Inferring the number of COVID-19 cases from recently reported deaths Extended data

1. MODEL PARAMETERS

1.1. Serial interval

Our model requires some epidemiological parameters in order to simulate an epidemic of COVID-19. In order to ensure this epidemic reflects the true nature of the multiple global outbreaks of COVID-19, we draw from the most up-to-date probability distributions when such parameters are required.

One such parameter is the serial interval, which was taken from (1). The resulting distribution fitted is a Lognormal distribution with a mean of 4.7 days (95% Crl: 3.7, 6.0) and a SD of 2.9 days (95% Crl: 1.9, 4.9). Sampling and discretizing at the time scale of days gives the following distribution used in our analysis (Figure S1):

Figure S1: Probability mass function of the serial interval distribution.

1.2 Delay from onset to death

The distribution for the delay from onset-to-death was taken from Nishiura *et al.* (1), and implemented as a discretised Gamma distribution with a shape of 4.726 and a rate 0.3151, corresponding to a mean of 15 days and a standard deviation of 6.9 days.

Figure S2: Probability mass function of onset-to-death distribution.

1.3 Number of cases per death

The numbers of cases per death was inferred from the case fatality ratio (CFR), as the number of Bernoulli trials (cases) of a Binomial distribution with 1 "success" (death) and a probability of success equal to the CFR. By definition, this means the number of cases can be drawn from a Geometric distribution with a probability equal to the CFR.

Figure S3: Probability mass function of the number of cases per death (CFR = 2%).

2. MODEL IMPLEMENTATION

Our model is implemented in a simulation algorithm involving the following steps:

For each death:

- draw a likely date of onset from the onset-to-death delay distribution; obtain one date of onset per death
- draw the total number of concurrent cases as the sample size of a Binomial distribution with probability = CFR and 1 success
- simulate several (50, by default) epidemic trajectories with a Poisson branching process using specified reproduction numbers (R) and serial interval distribution, until present time
- add epidemic trajectories from every deaths

A typical run of our model involves several hundreds (by default, 200) simulations, which are concatenated, and from which summaries are then derived.

All implementation has been realised in the R software (2), using the RECON packages *incidence* (3) and *projections* (4). Scripts and Rmarkdown documents implementing the model are freely available from github:

https://github.com/thibautjombart/covid19 cases from deaths/tree/master/analyses

A user-friendly, interactive web application implementing the model is available at: https://cmmid.github.io/visualisations/inferring-covid19-cases-from-deaths

3. COUNTRY-SPECIFIC ANALYSES

3.1. Country

We obtained dates of deaths for countries with recently reported Covid-19 related deaths and no known ongoing transmission; United Kingdom, Spain, France, and Italy. Data was obtained from https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/.

Results for 200 simulations are reported in the table below. We modelled different scenarios, using R of 1.5, 2, or 3, and CFR of 1, 2, 3, or 10%

country	R	CFR	reported	median	lower95	lower50	upper50	upper95
Spain	1.5	1 %	202	230	5	81	541	1 899
Spain	2	1 %	202	564	27	223	1 494	22 549
Spain	3	1 %	202	2 613	25	733	9 184	200 893
Spain	1.5	2 %	202	129	3	45	284	995
Spain	2	2 %	202	263	8	95	823	7 829
Spain	3	2 %	202	1 226	30	383	4 120	147 823
Spain	1.5	3 %	202	73	1	26	178	798
Spain	2	3 %	202	179	2	54	470	2 664
Spain	3	3 %	202	670	6	170	2 892	100 089
Spain	1.5	10 %	202	25	0	8	63	227
Spain	2	10 %	202	55	0	15	147	1 198
Spain	3	10 %	202	229	1	66	809	31 401
Italy	1.5	1 %	2037	1	596	20	219	1 596
Italy	2	1 %	2037	1	2 197	64	868	5 315
Italy	3	1 %	2037	1	24 298	570	8 245	115 267
Italy	1.5	2 %	2037	1	307	6	124	678
Italy	2	2 %	2037	1	1 087	15	284	2 644
Italy	3	2 %	2037	1	14 506	405	4 079	48 320

Italy	1.5	3 %	2037	1	194	5	91	392
Italy	2	3 %	2037	1	654	15	247	1 666
Italy	3	3 %	2037	1	9 512	198	3 143	31 839
Italy	1.5	10 %	2037	1	50	0	17	112
Italy	2	10 %	2037	1	224	1	81	606
Italy	3	10 %	2037	1	2 596	26	728	8 155
France	1.5	1 %	190	1	430	13	153	1 100
France	2	1 %	190	1	1 513	15	467	3 377
France	3	1 %	190	1	6 664	210	2 252	29 244
France	1.5	2 %	190	1	205	6	82	460
France	2	2 %	190	1	540	8	191	1 712
France	3	2 %	190	1	4 533	115	1 378	16 949
France	1.5	3 %	190	1	141	1	45	316
France	2	3 %	190	1	291	4	116	844
France	3	3 %	190	1	2 970	52	851	8 728
France	1.5	10 %	190	1	45	0	14	109
France	2	10 %	190	1	114	1	39	359
France	3	10 %	190	1	849	7	224	3 644

Table S1. Inferred number of cases at 4th of March in Spain, Italy, and France, assuming a net reproduction number (R) of 1.5, 2, and 3 and a case fatality ratio (CFR) of 1, 2, 3, and 10%.

4. NEGATIVE BINOMIAL ESTIMATES

We investigated the potential impact of heterogeneity in transmissibility using recent characterisation of the offspring distribution using a Negative binomial (k = 0.54 (5)). Results for a single death are reported in the table below.

R	cfr	median	lower_95	lower_50	upper_50	upper_95
1.5	0.01	261	6	97	618	2 714
2.0	0.01	640	7	244	1 763	8 908
3.0	0.01	2 989	35	555	11 177	188 220
1.5	0.02	121	5	49	311	1 894
2.0	0.02	289	5	79	758	6 023
3.0	0.02	1 358	8	310	4 190	52 341
1.5	0.03	75	2	29	240	776
2.0	0.03	183	2	58	517	2 313
3.0	0.03	853	9	227	3 425	66 083
1.5	0.10	27	0	9	56	205
2.0	0.10	56	0	14	184	1 228
3.0	0.10	204	3	53	644	12 055

Table S2. Impact of using a Negative binomial distribution for the number of secondary cases used in the branching process after introduction of a single death, on the date at which the death occurred. This table should be compared to table 1 in the main paper.

REFERENCES

- Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (2019nCoV) infections. medRxiv [Internet]. 2020; Available from: https://www.medrxiv.org/content/medrxiv/early/2020/02/17/2020.02.03.20019497.full.pdf
- 2. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org/
- 3. Kamvar ZN, Cai J, Pulliam JRC, Schumacher J, Jombart T. Epidemic curves made easy using the R package *incidence*. F1000Res. 2019 Jan 31;8:139.
- 4. Project Future Case Incidence [R package projections version 0.3.1]. [cited 2020 Mar 4]; Available from: https://cran.r-project.org/web/packages/projections/index.html
- 5. Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill [Internet]. 2020 Jan;25(4). Available from: http://dx.doi.org/10.2807/1560-7917.ES.2020.25.4.2000058