knowledge of the virus, the contagion spreading dynamics, the 
effects of the countermeasures) is proportional to the rate R itself. Thus, very simply, the 
differential equation that describes the accident and outcome data with learning or 
forgetting describes the proportionality between the rate of change of the learning rate, R, 
and the learning rate itself   (Duffey and Saull, 2008; Duffey, 2017b): 
 

 
𝑑𝑅

𝑑𝜀
=  −𝑘(𝑅 − 𝑅𝑚) (1) 

 
where ε is the measure of the risk exposure, learning opportunity or experience/knowledge 
gained; k is the learning rate (positive for a learning/improving situation and negative for 
no learning/improving, e.g. because of no effectiveness countermeasures) and Rm is the 
lowest or minimum achievable error rate, which is never zero as the process of error-making 
and cognitive rule revision always continues. Physically, k is related to the non-detection or 
error rate in unconscious memory scanning for recall and recognition, manifesting itself in 
the conscious external actions, decisions and judgments. The error rate solution obtained 
from integration of this Minimum Error Rate equation (MERE) is: 
      𝑅(𝜀) =  𝑅𝑚+ (𝑅0− 𝑅𝑚)𝑒−𝑘(𝜀−𝜀0)   (2) 
 
where, 𝑅0  is the initial rate at the beginning or start of the problem when the level of 
experience/knowledge on it is ε= ε0. Different data sets are characterized by  different values 
of the learning constant.  
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It is clear in Equation (2) that for practical applications a suitable measure of the 
experience/knowledge or risk exposure accumulated with respect to the initial one, (ε-ε0), 
is needed and that the original or starting one, ε0, is a suitable arbitrary or convenient 
reference dependent on the problem at hand. In other words, the measure for the 
accumulated experience/knowledge or risk exposure is technology/system specific. Then, 
for data inter-comparisons, it is useful to render non-dimensional the quantities of  interest, 
which results in the Universal Learning Curve (ULC) for the non-dimensional error rate E*= 
(R(ε)-Rm)/(R0-Rm) as a function of the non-dimensional experience/knowledge or risk 
exposure ε* = ε/ εT, where εT is the maximum accumulated experience or risk exposure 
thanks to which the error is recovered (the problem is considered under control), its rate 
having reached the lowest or minimum achievable value Rm.  From (2),  
 

𝐸∗ =  
𝑅(𝜀)−𝑅𝑚

𝑅0−𝑅𝑚
=  𝑒−𝐾𝜀∗

          (3) 

 
with K~ 3 is the fitted learning rate “universal constant”. This expression has already been 
shown to represent the learning trends for outcome rate data from industrial, surgical, 
transportation, mining, manufacturing, chemical, maintenance, software and a multitude of 
other systems (Duffey and Saull, 2008; Duffey and Ha, 2013: Fiondella and Duffey, 2015). For 
skill acquisition tasks in cognitive psychological testing, this same trend exists and is called 
the Universal Law of Practice (ULP). 
 
 
 

2. “Normal” Infectious disease risk 
 
Illnesses are still around in the world, many of them deadly. In the past, there have been 
pandemics1 killing many millions of people, like the “Black Death” or Bubonic Plague 
disease of the Middle Ages, and the influenza epidemic in 1918. In addition to these sudden 
attacks, other equally deadly pestilences have been and are still around for centuries - 
yellow fever, cholera, small pox, typhus, measles, malaria.... As modern medical practice 
eliminated or reduced these hazards using better procedures and new vaccines, other 
exotic variants and viruses have recently emerged, like SARS, HIV, Ebola and CoViD19, 
infecting and endangering the ever-increasing and interconnected world population. As we 
evolve and learn, so do the things that like to kill us, but they usually kill relatively few 
people compared to, say, automobile accidents or the yearly seasonal influenza. 
 
To determine risk from these instances, we can and must turn to data. As a fine example, 
we have the official data from the World Health Organization. The WHO gave the death 
rates for “all causes” and for infectious (like cholera) and parasitic (like malaria) diseases 
for some 194 countries in the mid 1990s. The data cover the full global spectrum, from 
developed to developing nations, from vast urban conglomerates with very crowded living 
conditions to scattered rural communities, from jungles to deserts, and all Continents. The 

 
1 To be clear on terminology: Pandemic-disease affecting the whole world; Epidemic-disease affecting whole 
communities; Pestilence-a fatal epidemic disease. 
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data cover and include the effects of modern epidemics, and of course local wars and 
regional conflicts. 
 
In Figure 1, the data are plotted not against the usual arbitrary calendar year but- as we 
now know we should -against the risk exposure measure, in this case the population size. 
This number is the direct indicator of how many people are at risk, and the country-by-
country populations come from the World Bank Indicators. The data are plotted in the 
Figure with the lozenges being the overall death rate data and the squares representing the 
death rate data due to infections.  
 
From these data, we can know the risk of death from any health cause: it is about 1000 
deaths for every 100,000 people, or one in a hundred, and does not depend much on where 
you live. To verify this overall number “locally”, we can analyze the data for New York, as 
given in the graph “The Conquest of Pestilence in New York City” from 1800 onwards, 
published by the Board of Health and the Health Department. This is a typical modern city 
that had grown in population from 120,000 to about 8 million people, and includes 
characteristics of immigration, high-density living, mass transportation, high-rise 
apartments, modern health care, national and international trade, and a large flow of 
inbound-outbound travel, in other words, globalization. The biggest improvement in health 
has come from introducing effective hygiene and anti–infection measures, and from 
improved health prevention and treatment  (not from wonder drugs): we have learned 
how to treat sick people, cure problems and reduce the spread of bad diseases. It is an 
expensive investment  and it is hard work that requires devoted and trained professionals. 
As a result, after curing and containing many pestilences during the 19th century, the 
average death rate in New York over the last hundred years has fallen to 10 to 11 per 1000 
people, or almost exactly the same one-in-a-hundred rate as the world rate. So modern 
cities behave pretty much like whole countries, as far as average or overall death rates are 
concerned.  
 
 Infectious and parasitic diseases are responsible for 5 to 15 deaths in 100,000 people, so 
average about one in ten thousand or 1 to 5% of all deaths worldwide, the other 95 to 99% 
or so being deaths from “normal” causes. So the “normal” death risk is still about twenty to 
a hundred times of what it might be if a new pestilence emerges, spreads and takes hold 
without effective countermeasures. 
 
Another way to view this risk contribution is to say that the chance of death might be 
increased by a maximum of about 5% if a new global pandemic infection occurs where it 
has not been prevalent before. This is always the fear, that in today’s highly interconnected, 
high-speed, global world a possible rapid spread of new or variant diseases can occur. 
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Figure 1 The rate of deaths from all causes (lozenges) and from infectious diseases (squares) 
for 194 countries (data extracted from the WHO and World Bank). 
 
And that is exactly what recently happened, as the 2019-2020 coronavirus (labeled CoVid-
19 or SARS-CoV2) rapidly spread across the four corners of the Globe. There was extensive 
reporting of nearly every new case occurring and great worldwide information available 
(e.g. at Johns Hopkins University website coronavirus.jhu.edu/map). By late March 2020, 
the world had over 1,000,000 cases (and still growing at the time of writing) and many 
thousands of deaths, with the infection having spread quickly across borders, imported 
from nation-to-nation mainly via travellers, visitors and tourists, and spread internally 
from just social and day-to-day human contact.  
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3. Infection rate reduction and recovery  
 
Looking at the available numbers, the individual infection risk today is comparatively 
negligible, with a few hundred thousand cases in a world population of several billion. It is 
an individual random infection probability, p(I),  of about one in twenty thousand. This risk 
is many times less than the chance of being hospitalized with influenza, let alone catching 
it, reflecting the existing fraction of world deaths due to infections.  
 
But the high speed at which this virus has spread makes it legitimate to feel worried and  
unease, and correspondingly, legitimate questions arise: 
 
How does this novel pandemic compare to the “normal” or accepted risk of infectious 
death?  
 
What is the “worst case” scenario? 
 
Should we panic and shun other people who may be carrying what might kill us? 
 
How long will it take to recover? 
 
This calls for the need to try to objectively evaluate the risk, based on the current 
experience knowledge.  
 
We normally can treat the spread of disease as a “diffusion” or “multiple contact” process, 
where it steadily expands outward from some central source or origin; or as a highly 
mobile source that is potentially spread everywhere due to rapid multiple global personal 
and social interactions. The excellent US Centers for Disease Control simply states the 
obvious: 
 
  “Risk depends on characteristics of the virus, including how well it spreads between 
people”  
  
(Source: www.cdc.gov/coronavirus/2019-ncov/summary) 
 
The data from China on CoVid-19 infections suggest that there is, or was, a 50%-90%  
chance of the initial infections spreading between cities, depending on location and size 
(Du et al , 2020) . Using simple doubling rates, the news media carried projections that a 
“worst case” in the USA could infect over 200 million (i.e. most people in the USA) and 
cause nearly 2 million or so deaths, and experts were hard at work estimating global, 
country and age-dependent risks, including of death. 
 
We certainly need to estimate or know the risk of infection. As a simple guess and knowing 
nothing else, let us assume infections are randomly transmitted anywhere and everywhere 
from person to person, the spread is instantaneous and guaranteed if a source exists and 
the probability of being (successfully!) infected is also random and equally possible. This is 
really a “worst case” scenario or “model”, as obviously not everyone is exposed to everyone 
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and not everyone is equally vulnerable. The worst case scenario is, then, that there is no 
preventative measures, no immunity and no vaccine, and for whatever reason, the source is 
not quarantined or isolated, and any such infected person or mobile source can and does 
transmit the virus (or disease) randomly to others somewhere in the world.  
 
Independent of the transmission mechanism, given contact, the probability of cross-
infection, then, depends solely on the total numbers of the possibly equally risk- or 
infection-exposed recipient population, and the probability of infection is also random. In 
this model, anyone can get it by interacting with someone that has it2.  
 
 

 
 
Figure 2 Randomness at work:  we have already seen or heard about at least one infection 
(black ball) among our ten friends, colleagues, or contacts (white balls); so the obvious 
questions are how many more infections (black balls) are hidden in the jar, i.e. possible in the 
future, and what is the risk of drawing a black ball, i.e. of infection?  
 
To help see this more clearly, the black balls (the “unknowns”) emerging from the Jar of 
Life is one way to view what might happen based on what we have already seen or been 
exposed to. Here the one black ball (n=1) is an “known unknown” infected person or 
infection opportunity among those ten (m=10) non-infected (“known knowns”) white balls 
(m=10), so a chance of 10% or one over ten. The probability of interest is, then, of infection 
for more people exposed and infected, or N “unknown unknowns”, and some not exposed 
or not successfully infected, M “unknown knowns”) , out of a total of all exposed people, 
N+M. 
 
 These numbers, N and M, vary by city, country, cruise ship passengers, soccer matches or 
rock concert arena, and can systematically vary up to the total of about six billions or so in 

 
2 It turns out to be similar to the assumptions made in the elegant simulations shown at 
www.washingtonpost.com/graphics/2020/world/corona-simulator/ 
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the global world. We can also think of it as our possible exposure experience. The formula 
for the probability p of the event of an individual I becoming infected  takes the form,  
 
p(I) = Number infected (N) / total number exposed (N+M).  
 
If there is a gathering limit of ten or so people, as in the case of the white and black balls of 
the Jar of Life shown in the picture, the observed chance of being infected, p(I), is assumed 
to be about one infection (black ball) in some ten non-infections (white balls), or 10%. This 
we know.  But the sample is limited to 10 and, so, we could also be exposed to one in a 
hundred, or one in a thousand, or more: how many more infection cases would we, then, 
expect out there hidden in the Jar? 
 
 The method used to estimate this probability is random sampling based on the so-called 
hypergeometric formula3. For possible gathering numbers of 10,100, 300 and 1000 with 
one infection source known or observed, the chance of observing or finding, say, 100,000 
new cases of infection, p(I) in a bigger group rises to a maximum or peak of about 37 % 
(about one in three)4.  
 
The estimate that comes out in this “worst case scenario” seemingly agrees with the 
estimates publicly available on the internet and social media of the awful possibility (risk) 
of perhaps even a 40-70% chance of being at risk of infection, if nothing is done to prevent 
it or reduce it5. That is a significant and very high risk of infection, and has been used to 
justify quarantining, limiting social gatherings and extensive travel restrictions. 
 
This inevitably brings fear to the individuals of the global population and the only way to 
address fear is by using scientific knowledge and data to inform any theory behind 
estimates and predictions.  
 
During the early onset of the CoVid-19 pandemic, many gloomy scenarios were made and 
analyzed but they generally assumed no effective countermeasures to the spread of 
infections. The infection numbers grew quickly at first, before countermeasures such as 
isolation, distancing, restrictions and curfews were implemented to reduce infection rates 
and “flatten the curve” of numbers versus time. Sad to say, deaths (distressing as they are) 
are also NOT the right measure- infections are the measure for the spread and control of 
infectious diseases. A logical question is whether the infection or death data show any signs 
that we are learning how to reduce risk? 
 
Just like for any accident- the number killed or dying is highly variable depending on who 
and how many risk-exposed happens to be there, so it is random. In this viral case, the 
number of deaths also just depends on too many uncontrolled variables and factors (age, 

 
3 For the mathematically inclined, this function is available in the Excel program in Microsoft Office under the heading 

HYPGEOMDIST, and is discussed extensively in Edwin Jaynes’ book  (see Bibliography)  

4 Numerically, the peak corresponds to the complement of the probability of not having more infections (1/e=0.366) 

5 For similar pessimistic estimates see, for example,  www.kevinmd.com/blog/2020/03/a-covid-19-coronavirus-update-
from-concerned-physicians. 
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pre-existing health conditions, health care system, propensity etc. …) so the average  death 
percentage per infection also varies in magnitude, location and time (as the data clearly 
show). The correct measure is infection numbers and rates (not the number of deaths), say 
the number per day. The infections numbers also depend on which country/region they 
refer to and at what infectious stage (early onset, spread extent, countermeasures 
employed ... etc.). We already know that if uncontrolled, the increase in infections will rise 
exponentially, as the rate of infections is proportional to the number infected.  
 
As usual, the most representative case can be based on actual infection data from where 
containment of contagion has already been successfully applied, namely in China where it 
originated. Using data reported by the John Hopkins Center for System Science and 
Engineering, by March, 2020, there were, n= 81,000 infections and some 3200 deaths in 
China with a falling to near-zero rate. So with a national population of N+M 
=1,400,000,000, the overall probable risk of infection is about 0.00006, or one in 17,000, 
(or about six in 100,000)6. Locally, in some cities/regions it is ten times higher, but 
although comparable to infectious death rates, the overall CoVid-19 death rate in China was 
on average one in nearly half a million people, much lower than deaths from other 
infectious diseases. That is a significant reduction in the risk of infection: countermeasures 
have worked. 
 
So far, we have these scenarios: 
 
The scary or “Worst” with no measures: at least one in three people infected. 
 
The real or “Best” control and mitigation: only one in 17000 people infected. 
 
But remember the famous Bayes Theorem: 
 
The probable Future is the Past modified by the Likelihood. 
 
So the possible probability reduction , or Likelihood, must be considered in a future 
estimate based on projections using past data.  This simple-minded upper and lower limit 
comparison suggests the individual Likelihood is about 0.0002, or very low. Societal 
countermeasures reduced the risk by a factor of 500 to 5000 over the inevitable “worst 
case” random spread of infection or survival-of–only- the-fittest scenarios.  
 

4. Recovery timescales using Learning Theory  
 
The approach based on Learning Theory illustrated in this Section uses the fact that 
humans learn how to control the CoVid-19 outbreak spread and reduce infection rates 
using countermeasures (treatments, isolation, “social distancing” etc). IF these are effective 
the rate, therefore, must reach a peak and, then, decline. 
To look at pandemic recovery, we really need to look at the rate of infections, NOT just 
deaths since these depend on too many social and personal health factors as already stated. 

 
6 For similar realistic estimates see, for example, https://wmbriggs.com/post/29830/ 
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These include propensity, age profile, medical system effectiveness, treatment options 
early detection, etc.  The risk of an infectious disease is not controlled unless the infection 
rate slows down, so-called ‘flattening the curve”. Once the rate peaks the rate, then, should 
decrease due to successful countermeasures (whatever they are). 
 
So, the next question is: what happens next and how do we know how effective the control 
measures are, and how long before they can be relaxed or maintained? 
 
In China, the actual infection rates (increase per day) rose to a peak of nearly 4000 a day in 
about 17 to 20 days, and, then, fell away steadily to about 50 or so a day by another 30 
days.  As a further consideration for a different country, S Korea had a different peak rate of 
about 1000 per day in ten days, falling to a low rate in another 10 or so days.  

  
Figure 3 The overall infection rate in Italy 

 
In Italy, after some delay in implementing countermeasures, the infection rate seemingly 
peaked at about 6000 per day in about 30 or so days, as can be seen  in the graph of Figure 
3. As of writing, (early April) this rate has decreased to nearly  4000 per day (see graph in 
the Figure). 
 
 

5. Comparison to Learning Theory   
 
The results for all countries that show some form of recovery are reported in the Figure 4-
graph, which plots as, E*, the non-dimensional infection rate normalized to the initial peak 
value, versus N* = ε/ εT, the non-dimensional elapsed time of experience/knowledge or risk 
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exposure after the rate has peaked (number of days after peak/day of peak). In relation to 
the equations (1) and (2) of learning theory above, the infection rate takes the role of the 
error rate R, the risk exposure time, ε , corresponds to the accumulated 
experience/knowledge from which we learn and is measured in days, the time of peak εT, is 
the time for the rate to approach its achievable minimum value, Rm (the lowest or minimum 
achievable error rate, in  equation (2).  Based on the available data for China and S Korea, 
using countermeasures, the overall recovery  timescale is about 20-30 days to attain the 
minimum infection rate of about 50 per day .   
 
For further direct comparison, we plot also the reduction curve of the world pulmonary 
disease death rate per day for 1870-1970 (Source: Human Nature, T.McKeown, April, 1978 
as given in Horwitz and Ferleger "Statistics for Social Change"). We can simply think of this 
overall World data over the years, and its reduction trend, as resulting from many 
pandemics and multiple outbreaks of influenzas and differing virus strains, that have been 
more and more successfully treated as we have  learned to better control/reduce infections 
and improved effect recovery, thus steadily reducing the rate.   
          
Despite the huge differences in timescales, the “recovery rate curve” is simply the 
exponential Universal Learning Curve of equation (3) above, given by  E*= exp- KN. 
 
 

  
Figure 4 Predicted recovery rate curve (universal learning curve) compared to data.  
 
The CoVid -19 pandemic and pulmonary disease recovery rate data all fit with the 
Universal Learning Curve trend (which is known to fit millions of events with learning). 
The infection rate, E*, normalized to the initial peak value, as a function of the time elapsed 
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from the peak,  N*, normalized to the time of peak are also plotted for China (data circles) 
and S. Korea (open triangles), and for Italy (squares) based on about a 30–day timescale.  

 
The key point is that all the data follow almost exactly the same decreasing trajectory and, 
furthermore, the learning curve is nearly the same (K~3), as previously found for any 
learning experience on outcomes, accidents, events of any other modern technological 
system operated by humans. Indeed, the results  surprisingly  follow the curve developed 
some ten years after it was first discovered, while working on completely different data. 
We can claim that this trend decline due to learning is direct evidence of learning about risk 
reduction also in this case of the pandemic, and call it the Universal Recovery Curve. 
 
To further confirm the URC general theoretical correlation, we next compare to the latest 
projections for medical resource loads made by complex computer modeling of infections  
and deaths in the USA ( IHME, 2020 ). As a reasonable surrogate measure,  the number of 
required hospital  beds was assumed to be proportional to the number of infections, which 
daily values were directly transcribed  from the website graph (available at 
covid19.healthdata.org/united-states-of-america). The interval available is a projection 
from a peak resource use on April 15th out to July 1st, 2020, so to be consistent with the 
actual available country data. The infection rate per day, R, was calculated until attaining an 
assumed but realistic minimum rate, Rm, of 50 per day on 10th June (55 days later). 
 

 
Figure 5 Comparison of learning theory to model predictions of required hospital beds 
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The comparisons of the observed decreasing infection rate for both (independent) 
countries  (China data circles, S. Korea open triangles) and the widely used IHME model 
projections with the Universal Learning Curve shown in the Figures 4 and 5 are compelling.  
The data fits with learning curve theory, which we know already incidentally fits millions of 
events, accidents and trends. China, Italy and S. Korea have indeed learned how to control 
the spread of a viral pandemic. All other countries/systems/people have to do to predict 
the infection rate evolution is to follow the same trend after first reaching their rate peak. 
This type of analysis allows countries and systems to compare the effectiveness of their 
countermeasures implemented to control the pandemics and the related timescales. 
 
A word of caution is necessary, however, these numbers cannot be exact and are not meant 
to be exact. These are just calculated risk estimates, which are subject to uncertainty 
related to all the many endogenous factors related to the virus spreading, and the actuation 
and respect of the measures implemented. The numbers provide guidance to thinking 
about the absolute risk and the best approach to take given the risk is constant unless we 
do nothing to reduce it!  
 
The strong message here is that the rational and logical approach to dealing with the risk of 
the occurring pandemic (as with any other risk, for that matter) is to limit own personal 
and potential exposure, and to minimize both the size and scale of the potentially exposed 
population. This is precisely what governments and contagious disease experts have been 
saying all along- but is also what any individual should be doing anyway while exposed to 
the risks of “normal” life. A sort of ethics of resilience (B. Rajaonah and E. Zio, 2020). 
 

6. Recovery trajectory and timescale predictions for Italy 
 
In the above graph of Figure 4, the infection reduction/recovery rate for Italy was 
estimated to occur in about 30 days, by assuming it was a timeframe similar to that of 
China. The present prediction is, then, that there is at least a 30-day recovery timeframe as 
the horizon for the infection rate to get down to a minimum achievable level of say 50 per 
day (as for China); infection rates should be below 10% of the peak (i.e. about 600 per day) 
in about 3 weeks from the peak. But this prediction can be effectively monitored and 
should be updated as more data arises. 
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Figure 6 Preliminary calculated recovery trajectories for Italy, and the expected trends based 
on different peak  rate time values εT of 20,30 and 40 days (data to April 2)  

 
In fact, at present, only very few days have elapsed since the seemingly reached peak rate, 
so it is useful to look at a future trajectory. This can be done as in Figure 6, by plotting the 
data simply changing the denominator of the non-dimensional elapsed time after the peak 
rate N* from the 30 days (27 March to 27 April) assumed in analogy to China, to say 20 
days (27 March to 6 April) or 40 days (27 March to 6 May) for estimated reduction to the 
(non-zero) minimum (i.e. 50-100 per day). This sensitivity analysis allows to verify, based 
on objective data, whether or not any change or improvement in countermeasures is 
warranted, and by how much. The calculations can assume the infection rate peaked either 
on about 24 March or March 29, the latter being shown as giving the fewest data points  
(see Figure 6 above)  
 

7. Conclusions 
 
In this paper, we have originally proposed to adapt Learning Theory for describing the 
reduction of pandemic infections like that of CoVid-19. A key point is to look at infection 
rate, as a measure of error outcome, and time, as a measure of experience/knowledge or 
risk exposure which allows learning. The analyses of the currently available data show that 
the CoVid-19 infection rate data follow, after peaking, almost exactly the Universal 
Learning Curve describing the decreasing trajectory of many other instances where 
humans learn to apply effective countermeasures. More specifically, the learning curve is 
nearly the same (with universal constant K~3) as for any learning experience reducing 
outcomes, accidents and events for other modern technological system operated by 
humans.  
We claim that this trend decline due to learning is direct evidence of learning about risk 
reduction, also in this case of the pandemic, and call it the Universal Recovery Curve. It can 
be used to predict the expected time at which the pandemic will be under control, in terms 
of minimum achievable infection rate, and to test and demonstrate the relative 
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effectiveness of the adopted countermeasures. As such, it is a fundamental tool for risk 
handling during the development of a pandemic.  
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