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Abstract

Traditional methods to infer compartmental epidemic models with time-varying
dynamics can only capture continuous changes in the dynamic. However, many
changes are discontinuous due to sudden interventions, such as city lockdown and
opening of field hospitals. To model the discontinuities, this study introduces the
tool of total variation regularization, which regulates the temporal changes of the
dynamic parameters, such as the transmission rate. To recover the ground truth
dynamic, this study designs a novel yet straightforward optimization algorithm,
dubbed iterative Nelder-Mead, which repeatedly applies the Nelder-Mead algo-
rithm. Experiments on the simulated data show that the proposed approach can
qualitatively reproduce the discontinuities of the underlying dynamics. To extend
this research to real data as well as to help researchers worldwide to fight against
COVID-19, the author releases his research platform as an open-source package.

1 Introduction

Compartmental models (Kermack and McKendrick, 1927), such as SIR, are an important research
subject in epidemiology to quantify infectious disease dynamics (Siettos and Russo, 2013). This
family of models divides the population into several compartments, among which each individual
transfers according to some dynamic. For instance, the SIR model prescribes three compartments,
with the Susceptible compartment for those vulnerable, the Infectious compartment for those
contagious, and the Removed compartment for those either obtained immunity after the recovery or
died from the infection (Figure 1). The dynamic, on the other hand, governs the mechanic of how
each individual transfers among these three compartments.

Within this fruitful research branch, a moderate quantity of effort is spent in capturing the time-varing
aspect of the dynamic. That is, the dynamic is not a constant one through the entirety of the epidemic;
rather, it varies due to changing population behaviors, public interventions, seasonal effects, viral
evolution, etc. This type of models is not only, obviously, more realistic but also more coherent
to empirical studies. For instance, the 1918 influenza pandemic displayed “three distinct waves”
of infection within a 12-month period (He et al., 2011, p. 283). This kind of phenomenon can be
explained only by a time-varying dynamic.

To capture the time-varying aspect, nearly all efforts are around the hypothesis that the parameters
characterizing the dynamic are continuous deterministic functions or stochastic processes of time.
One parameter particularly honored by this privilege is the transmission rate, which quantifies how
often an infectious infects a susceptible. In the case of continuous deterministic function, it has
been modeled as exponential functions (Chowell et al., 2004; Althaus, 2014), sigmoid functions
(Camacho et al., 2014), sinusoid functions (Stocks et al., 2018), cubic B-splines (He et al., 2011), and
Legendre polynomials (Smirnova et al., 2017). In the case of continuous stochastic process, it has
been modeled as Wiener process (Dureau, Kalogeropoulos and Baguelin, 2013; Funk et al., 2016;
Cazelles et al., 2018; Kucharski et al., 2020) and, more generally, Gaussian processes with periodic
kernel or squared exponential kernel (Rasmussen et al., 2011; Xu et al., 2016).

Whilst continuous machinery is useful for capturing the time-varying aspect of the dynamic, it is
not suitable to capture the sudden shocks on the dynamic, which entails discontinuity. For instance,
during the recent Coronavirus Disease 2019 (COVID-19) pandemic, multiple regions (e.g., Wuhan,
Italy, France) were suddenly closed off. These measures, especially the draconian one in Wuhan,
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were aimed at instantly reducing the transmission rate. Modeling them via a continuous function
or process has the danger of smoothing out the transmission rate shift and thus underestimates the
efficiency of these measures.

For the accurate detection of such sudden changes in the dynamic, this article does not impose the
property of continuity let alone smoothness on the dynamic. Instead, the model estimation error is
controlled by total variation regularization. Total variation regularization has the effect of detecting
discontinuities within the investigated object (e.g., function, process). It is used, among others, in
image denoising, wherein it successfully restores the sharpness of images. The hence restored object
has a well-known staircase visual effect. By applying total variation regularization on the calibration
of epidemic dynamics, we can hope to reconstruct a dynamic mostly constant while still allowing
some phase shifts.

It is worth noting that the approach proposed here is fundamentally different from the piecewise
approach (such as in Funk et al., 2017). The latter artificially breaks the epidemic into several periods
and then models each time period individually, whilst the former does not presume any locations
to implant such breakages and, instead, lets the data speak for itself. The latter is reasonable for
the modeling of public interventions, which generate foreseeable sudden impact on the epidemic
dynamic. The former is more general and can additionally capture invisible phase shifts induced
by, say, viral evolution. Furthermore, total variation regularization can still be preferable for the
modeling of foreseeable phase shifts, for these shifts may not happen immediately after, say, the
public intervention. The piecewise approach may neglect the delays and thus underestimate the
efficiency of the interventions.

To apply total variation regularization in a principled way, this research adopted the well-known
state-space framework1 in epidemiology. This framework supposes that the underlying compart-
ment status is a latent object and hence not directly observable. To infer the latent status, we can only
collect secondary information which is derived from it. Using the machine learning terminology, it
can be regarded as a Hidden Markov Model (HMM). State-space framework enables the evidence
synthesis approach, which leverages data from multiple sources: Surveillance data (i.e., prevalence
and incidence) can be supplemented by additional serological, demographic, administrative, envi-
ronmental, or phylogenetic data2. Interested readers are referred to Birrell et al. (2018, Section 3)’s
review for some examples. A recent study using phylogenetic data to infer the epidemic of COVID-19
can be found in Kucharski et al. (2020)’s work.

To infer the latent dynamic in the state-space framework, researchers almost exclusively adopt some
Monte Carlo methods such as Sequential Monte Carlo (a.k.a. particle filter) or particle Markov Chain
Monte Carlo (pMCMC). The procedure starts with the combination of the prior provided by the
aforementioned hypothesis on the latent dynamic and the likelihood provided by the observation
mechanism, followed by the simulation of the posterior via some Monte Carlo method. This procedure
is so streamlined that an entire software package3 has been developed for it (Dureau, Ballesteros and
Bogich, 2013).

Here, this article instead designs an iterative Nelder-Mead algorithm towards the maximum a
posteriori (MAP) estimate, where the objective function of interest is the likelihood regularized by
total variation4. In contrast to Monte Carlo methods estimating the posterior mean, MAP focuses
on the posterior mode. Former experiences in image denoising suggest that MAP restores the
discontinuities in the investigated object much better than the posterior mean does. Therefore, the
key here is to design a suitable optimization algorithm to find the global optimum. Experiences
conducted in this study show that the hereby proposed iterative Nelder-Mead algorithm is a qualified
candidate for this purpose, and that it qualitatively reconstructs the underlying dynamic.

It is worth noting that, due to the nonparametric nature of the model adopted, the objective function
under investigation here is neither convex nor unimodal, which differentiates this work from many
others also applying the Nelder-Meal algorithm but on a unimodal objective thanks to a parametric
model. When the objective is unimodel, all reasonable descent algorithms all converge to the

1Originally named State-Space Model (SSM). Here I mimicked several other researchers (such as Birrell
et al., 2018) and named it as a framework to prevent any confusion with the modeling of the dynamics.

2The last one is related to coalescent theory.
3https://github.com/StateSpaceModels/ssm.
4The regularization can be regarded as an equivalent of prior. More on this later.
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Figure 1: Upper: SIR. Lower: SIRQ.

same optimum (ignoring the convergence rate). Nevertheless, when the objective is not unimodel,
algorithms can be easily trapped in some local optimum. It takes therefore much skill to reach the
global optimum. In particular, this study discovered that the regularization hyperparameter does not
only controls the bias of the model but also governs the topology of the objective function. That is, a
too small value or a too large value can both render the objective difficult to optimize and hence trap
the optimization algorithm.

The contribution of this study is 3-fold.

• It is the first one to propose total variation regularization to capture the discontinuity of
time-varying epidemic dynamics. Moreover, it is the first one to apply the nonparametric
approach simultaneously on more than one parameter. Thanks to the state-space framework
it adopted, the methodology of this study is generalizable.

• It is the first one to (successfully) use non Monte Carlo methods for the inference of
nonparametric compartmental models. The iterative Nelder-Mead algorithm designed for
this purpose reveals the role of hyperparameters in tuning the topology of the objective
function. Such knowledge might help solve the mysteries in the training of deep neural
networks.

• Although the proposed approach is tested only on simulated data, I release my research
platform as an open-source package to help researchers and practitioners worldwide to fight
against COVID-19.

This paper is organized as follows. Section 2 introduces the most classic compartmental model SIR
as well as designs an extension SIRQ. The former describes an environment without interventions,
whilst the latter adds an additional compartment Quarantined to model the intervention. Section 3
describes the state-space framework, whose two components are the state equation and the observation
equation. Section 4 presents the idea of total variation regularization and its potential to detect
discontinuity. To solve the associated multimodal objective function, the iterative Nelder-Mead
algorithm is proposed. Section 5 tests the proposed approach on simulated data, and the results show
that the dynamic can be qualitatively recovered.

2 Compartmental models: SIR and SIRQ

SIR, standing for Susceptible-Infectious-Removed, is the basic compartmental model. It is
important albeit simple. By using SIR as a stepping stone, we can understand more complex models
such as SIRQ, which is promoted as a novel model here.

2.1 SIR model

The SIR model separates the population into three compartments: susceptible, infectious, and
removed. Each individual (logically) transfers among these compartments according to his health
status (Figure 1).

Susceptible: The population in this compartment are healthy people who are vulnerable to the
disease.
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Infectious: The population in this compartment are infected people who are free to infect those
susceptible.

Removed: This compartment consists of two groups of people – those died from the disease or
recovered from it and hence obtained immunity.

To describe the dynamic governing the mechanism, two types of setups are possible – stochastic
or deterministic. The stochastic one assumes that each individual transfers according to some
probability. The usual setup is that the probability of a healthy people transferring from susceptible
to infectious follows an exponential distribution of parameter β, and the probability of an infected
people transferring from infectious to removed follows an (independent) exponential distribution
of parameter γ.

On the other hand, the deterministic one simplifies the above process by taking advantage of the
law of large number. Instead of studying the dynamic on an individual basis, the deterministic setup
considers it at the aggregate level. That is, the number of individual in each compartment varies
according to some ordinary differential equation.

Let St, It, and Rt be the number of susceptible, infectious, and removed5 at time t, respectively. Let
Nt = St + It +Rt be the number of total population, which is supposed to be constant (i.e., there
is no newborn or death because of reasons other than the infectious disease in question). Then the
stochastic dynamic can be expressed by the following equations.

Pr(St+h − St = −1, It+h − It = 1|St, It, Rt) = βStIth/Nt + o(h),

Pr(It+h − It = −1, Rt+h −Rt = 1|St, It, Rt) = γIth+ o(h).

The deterministic dynamic can be expressed by the following ordinary differential equations (ODE).

dSt
dt

= −βStIt
Nt

,

dIt
dt

=
βStIt
Nt

− γIt,

dRt
dt

= γIt.

For large-scale epidemic, the deterministic dynamic is a good enough approximation of the stochastic
dynamic (Kurtz, 1987) (see Figure 2). Interested readers are also referred to Siettos and Russo (2013,
pp. 301) for a quick review and to Birrell et al. (2018, Section 3.2) for a detailed discussion.

The parameter β is called the transmission rate, and γ is called the removal rate. The ratio β/γ is
associated with the most important quantity of infectious diseases – the basic reproduction number
R0 = β

γ
7, which stands for the average number of victims an infectious is expected to infect at the

very beginning of the outbreak. IfR0 > 1, the disease becomes an epidemic; ifR0 < 1, the disease
dies out; ifR0 = 1, it is an endemic (i.e., the number of infectious neither grows nor deceases8).

2.2 SIRQ model

There are many extensions to SIR. Here, I designs another one, dubbed susceptible-infectious-
removed-quarantined (SIRQ), to include the influence of public interventions. SIRQ creates
a fourth compartment quarantined, which hosts the part of infectious getting quarantined or
hospitalized (Figure 1). Therefore, the infectious can have two futures: either they stay wild and get
nature selected (i.e., removed) as in the SIR model, or they get quarantined, which also prevents them
from infecting others.

5Here, I slightly abused the terminology by using the name of the compartment to denote people within that
compartment.

6 www.zhengwenjie.net/sir.
7Be careful not to confuse it with the number of population in the removed compartment at time 0, denoted

by the plain R0.
8Although the number of infectious remains constant, the total number of victims still increases. There is

just a dynamic balance between those newly infected and those newly removed.
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Figure 2: SIR model simulated with various algorithms. Figure from Wenjie Zheng’s blog6. Left: deterministic
dynamic, ODE with Euler scheme. Middle: stochastic dynamic, Gillespie algorithm (one instance). Right:
stochastic dynamic, vanilla simulation (one instance).

The dynamic is very similar to the above. Here I write down only the deterministic one.
dSt
dt

= −βStIt
Nt

,

dIt
dt

=
βStIt
Nt

− γIt − δIt,

dRt
dt

= γIt,

dQt
dt

= δIt,

where Qt is the number of quarantined at time t, Nt = St + It +Rt +Qt is the total number of the
population, and δ is the rate the infectious getting quarantined. The ratio γ/δ reflects the ratio of the
infectious staying under radar. Here, the quarantined are assumed not infectious (though they may
infect the healthcare personnel, we consider this possibility to to be low). Also, we do not further
specify the outflow of the quarantined compartment, so it contains three types of people – those
being quarantined, those died during the quarantine, and those recovered during the quarantine.

This model is particularly relevant to the situation of COVID-19. On the one hand, many infectious
of COVID-19 are asymptomatic. They will hence not go to hospital, and they get recovered all by
themselves. On the other hand, given the high transmissibility of COVID-19, there is not enough
hospital resource for each patient. Many infectious have to stay wild and get nature selected. Besides
the above two reasons, there is another one specific to China, mainland: the recall of the test kits is
unsatisfying.

One usage of this model is to speculate the ratio of asymptomatic patients or the ratio of hospitalization
for the evaluation of the government efficiency. The removed compartment is supposed to be
undetectable, whilst the quarantined compartment can be accurately detected by the confirmed
cases. Experiments show that, in the parametric setting, the ratio of asymptomatic patients or the like
can be accurately inferred given only sparse information on the infectious and the quarantined.

Concerning the basic reproduction number, it has two choices. The controlled version uses β
γ+θ ,

whose value determines whether the disease will become an epidemic or die out. The uncontrolled
version uses β

γ , which stands for the outcome if the quarantine measure is ever called off.

3 State-space framework

The state-space framework has become the de facto state of the art for the usage of compartment
models. Many studies, such as the one by Wu et al. (2020), use this framework implicitly. This
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Figure 3: A state-space framework example featuring SIR.

Figure 4: Graphical model for the state-space framework.

section will first lay down a solid mathematical foundation of the state-space framework—which will
later facilitate the introduction of total variation regularizatio—and then complement it with some
concrete examples.

3.1 Mathematical foundation

The state-space framework is very similar to the Hidden Markov Model in machine learning. It
assumes that the compartment status is in the invisible state space, and that we can only observe
secondary information derived from the states. Let us illustrate this concept with SIR. The vector
(St, It, Rt) forms the (invisible) state at time t. The dynamic characterized by the parameter (β, γ)
connects the temporally successive states (e.g., (St, It, Rt) and (St+1, It+1, Rt+1)). The state at
time t determines the evidence data that we could collect at time t (Figure 3).

In the state-space framework, there are usually two tasks. The first one is to infer the underlying
state status, which tells us the severity of the current epidemic. The second one is to characterize the
properties (e.g.,R0) of the epidemic itself, which helps us evaluate the ferocity of our enemy. These
two tasks are interdependent: the fulfillment of one entails the other.

It is a principled way to infer these two tasks together through the graphical model (Figure 4). The
epidemic dynamic parameter θ (in SIR, θ = (β, γ)) governs the temporal transition of the states Xt

(in SIR, Xt = (St, It, Rt)):

Xt+1|Xt ∼ pθ(·|Xt) (state equation)

This probability distribution can be degenerate, in which case it is reduced to a deterministic epidemic
dynamic. The previous section is entirely dedicated for the description of pθ. Then, the invisible
states Xt generates some empirical evidence, denoted as Yt:

Yt|Xt ∼ pη̄(·|Xt) (observation equation),

where η̄ is often manually selected by the researchers to prevent any unintended complexity. Bayesian
statisticians may go further by supposing the parameter θ lies in some probability space. Thus, they
will include in the model a prior:

θ ∼ π̄(·) (prior),
where the prior π̄ is preset. To infer the state Xt and the parameter θ, we can build their posterior
distribution, which is proportional to the joint distribution. Let xi be the value observed of Xi and let
x1:T denote the tuple x1, . . . , xT , then the posterior distribution

p(θ, x1:T |y1:T ) ∝ pη̄(y1:T |x1:T )pθ(x1:T )π̄(θ) (posterior).

The above assumes the Markov property. In practice, the state-space framework can be more general
by abandoning the Markov property or by introducing dependence between Yt. Since the basic
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is already enough for understanding this article, we will stop here and turn to some examples. In
particular, the candidates for the state equation are already described in the previous section in the
form of SIR and SIRQ. The following will only present some candidates for the observation equation
and the prior.

3.2 Candidates for the observation equation

The observation equation is used to introduce evidences for the inference of the dynamic and the latent
states. Traditionally we use only surveillance data, but now an increasing number of studies start to
use exotic data such as serological, demographic, administrative, environmental, and phylogenetic
data (Birrell et al., 2018).

The first example is how researchers used traveling data to infer the total number of COVID-19
patients in Wuhan, China. In January, 2020, there are a large number of people infected by COVID-
19 in Wuhan city. Unaware of the infection, they traveled abroad and later got diagnosed. Imai
et al. (2020) modeled this natural experiment as sampling with replacement. That is, the number of
patients diagnosed abroad follows a binomial distribution Bin(m, I/N), where m stands for the total
number of outbound travelers, I the number of infectious, and N the total population. Rigorously
speaking, the natural experiment is more like sampling without replacement, but the difference is
neglectable when m � N . Wu et al. (2020) modeled it, alternatively, as a Poisson distribution
Poi(mI/N). Incidentally, there is no fundamental difference between the above two options, for
Bin(m, I/N) ≈ Poi(mI/N) when m > 20 and I � N thanks to the law of rare events.

The second example is based more on my personal opinion than on the literature: I advocate to
use the number of confirmed cases to infer the quarantined compartment. It is attempting to use
the confirmed cases for the infectious compartment. Nonetheless, a smarter and more sensible
arrangement is to use them for the removed compartment in SIR or the quarantined compartment
in SIRQ. When a person is confirmed infected, he most likely will be admitted to the hospital and thus
lose the ability to infect others (ignoring the minor risk of infecting the healthcare personnel). This is
essentially the removed compartment in SIR used for. If the hospitalization is imperfect (i.e., a part
of patients are not confirmed and have to be nature selected), this is a perfect scenario for the SIRQ
model, where the confirmed cases can be associated with the quarantined compartment. Xu et al.
(2016, Section 5.2) thought alike and used the confirmed cases to infer the removed compartment.
In this article, I will use the confirmed cases for the quarantined compartment. The observation
equation can either feature the Gaussian distribution or the Poisson distribution. In fact, there is no
fundamental difference, for Poi(λ) ≈ N (λ, λ) for sufficiently large λ.

The third example is to use the serological data to infer the removed compartment by detecting the
antibody in the blood. In an imperfect quarantine scenario modeled by SIRQ, some patients survived
the disease without formal medical intervention. This part of patients are never administratively
confirmed, but their existence and the death of the unconfirmed together comment on the severity of
the epidemic. To fairly evaluate the epidemic, it is essential to estimate the portion of unconfirmed
cases. Since recovered people will have antibody in the blood, the serological data can help us screen
out this group of people. To get an unbiased estimate, we can sample the whole population, then it is
reduced to an elementary statistics problem.

3.3 Candidates for the prior

The prior concerns the preset distribution on the parameter characterizing the dynamic (the parameter
characterizing the observation equation is preset). This parameter can be finite-dimensional (vector) or
infinite-dimensional (function). The finite-dimensional cases usually use an uninformative prior (i.e.,
constant), and the posterior degenerates to the plain likelihood. It is only in the infinite-dimensional
cases that the selection of prior becomes nontrivial.

In the infinite-dimensional case, the parameter θt is time-varying. We are to sample functions for θt
in some function space. In other words, θt is a stochastic process. There are mainly two candidate
spaces for this purpose. The first defines the stochastic process by a stochastic differential equation:

dh(θt) = µt,θ dt+ σt,θ dBt,

where µt,θ is the drift, σt,θ is the volatility, Bt is a standard Wiener process, and h(·) is a preset
deterministic function. The most common choice for θt is Brownian motion where h(·) = · and
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geometric Brownian motion where h(·) = log(·). If the process is expected to converge, Dureau,
Kalogeropoulos and Baguelin (2013, p. 4) also proposed the Ornstein Uhlenbeck process.

The second function space is the Gaussian process. A Gaussian process has the property that its
arbitrary segments follow a multivariate Gaussian distribution, hence the name. It is wildly used in
nonparametric Bayesian statistics. The distribution of the Gaussian process is uniquely defined by its
expectation (function) and its kernel (covariance function) K(·, ·). Xu et al. (2016) investigated two
types of kernels: squared exponential

K(x, y) = α2 exp[−(x− y)2/(2`2)]

and periodic
K(x, y) = α2 exp(−`−1(1− cos(2πω−1|x− y|))).

In the above description, the parameter θt is quite abstract. In practice, this θt has concrete meaning.
For example, in SIRQ, θt = (βt, γt, δt), in which case, we can apply independent priors individually
on each component.

4 Total variation regularization and iterative Nelder-Mead

Prior can limit the model complexity and hence control the model estimation error in the context
of bias-variance tradeoff. An alternative approach is to apply a regularization on the log-likelihood.
This section introduces the concept of total variation regularization, which is wildly used in image
denoising. It has the advantage of detecting the discontinuities in the investigated object, and thus it is
expected here to capture sudden shocks on the dynamics. In contrast to MCMC, which calculates the
posterior mean, this section designs a novel algorithm, dubbed iterative Nelder-Mead, to calculate
the (regularization) posterior mode.

4.1 Total variation regularization

Section 3.1 formulates the posterior as

pη̄(y1:T |x1:T )pθ(x1:T )π̄(θ).

By applying logarithm, we get

log pη̄(y1:T |x1:T ) + log pθ(x1:T )︸ ︷︷ ︸
log-likelihood

+ log π̄(θ)︸ ︷︷ ︸
regularization

,

where the last term can be regarded as a regularization. In other words, prior is one type of
regularization.

An alternative regularization would be substituting the prior for a norm applied on θ:

log pη̄(y1:T |x1:T ) + log pθ(x1:T )︸ ︷︷ ︸
log-likelihood

+ ‖θ‖︸︷︷︸
regularization

.

This norm can be, among others, total variation

‖θ‖TV := sup
∑
i

|θti+1
− θti |,

where the supreme runs over the set of all partitions, or quadratic variation

[θ] := lim
‖P‖→0

∑
i

(θti+1
− θti)2,

where P ranges over all partitions and the norm is the mesh.

The above frames the prior as a type of regularization; the converse is also true. Total variation
regularization or quadratic variation regularization can be regarded as a prior on the space of functions
with finite total variation or finite quadratic variation, respectively. In particular, quadratic variation
regularization is equivalent to specifying θ as a Brownian motion.
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Figure 5: Topology of the objective function with various regularization weights. Top: under-regularized.
Middle: over-regularized. Bottom: well-regularized.

4.2 Iterative Nelder-Mead

It is wildly perceived, in the computer vision community, that the posterior mean does not recover
the discontinuity as well as the posterior mode does. This subsection describes the challenges to
calculate the posterior mode as well as provides solutions to it.

The first challenge is the unavailability of the gradient. Although the part of the likelihood associated
with the observation equation can be easily differentiated, the part associated with the state equation
does not have closed-forms. Therefore, we have to rely on some zero-order algorithm. One algorithm
I see fit is the Nelder-Mead method (a.k.a. downhill simplex method), which is prevalent in civil
engineering. For example, to build a suspension bridge, an engineer has to choose the thickness
of each strut, cable, and pier. These elements are interdependent, and it is not easy to determine
the impact of changing any specific element. Analogously, in our context, changing the value of
the dynamic at any single point is unlikely to have a significant impact on the whole epidemic (the
integral does not depend on the function values on a null set).

The second challenge is multimodality of the objective function, which refers to functions with
multiple modes. Two factors contribute to this multimodality. On the one hand, when the observation
is sparse, there are many candidate dynamics able to reproduce the observation accurately; each can-
didate then forms a valley. On the other hand, constant dynamics do not suffer from the regularization
penalty, and the modification on a single point will not affect the overall dynamic (null set) but does
increase total variation, so each constant dynamic also forms a valley. The optimization algorithm
can therefore be easily trapped in some local optimum. To mitigate the influence of multimodality,
I designed the iterative Nelder-Mead algorithm, which repeatedly rerun Nelder-Mead on the new
local optimum (Algorithm 1).

Algorithm 1 Iterative Nelder-Mead

Require: initiate point x, objective function f
repeat

x← Nelder-Mead(f, x)
until stop condition fulfilled

Iterative Nelder-Mead mitigates the problem of multimodality to some extent, but it does not affect
the hardship of the problem itself. During the experiments, I discovered that the regularization
hyperparameter (weight) plays a critical role in defining the hardship of the problem by altering the
topology of the objective function. Indeed, when the regularization weight is small, the objective
function has many equally good local minima: the desired local minimum hides among its peers.
When the regularization weight is large, the objective function contains fewer local minima, but each
minimum is like an abyss: once the solver loses its way into one abyss, it has no chance to ever
escape. Therefore, the regularization weight should be something in-between – highlight the desired
local minimum while preserving the smoothness of the objective function (Figure 5).
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5 Experiments

Three types of dynamics and three types of (simulated) data are investigated in this study. The three
types of dynamics are constant SIRQ with no regularization, time-varying SIR with regularization,
and time-varying SIRQ with regularization. All dynamics use the ODE versions specified in Section 2
and are implemented with the Euler-Maruyama scheme.

The three types of data are virulence data, surveillance data, and serological data:

Virulence. Sample the population and test for the pathogen (e.g., virus). This data is used for the
estimation of the current number of infectious people

Surveillance. The confirmed and thus quarantined cases of the disease. This data is used for the
estimation of the number of removed (in SIR) or quarantined (in SIRQ) people.

Serological. Sample the population and test for the antibody. This data is used for the estimation
of the removed people in SIRQ provided that the infectious disease in question is a novel
one. Otherwise, this data should be used not only for the removed but also for the immune
compartment in an MSIR model. To reduce the sampling cost, this data can be collected
along with the virulence data.

Experiment results are promising and serve well as a proof of concept. Limited by the budget, I
conducted the experiments on simulated data only. To further test the model and the algorithm on
real datasets as well as to help the whole world fight against the COVID-19 pandemic, I release my
research platform as an open-source package9.

5.1 Constant SIRQ

The SIRQ model has three parameters θ = (β, γ, δ). The simulation scenario is set in a small
town with 1000 inhabitants. It starts with 10 infectious people and 0 removed or quarantined
people. Then the epidemic develops with a dynamic (β, γ, δ) = (0.3, 0.03, 0.07). Two types of
data evidences are available for the inference of the epidemic. The virulence data is 9 samples
during the life of the epidemic, with a sample size of 10 people each. The surveillance data is the
number of confirmed cases at 8 different moments. The maximum likelihood estimate yields the
value (β̂, γ̂, δ̂) = (0.307, 0.030, 0.073), very close to the ground truth.

This experiment does not include any time-varying factor. Rather, it demonstrates the power of this
simple model. With virulence data and surveillance data only, we are able to precisely estimate
the basic reproduction rate and the quarantine ratio δ/γ. This model is particularly useful in the
COVID-19 pandemic, where many are asymptomatic patients.

5.2 Time-varying SIR with regularization

The model tested in this subsection has one time-varying parameter and one constant parameter
θt = (βt, γ). The transmission rate βt is supposed to be time-varying to reflect the gatherings in
holidays, the adoption of social distancing, and so forth. The removal rate γ is set to be constant
because the aggressiveness of the virus and the resistance of the population are believed to be stable
(unless the virus mutates). In the experiment, the ground truth βt firstly increases because of holiday
gatherings and then drops because of rising public awareness, whilst the ground truth γ is held stable
with little variation (Figure 6).

The epidemic takes place in a city of 100k inhabitants. It starts with 100 infectious people and
0 removed people. The only data available to infer the epidemic is the 9-sample virulence data
during the life of the epidemic, with each sample containing 1k people. The lack of the number of
confirmed cases suggests that this is a foreign country trying to evaluate an epidemic struck country
with information censorship; the virulence data corresponds to the exported cases.

The data is considered sparse in contrast to the 100-dimensional parameter, which justifies the
necessity of regularization. I applied total variation regularization and solved it with iterative Nelder-

9Temporally hosted on https://github.com/WenjieZ/2019-nCoV. Documentations are under develop-
ment.
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Figure 6: Time-varying SIR. Left: the dynamic. Right: the resulted epidemic and the evidence (dots). Top:
ground truth. Bottom: estimation. β denotes the transmission rate; γ denotes the removal rate.

Figure 7: Time-varying SIRQ. Left: the dynamic. Right: the resulted epidemic and the evidences (dots). Top:
ground truth. Bottom: estimation. β denotes the transmission rate; γ denotes the removal rate; θ should be
replaced with δ, which denotes the quarantine rate.

Mead. The estimated dynamic qualitatively recovers the ground truth. In addition, the estimated
dynamic can perfectly generate evidence identical to the sample collected (Figure 6).

5.3 Time-varying SIRQ with regularization

The model tested in this subsection has two time-varying parameters and one constant parameter
θt = (βt, γ, δt). The transmission rate βt is supposed to be time-varying to reflect the gatherings in
holidays, the adoption of social distancing, and so forth. The removal rate γ is set to be constant
because the aggressiveness of the virus and the resistance of the population are believed to be stable
(unless the virus mutates). The quarantine rate δt is supposed to be time-varying to reflect the opening
of field hospitals. In the experiment, the ground truth βt is mostly constant with one sudden drop
because of the city lockdown, whilst the ground truth δt rises suddenly thanks to the opening of a
field hospital and then drops to the previous level because the hospital is full (Figure 7).
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The epidemic takes place in a city of 100k inhabitants. It starts with 100 infectious people and 0
removed or quarantined people. The data available here is much richer than previous. It includes
a 9-sample virulence data with each containing 1k people, the confirmed cases, and a 9-sample
serological data with each also containing 1k people. These information are not too difficult to obtain
for countries with excellent governance.

One challenge to infer this model is the coexistence of two time-varying parameters. Still, total
variation regularization and iterative Nelder-Mead succeeded in qualitatively reproducing the ground
truth, and the estimated dynamic generates evidences perfectly fit to the reality.

6 Conclusions and outlook

The combination of total variation regularization and iterative Nelder-Mead successfully detects
the discontinuities of the underlying time-varying dynamics. When the epidemic follows an SIR
dynamic with time-varying transmission rate βt, the proposed combination qualitatively recovers
the dynamic with the help of sparse virulence data. When the epidemic follows an SIRQ dynamic
with time-varing transmission rate βt and time-varying quarantine rate δt, the proposed combination
qualitatively recovers the dynamic with the help of virulence, surveillance, and serological data.

There are three directions to improve this study. Firstly, it is unclear whether the local optimum
achieved by iterative Nelder-Mead is the global one. Since the optimization algorithm plays a critical
role in the solution finding process, one part of research effort should be directed to improve the
searching ability of the optimization algorithm. Secondly, it is currently unclear whether these
dynamics could be quantitatively perfectly recovered with more data or under better conditions. One
research direction thus consists of precisely inferring the underlying dynamics so that public policies
(e.g., city lockdown) could be evaluated. It also helps compare the efficiency of different policies
in the same country and the efficiency of the same policy in different countries. Thirdly and most
importantly, it is urgent to leverage the machinery provided by this study against COVID-19.
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