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Abstract

A mathematical model is proposed for quantitative description of the outbreak of novel
coronavirus COVID-19 in China. Although the model is relatively simple, the comparison
with the public data shows that an exact solution solution of the model (with the correctly-
specified parameters) leads to the results, which are in good agreement with the measured
data. Prediction of the total number of the COVID-19 cases is discussed and an example
is presented using the measured data in Austria.
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1 Introduction

The outbreak of novel coronavirus called COVID-19 in China has attracted extensive attention
of many scientists, in particular mathematicians working in mathematical modeling. The first
papers were already published in February and March 2020 [1–5]. At the present time, there
is an oblivious threat that the COVID-19 outbreak will spread over the world as a pandemic.
There were almost 1300000 coronavirus cases up to date April 6 [6].

At the present time, there are many mathematical models used to describe epidemic pro-
cesses and they can be found in any book devoted to mathematical models in biology and
medicine (see, e.g., [7–10] and papers cited therein). The paper [11] is one of the first papers
in this direction. The authors created a model based on three ODEs, which nowadays is called
the SIR model. There are several generalizations of the SIR model and the SEIR model [12,13],
which involves four ODEs, is the most common among them.

Here (Sections 2 and 3) we propose a simple model, which was developed using the data
from [6] in the case of the COVID-19 outbreak in China. This case was used because there are
obvious indications that this epidemic threat was effectively removed in China. A prediction
of the total number of the COVID-19 cases is discussed and an example is presented using the
measured data in Austria (Section 4).

1Corresponding author. E-mail: r.m.cherniha@gmail.com
2E-mail:davydovych@imath.kiev.ua
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2 Mathematical model

The first nontrivial biological model used for calculation and the time evolution of the total
world population of people was created in 1838 by Verhulst [14]. His model is usually called
the logistic model and has the form (in dimensionless variables)

dU

dt
= U(1 − U), U(0) = N0 > 0,

and is the classical example in any textbook on Mathematical Biology. Its exact solution is
well known

U(t) =
N0e

t

1 +N0 (et − 1)

and depending on the value N0 suggests three different scenarios for the population evolution.
In particular, the useful curve, the so-called sigmoid, is obtained if N0 < 1/2 (see, e.g., Fig. 1.1
in [15]).

It can be noted that the data for the total COVID-19 cases in China [6] can be approximated
by a sigmoid with the correctly-specified parameters. Having this in mind, we introduce a
smooth function u(t), which presents the total number of the COVID-19 cases identified up to
day t (for any integer number t). We assume that the first case (cases) u0 was (were) identified
at t = 0. Obviously, the function u(t) is non-decreasing. So, we obtain

du

dt
= u(a− bu), u(0) = u0 ≥ 0 (1)

where a and b are positive constants. One may define a as a0S, where a0 < 1 is the infection
rate and S is an average number of healthy persons, who was contacted by a fixed infected
person. Obviously, each infected person can be in contact only with a limited number of people
(usually it is relatives and close friends). The term bu has an opposite meaning to a, because
one reflects the efforts B, in order to avoid contacts with infected persons and to make other
restrictions defined by the government. The coefficient B should increase with growing u(t).
In other words, the government and ordinary people should apply stronger measures in order
to stop growing u(t), otherwise the control on the epidemic process will be lost. So, we assume
that B ≈ b∗u

1+γ with γ > 0, therefore the term b∗u
1+γ (here b∗ > 0) leading to the equation

du

dt
= u(a− b∗u

γ) (2)

is derived. In the case γ = 1, Eq. (2) coincides with (1). We note that the nonlinearity in (2)
was introduced in [16] for describing competition between species, while the logistic equation
in epidemiology occurs naturally and it is shown under some general assumptions in [7].
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During the epidemic process there are two possibilities for the infected persons. A majority,
say w, among them will recover, while some people, v, will die. Obviously, the equality

u = v + w

takes place at any time t. A typical equation for the time evolution of v (see the last equation
in the SIR model) is

dv

dt
= k(t)u, v(0) = v0 ≥ 0 (3)

(a similar equation can be written for w but there is no need to use more equations), where
v0 is the number of deaths at t = 0. Here the coefficient k(t) > 0 reflects the effectiveness of
the health system of the country (or a region) in question. From mathematical point of view,
this coefficient should have the asymptotic behavior k(t) → 0, if t → ∞, otherwise all infected
people will die. In particular, the useful form is k(t) = k0 exp(−αt), α > 0.

3 Application for the COVID-19 outbreak in China

The general solution of Eq. (1) is well-known, so that Eq. (3) with the given function k(t) can
be easily integrated. So, setting k(t) = k0 exp(−αt), α > 0, we arrive at the exact solution of
the model (1) and (3)

u(t) = au0e
at

a+bu0(eat−1)
,

v(t) = ak0u0

∫ t

0
e(a−α)τ

a+bu0(eaτ−1)
dτ + v0.

(4)

Remark 1 The integral in (4) leads to an expression involving the special function
LerchPhi(y, c, ν) ≡

∑

∞

n=0
yn

(ν+n)c
, which cannot be expressed in terms of elementary functions

for arbitrary parameters α and a. However, it can be done in some specific cases. For example,
one obtains

v(t) =
2k0

√
u0

√

b(a− bu0)

(

arctan

(
√
bu0√

a− bu0

e
at

2

)

− arctan

(
√
bu0√

a− bu0

))

+ v0

in the case 2α = a.

Now we need to specify all the parameters in (4) using the data for the COVID-19 outbreak
in China. It follows from [6] that the earliest well-founded data were fixed on Jan.22, hence
we fix this date as t = 0 and immediately obtain u0 = 571 and v0 = 17. The parameter b
can be found from the known asymptotic behavior of the function u(t) in (4) and information
from [6], therefore b ≈ a

80000
. The plausible interval for parameter a can be estimated by using
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Figure 1: The comparison of the exact solution u(t) (4) with a = 0.28, b = 7
2000000

, u0 = 571
(blue curve) and the measured data of the COVID-19 cases (red dots).

option ‘animation’ in MAPLE in order to fit plot of the function u(t) to the measured data
after Jan.22. So, we have numerically proved that a ∈ [0.25, 0.30].

Because the function v(t) should be monotonic non-decreasing function (we remind that it
is the number of total deaths), we conclude that a > α. It was identified that a good choice is
4α = a. Finally, the coefficient k0 was found from the formula

v
∣

∣

t=T
≡ 571k0

∫ T

0

e0.21τ

1 + 571
80000

(e0.28τ − 1)
dτ + 17 = V

(here V is the number of total deaths in the time t = T presented in [6]) for the fixed value of
a = 0.28. The value of the coefficient k0 is slowly varied from 0.0092385 to 0.0096878 if T is
changed from 65 to 45, respectively. So, the value k0 = 0.0094 was chosen.

Fig. 1 and Fig. 2 present the comparison of the results obtained from the model (1) and
(3) (with the parameters specified above) and the measured data for the COVID-19 outbreak
in China [6]. One may note that there is a good agreement between the total number of the
COVID-19 cases and that predicted by our model. Of course, one may claim that exactness
is not sufficiently good in the interval t ∈ [10, 25] in Fig. 1. However, we assume that either
the method of measurement of the COVID-19 cases was corrected, or an unpredictable spike of
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Figure 2: The comparison of the exact solution v(t) (4) with a = 0.28, b = 7
2000000

, u0 =
571, k0 = 0.0094, α = 0.07, v0 = 17 (brown curve) and the measured data the total number
of deaths (green dots).

such cases occurred around date t = 25 (there is a jump from 44653 cases on Feb.11 to 58761
cases on Feb.12 [6]).

The comparison between the total number of deaths and that predicted by our model shows
that exactness is sufficiently good for any time (see Fig. 2). One may also note that the function
v(t) is still increasing beyond the time t = 60. Such behavior reflects the real situation in the
epidemic process, namely: some people will die even in absence of new COVID-19 cases because
they were infected earlier. So, the final number of total deaths will be fixed later than that of
the COVID-19 cases.

4 Discussion

In this work, a mathematical model is proposed for quantitative description of the outbreak
of novel coronavirus COVID-19 in China. Although the moodel is relatively simple, the com-
parison with the data listed in [6] shows that the analytical solution of the model (with the
correctly-specified parameters) leads to the results, which are in good agreement with the mea-
sured data.
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Some well-known recommendations naturally follow from the model. It follows from the
exact solution (4) that one needs to reduce the coefficient a = a0S as much as possibly. It
means that the number of contacts S should be minimized. On the other hand, the government
should make more efforts (to close shops, restaurants, to restrict transport traffic etc.) in order
to increase the function B(u). These efforts should increase with growing of the total number
of the COVID-19 cases. The government restrictions can be stopped only under condition that
that the number of new COVID-19 cases per day already began to decrease from day to day.
It means mathematically that the second order derivative of the function u(t) takes negative
values. In order to find the so-called critical number u∗, we analyze the function u(t) from (4).
Calculating the second order derivative, one obtains

u′′ =
u0a

3 (a− bu0) e
at (a− bu0 − bu0e

at)

(a− bu0 + bu0eat)
3 .

Solving the algebraic equation u′′ = 0 with respect to the time, we arrive at

t∗ =
1

a
ln

(

a

bu0
− 1

)

,

hence u∗ = u(t∗). On the other hand, formula u′′ = 0 allows to find the parameter b provided
the time t∗ is known from the measured data. Assuming that a is known one calculates

b =
a

u0 (eat
∗ + 1)

. (5)

Taking into account interpretation of the parameters, we believe that the parameter a varies
not so much as b and can be specified (at least estimated with a sufficient exactness) as follows.
Obviously, the total number of the COVID-19 cases in the initial period of epidemic process
can be approximated as u(t) ≈ u0e

at (see u(t) in (4) for small time). So, having the measured
data in the initial period, we may specify the parameter a. It means that our model can allow
to predict the total numbers of the COVID-19 cases if the data for t∗ and u∗ are known.

Let us consider, an example. It can be noted from the public data [6] that the COVID-19
outbreak in Austria had the maximum number of new daily cases on March 26. So, u∗ = 6909.
If we fix March 8 as the initial point t = 0, then t∗ = 18 and u0 = 104 (we think that there
are essential errors in measuring at the very beginning of the epidemic process, so that it is
unreasonable to start from very small numbers of u0). Now we make approximation of the
measured COVID-19 cases using the formula u(t) ≈ 104eat during the first 15 days. It turns
out that the parameter a = 0.27 provides very good approximation during the first 12 days
(see Fig. 3). So, using formula (5) we define b = 0.000020. Now we may predict that the total
number the COVID-19 cases in Austria should be umax = a/b ≈ 13500. Taking into account
that this number was calculated under some assumptions, the real number can be larger. For
exmple, if one takes March 10 as the initial point t = 0 then umax ≈ 13800. We estimate the
maximum error in 10 percent.
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Figure 3: An exponential growing of the total number of the COVID-19 cases in Austria at the
initial stage of the coronavirus spread (red curve) and the measured data (black dots)

It should be noted that the parameter γ plays essential role if one uses Eq. (2) instead of
Eq. (1). In order to highlight this, we present exact solutions of Eq. (2) with different values
of γ in Fig. 4 (all other parameters are the same as in Fig. 1). One may see that γ = 1 is a
good choice in the case of China. On the other hand, taking into account the known data [6],
we conclude that γ < 1 in the case of S. Korea.

Obviously, the model cannot be thought as such that is applicable for the COVID-19 out-
break in each country. For example, the outbreak in China was mostly localized in the province
Hubei. The size and population of this province are very small comparing with total those of
China. A similar situation is in USA, where two states, New-York and New-Jersey are affected
by the coronavirus much more than other states (up to date April 5, 2020).

On the other hand, if we take the epidemic process in Italy then one notes that the size
and population of Northern Italy (8 provinces, Lombardia is the largest among them) are
comparable with those all of Italy. So, we propose that the space distribution of the infected
population should be taken into account in such cases. The simplest generalization of the basic
equations of our model are

∂u
∂t

= d1∆u+ u(a− buγ),

∂v
∂t

= d2∆u+ k(t)u,
(6)
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Figure 4: The solution u(t) of Eq. (2) for γ = 0.3 (red curve), γ = 0.5 (green curve), γ = 1
(blue curve), γ = 1.5 (black curve) and the measured data of the COVID-19 cases in China(red
dots).

where ∆ is the Laplace operator, d1 and d2 are diffusivities, the functions u(t, x, y) and v(t, x, y)
are analogs of u(t) and v(t). Of course, the generalized model based on the system of (6) and
relevant boundary conditions (for example, zero flux conditions at the boundary) is much more
complicated problem and cannot be solved analytically in contrast to the model (1) and (3).
Here we only note that the first equation in (6) with γ = 1 is the classical Fisher equation [17],
which was extensively studied in many works (see, e.g., the monographs [9,18] and papers cited
therein).
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