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COVID-19 is an emerging respiratory infectious disease caused by the coronavirus SARS-CoV-2.
It was first reported on in early December 2019 in Wuhan, China and within three month spread as
a pandemic around the whole globe. Here, we study macro-epidemiological patterns along the time
course of the pandemic. We compute the distribution of confirmed COVID-19 cases and deaths
for countries worldwide and for counties in the US, and provide prima facie evidence that both
distributions follow a power-law over five orders of magnitude. We are able to explain the origin of
this scaling behavior as a dual-scale process: the large-scale spread of the virus between countries and
the small-scale accumulation of case numbers within each country. Assuming exponential growth on
both scales, the critical exponent of the power-law is determined by the ratio of large-scale to small-
scale growth rates. We confirm this theory in numerical simulations in a simple meta-population
model, describing the epidemic spread in a network of interconnected countries. Our theory gives a
mechanistic explanation why most COVID-19 cases occurred within a few epicenters, at least in the
initial phase of the outbreak. Assessing how well a simple dual-scale model predicts the early spread
of epidemics, despite the huge contrasts between countries, could help identify critical temporal and
spatial scales of response in which to mitigate future epidemic threats.

Introduction

COVID-19 is an emerging infectious disease caused by
the coronavirus SARS-CoV-2. It was first reported on
in Hubei, mainland China on 31 December 2019 and has
spread well outside China in a matter of a few weeks,
reaching countries in all parts of the globe within a time
span of three month. As of 29 March 2020, the dis-
ease has arrived in 177 countries, with more than 700,000
confirmed cases and 30,000 deaths worldwide [33]. De-
spite the drastic, large-scale containment measures im-
plemented in most countries these numbers are rapidly
growing every day - posing an unprecedented threat to
the global health and economy of interconnected human
societies.

One of the most powerful tools to understand the laws
of epidemic growth is mathematical modeling, going back
to Daniel Bernoulli’s work [3] on the spread of small-
pox in 1760. Epidemiological models can be roughly di-
vided into two classes. The first class of models is focused
on describing the temporal development of the epidemic
within a localized region or country. These models are
often variants of the well known SIR-model [17, 18] and
have recently been adapted to the situation of COVID-
19, taking into account non-pharmaceutical interventions
(e.g., quarantine, hospitalization, and containment poli-
cies) and allowing first predictions of healthcare demand
[11, 20, 31].
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The second class of models is concerned with the ge-
ographic spread of the epidemic around the globe. For
these aims spatially explicit models have been developed
that leverage information on the topology of transport
networks. For example, the global network of cargo ship
movements [16] was used to model the dispersal of in-
vasive species [28]. Similarly for infectious diseases, in a
pioneering study, the 2003 spread of SARS in the global
aviation network [32] was modeled [15]. Based on these
approaches, conceptual frameworks have been developed
to estimate epidemic arrival times as effective distances
[6]. At the same time, these models have been refined
to highly detailed simulation frameworks for predicting
the spread of disease and are able to include factors
such as vaccination, multiple susceptibility classes, sea-
sonal forcing, and the stochastic movement of individual
agents [10, 34]. Reacting rapidly to the emergent pan-
demic, spatial epidemiological models have been devel-
oped to describe and anticipate the spread of COVID-19
[1, 7, 12, 25]. These models allow to predict the incidence
of the epidemics in a spatial population through time,
permitting to study the impact of travel restrictions and
other control measures.

Despite this theoretical progress, not much is known
about the biogeography of COVID-19, neither from em-
pirical studies nor from mathematical models. This is
astonishing, as one prominent characteristic of the pan-
demic is the huge variation in the number of cases that
have been reported from different countries of the world.
As of March 2020, some countries were already badly af-
fected by the pandemic, while others had just confirmed
the first few cases. This geographic variation in COVID-
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19 prevalence might be explained by several arguments:
A first obvious possibility would be that the variation
is caused by the idiosyncratic circumstances of the indi-
vidual countries which differ largely in their geography
and population size, but also in the way they are com-
batting the disease. Alternatively, parts of the variation
could simply be due to reporting errors, reflecting dis-
parate national testing regimes, with countries such as
China, Japan, South Korea, or Germany having high
testing rates, in contrast to other countries with much
poorer testing. Here, we argue, however, that a dominant
part of this variation may be a direct consequence of the
dynamics of the spreading process itself. Thereby, the
epidemic prevalence in a country should be directly cor-
related to the arrival time of the disease: countries that
were invaded very early by the virus have accumulated
many cases in time, while countries with a late invasion
naturally still have smaller prevalence.

To test this hypothesis, we use empirical data [8] to
compute the country-level distribution, P , of confirmed
COVID-19 cases, n, worldwide and find that it follows a
power-law

P (n) ∼ n−µ (1)

over five orders of magnitude.
Power-law distributions characterize a large range of

phenomena in natural, economic, and social systems,
which is known as Zipf- or Pareto law [9, 21, 22, 30].
Examples range from the number of species in biologi-
cal taxa [35], the number of cities with a given size [36],
the number of different words in human language [36],
the distribution of wealth [24], the number of scientific
citations [26], the frequency of earthquakes [14], and the
popularity of chess openings [5].

Our study shows that epidemic prevalence, at least in
the emerging stage of a pandemic, is another system that
falls into this class. We provide a conceptual dual-scale
model that explains the emergence of the power-law dis-
tribution by the ’superposition’ of two concurrent pro-
cesses: large-scale spread of the virus between countries
and small-scale snowballing of case numbers within each
country. Assuming exponential growth on both scales,
the critical exponent is simply determined by the ra-
tio of large-scale to small-scale growth rates. We con-
firm this theory in numerical simulations in a simple
meta-population model, describing the epidemic spread
in a network of interconnected countries. By combin-
ing real world data, modeling, and numerical simulations
we make the case that that the distribution of epidemic
prevalence, and possibly that of spreading processes in
general, might follow universal rules.

Power-law distribution in empirical data

Our research builds on the COVID-19 data repository
operated by the Johns Hopkins University Center for
Systems Science and Engineering (JHU CSSE) [8]. The

Figure 1. Power-law scaling in the country-level distribution
of COVID-19 cases. The figures show the estimated proba-
bility Px(n) for a country to have a certain number n of (a)
confirmed cases (x = C) and (b) confirmed deaths (x = D)
on 22 March, 2020. Histogram bins are spaced equally on
a logarithmic axis and only bins with a positive number of
entries are shown. Black solid lines show straight-line fits
with slope µ, indicated in the figure labels. Insets: Cumu-
lative number C(n) =

∑N
m=n+1 P (m) of countries with case

number m > n. Solid lines show the cumulative distribution
C(n) = n1−µ − n1−µ

f of a truncated power law with cut-off
value (a) nf = 2 · 105 and (b) nf = 5 · 104.

database contains information about the daily number
of confirmed COVID-19 cases and confirmed deaths in
various countries worldwide.

Using this data we computed the distribution PC(n) of
confirmed cases and the distribution PD(n) of confirmed
deaths at a given date, excluding all countries with-
out cases (independently for confirmed cases and con-
firmed deaths). To estimate the distribution of case num-
bers that vary over many orders of magnitude, we first
computed the histogram of log-transformed case num-
bers ν = log(n) using equally-spaced bins, which, after
normalization, yielded the distribution P̃ (ν). Next, we
used the back-transform P (n) = P̃ (exp(ν))/n to obtain
the probability distribution P (n) of non-logarithmic case
numbers. This procedure results in a histogram with bins
that are equally spaced on a logarithmic scale. We have
checked that the resulting distribution is largely indepen-
dent to the choice and number of used histogram bins and
other numerical parameters (see also Appendix Fig. 6,
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Figure 2. Power-law scaling in the distribution of confirmed
COVID-19 cases in the 1962 US counties that have been in-
vaded by the coronavirus on March 29, 2020. Details as in
Fig. 1a. The cut-off value for the cumulative distribution in
the inset was set to nf = 1 · 105.

where we tested the histogram algorithm on artificially
generated random numbers). Additionally, we computed
the cumulative number C(n) =

∑N
m=n+1 P (m) of coun-

tries with case number m > n. This was obtained by
taking a rank-plot of case numbers and inverting axes,
i.e., sorting the array of case numbers in descending or-
der and plotting for each country the rank as a function
of the sorted case number on double-logarithmic axes.

The country-level prevalence distribution on March 22,
2020 is shown in Fig. 1. On that day 168 countries were
invaded by the coronavirus. The number of confirmed
cases varied between 81,435 cases in China (followed by
59,138 cases in Italy) and 1 case in 16 countries. The
number of confirmed deaths varied between 5,476 in Italy
(followed by 3,274 in China) and one or zero deaths in
many countries. Fig. 1 clearly demonstrates that the
probability for a country to have a certain number of
COVID-19 cases follows a broad, long-tailed distribution
that in very good approximation can be described by
a power-law, spanning five orders of magnitude for the
confirmed number of cases and four orders of magnitude
for the confirmed number of deaths.

At this point it is important to stress that our aim
is not to prove that the COVID-19 case distribution is a
perfect power-law, an undertaking that would require so-
phisticated statistical analysis and a much larger sample
size [9]. Instead, our claim is merely that the empirical
data are highly consistent with the hypothesis that the
number of reported cases are taken from a distribution of
the form of Eq. (2) and therefore, our focus is on possible
mechanistic explanations and the epidemiological impli-
cations of such a broad distribution (see Discussion).

To illustrate the robustness of our hypothesis to spa-
tial scale, in Fig. 2 we depict the same analysis for the
distribution of confirmed COVID-19 cases in US coun-
ties on March 29, 2020. On this day 1962 counties were

invaded by the virus and epidemic prevalence varied be-
tween 33,768 confirmed cases in New York City and one
case in 456 counties. Again, we find that the distribution
of confirmed cases follows a power-law over several orders
of magnitude. Thus, although the two data sets differ
greatly in spatial scale and resolution (168 invaded coun-
tries in Fig. 1 vs. 1962 invaded US counties in Fig. 2) we
obtain very similar prevalence patterns, confirming the
robustness of our analysis.

A crude estimation of the critical exponent can be ob-
tained by measuring the slope of a regression line through
the data on a double-logarithmic plot. Applying this
method to the country-level distribution (Fig. 1), we ob-
tain a value of µC = 1.21 (slope of the distribution of
confirmed cases) and µD = 1.39 (confirmed deaths). For
the US-county distribution (Fig. 2) we obtain a some-
what larger slope of µC = 1.65.

A more accurate estimation of the critical exponent
of a power-law distribution is given by the log-likelihood
estimator [22]

µ̂ = 1 + n

[∑
i

ni
nmin

]−1
(2)

with a standard error of

σ =
µ̂− 1√
n
. (3)

Here, the ’hat’ means that this is an estimated value. Ap-
plying this formula to the country-level COVID-19 distri-
bution (where the minimal case number equals nmin = 1
individuals) yields critical exponents of µ̂C = 1.24± 0.02
and µ̂D = 1.53±0.04. For the US-county distribution we
obtain the value µ̂C = 1.54± 0.01. These exponents are
slightly larger than those obtained from the regression
analysis, but are still in the same ballpark.

Given a perfect power-law distribution, Eq. (1), the
cumulative distribution function C(n) =

∫∞
n
P (n′)dn′

should also follow a power-law C(n) ∼ n−µ−1. As shown
in the insets in Figs. 1 and 2, this is not the case for the
distribution of COVID-19 cases, for which the cumula-
tive numbers C(n) do not really follow a straight line in
a double logarithmic plot. Instead, they are better de-
scribed by a truncated power law, that is, a distribution
with a maximal case number nf , for which the cumula-
tive distribution function reads

C(n) =

∫ nf

n

P (n′)dn′ ∼ n(1−µ) − n(1−µ)f . (4)

This is not necessarily a strong evidence against the hy-
pothesis of a power-law distribution because we observe
similar behavior also when we analyze artificially gener-
ated random numbers, taken from a power-law distribu-
tion with a small sample size and a small critical expo-
nent (see Appendix Fig. 6).

The presence of a power-law distribution means that
global COVID-19 prevalence patterns are characterized
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Figure 3. Temporal development of the COVID-19 pan-
demic. a) Evolution of the distribution of confirmed cases
per country. The same as Fig.1a, but for five different time
instances separated by 2 weeks (see figure legend) during
the pandemic. b) Distribution of arrival times. The his-
togram shows the number of countries that were invaded by
the virus on a certain day between Jan 22, 2020 and March
29, 2020 (blue bars). Further shown is an exponential increas-
ing function, exp(st) (black dashed line) with growth rate
s = 0.03 d−1, obtained by a least square fit to the histogram
during the first 61 days. The inset shows the critical expo-
nents µ̂C(t) (black) and µ̂D(t) (blue), estimated by Eq. (2), as
a function of time. The vertical red line indicates 22 March,
the date of the distribution shown in Fig. 1.

by a small number of countries with large epidemic preva-
lence and a large number of countries that are (yet)
barely affected by the disease. In general, the obtained
critical exponents are rather small. While for most natu-
ral power-law distribution critical exponents are around
µ ≈ 2, here we estimate exponents that are clearly be-
low two, µ < 2, indicating a very broad distribution for
which the mean value diverges.

Temporal development during the pandemic spread

While the present analysis considers the distribution of
case numbers at a temporal snapshot, in reality the pan-
demic is a dynamic process successively invading coun-
tries worldwide. In Fig. 3 we investigate the tempo-
ral development of the COVID-19 distribution over the

time course of the pandemic. The figure shows that the
country-level distribution of confirmed cases is formed
already within a few weeks from the start of the out-
break and remains roughly stationary over the consid-
ered time interval of 68 days. A closer inspection (see
inset in Fig. 3b) reveals that the critical exponents in
fact are not constant, but vary during the course of the
pandemic. Thereby, the exponent µ̂C of the distribution
of confirmed cases is decreasing in time, while the expo-
nent µ̂D corresponding to the distribution of confirmed
deaths, at first is increasing in time and starts to fall
again after March 12. Over the whole time span, the two
exponents are well below 2.

Fig. 3b further investigates the spatial spread of
COVID-19 across countries worldwide more systemati-
cally. The figure plots the number of countries that were
invaded by the coronavirus (i.e., having the first con-
firmed COVID-19 case) at a particular day in the time
span from January 22 to March 29, 2020. On January
22, the first entry in the database, six countries (China,
Japan, South Korea, Taiwan, Thailand, US) were already
invaded by the virus. From this day, within roughly two
months the pandemic spread to nearly every country in
the world.

Interestingly, the invasion speed was not constant. In-
stead Fig. 3b clearly indicates two broad modes in the
arrival time distribution. Many countries were invaded
by the disease in the end of January. In contrast, in
the first three weeks of February nearly no new arrivals
were reported. Only after February 24 did a second
wave of invasions appear, which lasted until the end of
March. After this, the number of new arrivals began to
fall again, probably reflecting the fact that the pandemic
had reached basically all countries of the world. As of
March 29, the first day without a new reported invasion
after a series 34 days, a total 177 countries were invaded
by the coronavirus.

There are several possible reasons why the disease ar-
rival is not more evenly distributed. One explanation for
the bimodal shape is related to the lockdown of airline
transportation in China in the end of January 2020. Ac-
cording to this hypothesis, after the first pandemic bub-
ble in January, the further spread of the pandemic came
to a temporary standstill with the onset of travel restric-
tions, only to resurface in a second wave, starting end
of February. Alternatively, it may be that many arrivals
of the virus in countries all over the world simply went
undetected during the first weeks of February and were
detected only later with the increasing awareness and in-
creased testing. This hypothesis is corroborated by the
observation that end of February is also the time when
the first PCR based tests became available.
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Mechanistic explanation of the power-law
distribution

Fig. 3 would suggest that the temporal development
of the pandemic is characterized by two complementary
processes: the successive invasion of more and more coun-
tries and the increasing number of cases within each af-
fected country. Here we argue that the emergence of the
power-law distribution could be related to the concur-
rent ’superposition’ of these two processes. Thereby, on
a large geographic scale, the pandemic is driven by the
spread of the virus in the network of interconnected coun-
tries. On a small scale, case numbers are snowballing
within each country, once it has been invaded, thereby
further increasing the epidemic imbalance due to differ-
ent arrival times between countries.

In the simplest approximation, at the begin of the pan-
demic both of these processes developed exponentially
in time. A straightforward calculation shows that the
combination of the two exponential processes generically
yields a power-law distribution in the number of cases
in countries. Let us first assume that the probability of
a country to be invaded by the virus at time ti grows
exponential in ti with spreading rate s,

P (ti) ∼ esti . (5)

This function corresponds to an exponential growth in
the geographic distribution of the pandemic and would
be the expectation if one modeled the spread in a network
where nodes are countries (neglecting saturation when
the pandemic has reached most countries).

Second, we assume that in each country the number
of confirmed cases grows exponentially in the time since
invasion with growth rate r (neglecting saturation after
the epidemic peak)

n(t) ∼ er(t−ti). (6)

Combining these two equations, the probability distribu-
tion of confirmed cases P (n) can be calculated as (see
[22])

P (n) = P (ti)

∣∣∣∣dtidn
∣∣∣∣ ∼ esti

e−rti
∼ n−(1+s/r) (7)

which is a power-law with critical exponent

µ = 1 +
s

r
. (8)

Thus, the critical exponent is simply determined by the
ratio of large-scale to small-scale growth rates. In the
symmetric case that both growth rates are identical, s =
r, we would expect a power law with µ = 2. In the
limiting case that the large-scaling spreading process is
linear in time, s = 0, we obtain a border-line distribution
with critical exponent µ = 1.

Obviously, this simple theory far from accurately de-
scribes a real-word pandemic. First of all, the theory is

Figure 4. Spatial spread in the meta-population model.
Similar to Fig. 3b, the plotted histogram shows the number
of countries that were invaded by the virus on a certain day for
the simulation time of 60 days. Parameter values: number of
countries M = 200 and invasion probability p = 5 ·10−4. The
black dashed line shows an exponentially increasing function,
exp(st) with spreading rate s = 0.048 d−1, obtained by a least
square fit to the data. The inset shows the time dependence
of the critical exponents µ̂C(t) (black) and µ̂D(t) (blue) for
the distribution of the number of cases and deaths, estimated
by Eq. (2).

valid only in the initial phase of the pandemic, while both
geographical spread and within-country epidemic growth
are still exponential. As soon as saturation processes set
in, the derivation of the power law breaks down. Next,
as shown in Fig. 3b the arrival time distribution during
the COVID-19 pandemic is not exponential, as discussed
above. In gross oversimplification we may nevertheless
fit an exponential function P (t) ∼ est through the data,
yielding an ’average’ spreading rate of s = 0.03 d−1 (black
dashed line in Fig. 3b). Finally, epidemic growth rates
during the COVID-19 pandemic have not been not iden-
tical in all countries (even in the initial stages). They
have also not remained constant in time, but in most
countries have fallen in the course of the epidemic. Fur-
thermore, most countries were invaded multiple times,
leading to different epidemic foci within countries. Ne-
glecting all these observations, for the sake of argument,
let us assume an average doubling time of case numbers
of T1/2 = 5 d in all countries, yielding an exponential
growth rate of r = log(2)/T1/2 = 0.14 d−1. Then, ac-
cording to our simple theory Eq. (8) we would expect a
critical exponent of µ = 1 + 0.03/0.14 ≈ 1.21 in rather
good agreement to the fitted exponents in Fig. 1.

Results from a meta-population model

To test the theory of the previous section, we develop a
conceptual dual-scale meta-population model. The first
level describes the large-scale spread of the virus in a
network of M interconnected countries. The state of a
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Figure 5. Power-law scaling in the simulated distribution of
COVID-19 cases. Same as Fig. 1, but for the meta-population
model after a simulation time of 60 days. Parameter val-
ues: country population size N = 5 · 107, case fatality rate
m = 0.01, infectious period 1/γ = 6d, and contact rate
β = 0.4d−1; yielding a growth rate r = β − γ = 0.23d−1,
corresponding to a doubling time of T1,2 = log(2)/r = 3d and
a basic reproduction number R0 = β/γ = 2.4. Cut-off values
of the cumulative distribution were set to (a) nf = 1 ·107 and
(b) nf = 1 · 104. Other parameters as in Fig. 4.

country is given as a Boolean value, being either invaded
by the virus or non-invaded. The model starts with a
single invaded country. The geographic spread runs in
discrete time, each step corresponding to one day of the
time-continuous small-scale model. In each time step, ev-
ery non-invaded country becomes infected by an invaded
country with probability p. Thus, if at time t a number
of m countries have already been invaded, the probabil-
ity for a non-invaded country to receive the virus in this
time step equals 1−(1−p)m. Thereby, the number of in-
vaded countries grows stochastically and roughly follows
a sigmoidal shape. The arrival time distribution is a uni-
modal function of time that starts exponentially. This is
shown in the exemplary simulation run in Fig. 4 for the
first 60 time steps, after which 123 out of the M = 200
countries were invaded by the virus.

The small-scale model is time-continuous and deter-
ministically describes the epidemic dynamics within a
country, which is started in each country from the time
point of invasion by the virus. The model determines the
time course of susceptible S, infected I, recovered R, and

dead D from a standard SIR-model [17, 18]

Ṡ = −β S
N
I, Ṙ = β

S

N
I−γI, Ṙ = (1−m)γI, Ḋ = mγI.

(9)
Here, N is the constant population size in the country,

β is the contact rate, 1/γ the infectious period, and m
the case fatality rate. The total number of infected is
determined as C = I +R +D. In the small-scale model
countries are simulated independently from each other
and are only coupled by the unique invasion event for
each country, which starts the epidemic growth in that
country with initial values S(0) = 5 · 107, I(0) = 1 and
R(0) = D(0) = 0. All infection state variables in a coun-
try are zero before invasion by the virus, I = R = D = 0.
The resulting epidemic dynamics in a country is shown
in the Appendix Fig. 7. The dynamics follows the well-
known SIR-curve. With the chosen parameterization, it
takes roughly 80 days until the epidemic peak is reached.
After this time, the assumption of an exponential in-
crease, Eq. (6), breaks down.

Combining the large-scale and small-scale model com-
ponents allows to simulate the epidemic prevalence in
each country as a function of time. Fig. 5 shows the re-
sulting distribution of cases and deaths after a simulation
time of 60 days. Again, the distributions are character-
ized by a power-law scaling. Comparison with Fig. 1
shows that the model is able to describe the character-
istics of the empirical distribution of COVID-19 cases
rather well. The log-likelihood estimation of the crit-
ical exponents yields values of µ̂C = 1.26 ± 0.02 and
µ̂D = 1.36 ± 0.03. These exponents can be compared
to our theory Eq. (8). From Fig. 4 we estimated a spa-
tial spreading rate of s = 0.048 d−1. The initial growth
rate of infected in the SIR-model equals r = 0.23 d−1.
Thus, according to Eq. (8) we would expect a critical ex-
ponent of µ = 1 + 0.048/0.23 = 0.21, in good agreement
to the estimated value from the numerical simulation.

We want to note that the scaling relation is lost when
the spatial spreading starts to saturate. Eventually, in
the limit of large time, the distribution of cases must
converge towards a delta function P (n) = δ(n − fN),
with f the fraction of susceptible in a country that will be
infected, when the epidemic has come to an end in every
country. Interestingly, in our numerical simulations, we
still obtained power-law distribution when the contact
rate β was set to large value, so that the dynamics within
a country rapidly reach a stationary state. In this case,
with increasing β the critical exponents tended to µ→ 1.

Discussion

Our finding of power-law distributions in the number of
reported cases has important consequences for epidemi-
ology. Most notably, the small values of the estimated
critical power-law exponents are related to the strong in-
equality of case numbers that was frequently observed
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all over the world in the initial phase of the COVID-
19 outbreak. Following a power law distribution means
that this pattern prevails even as numbers grew and the
scale of infection expanded globally. In particular, during
the course of the pandemic, most cases were reported to
have occurred in a few countries, sometimes even a single
country - the so-called epicenters of the pandemic. The
distribution of cases within countries followed a similar
pattern. Often COVID-19 was peaking in a few local-
ized foci (local regions or cities), while other parts of the
country at the same time had experienced only a moder-
ate number of cases. Our theory provides a mechanistic
explanation why this might have been the case.

A graphical representation for the inequality of a dis-
tribution is given by the Lorenz curve [22] which in the
case of the COVID-19 case distribution is a plot of the
fraction of the total number of confirmed cases in de-
pendence of the fraction of the most affected countries.
This is shown in the Appendix Fig. 8 for the number
of confirmed COVID-19 cases and confirmed deaths on
22 March 2020. The Lorenz curve shows that on this
day 95.7% of confirmed cases and 97.6% of the confirmed
deaths had been reported in the 20% most affected coun-
tries (while the top 5% most affected countries had ac-
cumulated 82.3% of all confirmed cases and 84.4% of all
confirmed deaths). With 81,435 out of 336,953 confirmed
cases on that day China alone had accumulated a frac-
tion of 24% of all cases. The two most affected countries,
China and Italy, together had accumulated a fraction of
41% of the worldwide reported cases.

This inequality can also be measured by the Gini-
coefficient G [13], which ranges between G = 0 for per-
fect equality, i.e., all countries having the same number
of cases, and G = 1, corresponding to maximal inequal-
ity, where all cases appear in a single country. For the
distribution of confirmed COVID-19 cases on March 22
(Fig. 1) we obtain a Gini-coefficient of G = 0.92 and for
the number of confirmed death of G = 0.94. These large
values are a direct consequence of the small critical expo-
nents of the estimated power-law distributions. In fact,
for µ < 2 one would theoretically expect a Gini-coefficient
of G = 1 [22].

The emergence of power-law distributions with a small
critical exponent and the associated inequality of the dis-
tribution, with Gini coefficients close to one is also ob-
served in the developed meta-population model. Con-
sequently, also in the model case numbers are mostly
concentrated in a few countries. In the simulations,
these epicenters of the pandemic, i.e., the countries with
most cases, are always the countries in which the dis-
eases originated or which were first invaded by the virus.
In other words, the prevalence rank order among coun-
tries remains unchanged during the course of the pan-
demic. This is akin to the "rich-get-richer process" or
"first-mover-advantage" [23, 29], a well-studied process
to generate power-law distributions. In the real COVID-
19 pandemic, this was not the case. During the begin of
the pandemic most cases were observed in China, later

the "leading role" changed next to Italy and finally to
the USA. This reflects different mitigation strategies and
circumstances in different countries, a factor that is not
considered in the simple model. Nevertheless, despite
these changes in the rank order, the distribution of cases
in the empirical data was always closely represented by
a power-law.

Remarkably, we obtained power-law distributions in
the absolute number of cases in each country. At first
guess, one might have expected such scaling only af-
ter case numbers have been normalized by population
sizes. Our preliminary investigations show that such nor-
malized case numbers become even more unequally dis-
tributed, with even smaller estimated values of the crit-
ical exponent, and the distributed values do not line-up
any more so well on a straight line on a double logarith-
mic plot. Thus ’folding’ the distribution of population
sizes over the COVID-19 case distribution does not flat-
ten, but rather tends to further increase, the inequality
of the resulting distribution. This indicates that abso-
lute (non-normalized) case numbers may be the natural
variables to describe the patterns of the pandemic in its
initial stage. In all likelihood, the role of country sizes
and population numbers will become increasingly impor-
tant with the further spread of the pandemic.

It is well known from the literature (e.g., [9, 22]) that
caution is in order when trying to identify power-law dis-
tributions in real data and, in particular, that a straight
line in a double-logarithmic plot does not suffice to prove
the existence of a power law distribution. Therefore we
repeat that the aim of this study is not to proof that
the COVID-19 case distribution is a perfect power-law,
nor do we intend to rule-out other likely candidate dis-
tributions (e.g., log-normal or stretched exponential dis-
tributions). Instead, our claim is merely to demonstrate
that the empirical data are highly consistent with the
hypothesis that the number of reported cases are taken
from a power-law distribution of the form Eq. (2). This is
consistent with our simple theory which predicts power-
law distributions only as an approximation in the initial
phase of the pandemic, while in all likelihood the distri-
bution of case numbers will drastically change as soon as
saturation effects start to become important. This moti-
vates our focus on possible mechanistic explanations for
the observed distribution, and the epidemiological impli-
cations of such a broad distribution.

Nevertheless, the scaling in the distributions shown in
(Figs. 1 and 2) is remarkably constant over the whole
range of case numbers, stretching several orders of mag-
nitude with no obvious signs of saturation for either the
range of small or large case numbers. One might argue
that the bend in the cumulative distribution is a sign
that the growth in some countries (e.g., Italy, China, Ko-
rea) had already become sub-exponential. However, this
is contradicted by the observation that a similar bend
is also exhibited by the cumulative distribution obtained
from the meta-population model (Fig. 5) and from arti-
ficially generated random numbers with a small sample
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size (Fig. 6).
We would like to remark that the available database

only provides information on the reported COVID-19
cases in each country. In all likelihood, the real num-
ber of cases will be much larger. Not much is known
about the reporting rates, but first estimates indicate
that a substantial fraction (possible 86%) of infections
might go undetected [19]. Reporting rates probably vary
strongly between countries and may change in time with
the awareness of national health institutions and avail-
able testing capabilities. Further uncertainties arise be-
cause the criteria by which a person is classified as ac-
tive case (and even more so for being classified as recov-
ered) vary between countries and not uncommonly have
been modified during the course of the pandemic within
a country.

We have shown that a simple conceptual model yields
an accurate description of the COVID-19 prevalence dis-
tribution in the initial phase of the pandemic. This is
remarkable in that many important epidemiological as-
pects of the spreading process are not captured by the
model. Most notably, the model does not take into ac-
count variability in country sizes, population numbers, or
testing rates. Furthermore, the model does not consider
the heterogeneity of intra- and inter-country connectiv-
ity, as well as the corresponding changes due to social
distancing, lock-down measures, closing of airline con-
nections and shut-down of borders.

These simplifications leave much room for future in-
vestigations and model improvements. For, example,
while we have assumed constant and identical popula-
tion sizes, in reality country sizes are highly heteroge-
nous. In general, the epidemic growth rate and also the
maximal prevalence in a country should be correlated
to the population number. This effect may not be so
strong in the initial stages of a pandemic, but should
become increasingly important, the further the spread
has been going. In the limit of large time, the distri-
bution P (n) should become stationary and approach the
distribution of population numbers. These ideas could
be readily checked in numerical simulations in a meta-
population which considers heterogeneously distributed
country sizes. Furthermore, the model assumes only sin-
gle infections in each country. One obvious improvement
would be to make this initial number of infected individ-
uals a random number, as would be a better description
of what happened in many countries.

One basic assumption of the developed model is the
separation of the pandemic into two spatial scales, the
large-spatial spread over a rather small number (M <
200) of interconnected countries and the small-scale
growth within a population of much larger size (N =
5·107). This separation, obviously is somewhat arbitrary.
For the virus countries are, of course, quasi-arbitrary en-
tities. Therefore, it would be important to check whether
both the data analysis (Fig. 1) and the mathematical
model are robust to arbitrarily subdividing or lumping
countries. The very similar scaling observed among US

counties (Fig. 2) lends credence to the model’s generality.
Similarly, one can readily ascertain that the model result
is not an artifact of artificial lumping. Suppose a virus
that is spreading in an all-to-all, or randomly coupled,
network of a number of NM individuals. If we would ar-
tificially subdivide individuals into a small number M of
classes (or countries), at the time point when the disease
has spread to all countries, within each country we would
still have only a few cases (of the order ofM � N). Thus,
the assumed simultaneous spread on both spatial scales
requires a real physical separation in the network struc-
ture. It would be an interesting perspective for future
research to study the spread in multi-scale hierarchies or
in more realistic models of interconnected societies.

Finally, we would like to remark that the model’s
strong simplicity is at the same time a strength: being
rather generic, it should be applicable to very different
systems, to describe the spread of commodities as a pro-
cess with two spatial scales. The fact that the distri-
bution of COVID-19 resembles a model where only the
initial infection ’counts’ reflects the intrinsic difficulty in
containing epidemics at global and local scales when uni-
lateral measures (e.g., travel bans and lockdowns) are im-
practical or non-enforceable, i.e., where other countries
or regions will step up and continue the spread. Thus,
assessing how a well simple dual-scale model predicts the
early spread of epidemics, despite the huge contrasts be-
tween countries, could help identify critical temporal and
spatial scales of response in which to mitigate future epi-
demic threats.
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Figure 6. Robustness of the algorithm for computing log-
binned histograms. The same analysis as in Fig.1, but for
a small number of 100 random numbers that were generated
from a power-law distribution with (a) µ = 1.25 and (b)
µ = 2.0. The estimated distribution roughly follows a straight
line on the double-logarithmic plot with equally spaced bins.
Note, that even though only 100 random numbers were drawn,
the estimated probabilities vary over many orders of magni-
tude (which is numerically possible since in order to compute
the probability distribution, the counted histogram numbers
are divided by the bin widths). Using the log-likelihood esti-
mation of critical exponents, Eq. (2), yields (a) µ = 1.25 and
(b) µ = 1.99 in good agreement with the actually used ex-
ponents. In contrast, the estimation by regression lines (see
figure labels) yields exponents that are too small. For the
small exponent of µ = 1.25 in (a) the cumulative distribution
C(n) does not follow a straight line on the double logarithmic
axes and instead is better described by a truncated power-
law (cut-off values were chosen as (a) nf = 1 · 106 and (b)
nf = 1 · 103). This is similar to the behavior observed in
the COVID-19 distributions. Note that here we have chosen
a very small sample size, in accord to the COVID-19 data.
Therefore, the actual shape of C(n) varies between different
realizations of the random numbers.

Figure 7. Simulation of the SIR-model (9) within a coun-
try. The plot shows the numerically obtained values of the
total number of cases C (black), the number of susceptible S
(green), and the number of recovered R (blue) on the left axis,
as well as the number of infected I (red) and deaths D (ma-
genta) and the right axis as a function of time. For the used
initial values of S(0) = 5 ·107, I(0) = 1 and R(0) = D(0) = 0,
the epidemic peak is reached after 77 days. Parameter values
as in Fig. 5.

Figure 8. Lorenz curves, depicting the inequality in the
distribution of confirmed COVID-19 cases. The plots show
the fraction of the number of confirmed cases (a) and of the
number of confirmed deaths (b) as a function of the fraction of
most affected countries on March 22, 2020 (compare to Fig. 1).
This inequality corresponds to a Gini-coefficient of G = 0.92
for the distribution of confirmed cases and of G = 0.94 for the
number of confirmed deaths.
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