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e Institut Sénégalais de Recherches Agricoles/Laboratoire National de l’Elevage et de Recherches Vétérinaires

BP 2057 Dakar-Hann, Sénégal
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Highlights

• September is a period of high Rift Valley fever epidemic potential in northern Senegal regardless of

the year, but exact locations where epidemics might start change between rainy seasons.

• Decreased vector densities during the rainy season did not highly reduce the epidemic potential of

at-risk locations.

• High levels of immunity in cattle populations reduce more Rift Valley fever virus transmission than

a high immunity in small ruminants in our study area. This aspect should be investigated further

for targeted vaccination campaigns.

• Precise estimates of vector feeding preferences and the temperature-dependent lenght of their

gonotrophic cycle are key to ensure a good detection of at-risk pixels.

Keywords Rift Valley fever virus; basic reproduction number; mathematical modelling; vector-borne

disease; risk map

Abstract1

Estimating the epidemic potential of vector-borne diseases, along with the relative contribution2

of underlying mechanisms, is crucial for animal and human health worldwide. In West African Sahel,3

several outbreaks of Rift Valley fever (RVF) have occurred over the last decades, but uncertainty4

remains about the conditions necessary to trigger these outbreaks. We use the basic reproduction5

number (R0) as a measure of RVF epidemic potential in Northern Senegal, and map its value in6

two distinct ecosystems, namely the Ferlo and the Senegal river delta and valley. We consider three7

consecutive rainy seasons (July-November 2014, 2015 and 2016) and account for several vector and8

animal species. Namely, we parametrize our model with estimates of Aedes vexans arabiensis, Culex9

poicilipes, Culex tritaeniorhynchus, cattle, sheep and goats abundances. The impact of RVF virus10

introduction is assessed every week, in 4367 pixels of 3,5km2. The results of our analysis indicate that11

September was the month with highest epidemic potential in each study area, while at-risk locations12

varied between seasons. We show that decreased vector densities do not highly reduce R0 and that13

cattle immunity has a greater impact on reducing transmission than small ruminants immunity. The14

host preferences of vectors and the temperature-dependent time interval between their blood meals15

are crucial parameters needing further biological investigations.16

17
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Introduction18

Vector-borne diseases (VBDs) represent a growing threat to animal and human health worldwide. They19

account for 17% of all infectious diseases, affecting more than one billion people each year (WHO, 2014).20

Their presence in livestock can dramatically impact food production locally and hamper exportations21

(Davies and Martin, 2003). This burden mostly affects low-income countries and their socio-economic22

development (WHO, 2014). In addition, climate change along with increased people and animal mobility23

create opportunities for vectors and their pathogens to establish in new areas, as was the case for West24

Nile virus in the United States (Calisher, 2000). Developping efficient countermeasures against VBDs25

requires a good understanding of their transmission dynamics. This remains a major challenge consider-26

ing the complexity of the biological system formed by pathogens, hosts, vectors and their relation to the27

environment (Parham et al., 2015).28

29

Rift Valley fever virus (RVFV, Bunyaviridae : Phlebovirus) is a zoonotic and vector-borne pathogen,30

present throughout Africa, in the Arabian Peninsula and in the South West Indian Ocean islands.31

Mosquitoes of the Aedes and Culex genus are the main vectors (Chevalier et al., 2010), some of which32

are suspected to transmit the virus transovarially (Linthicum et al., 1985). They transmit it to a variety33

of domestic host species, including cattle, goats, sheeps and camels, causing storms of abortions and a34

high mortality in young animals (Pepin et al., 2010). Human infection can occur through mucous mem-35

brane exposure or inhalation of viral particles (Davies and Martin, 2003). Most cases are limited to mild36

‘flu-like’ symptoms (Laughlin et al., 1979), but severe forms of the disease can be fatal. The case fatality37

rate is usually below 1% (Madani et al., 2003) but tends to increase in recent outbreaks (Chevalier et al.,38

2010). Spillover into human population mainly concerns people working in close contact with animals39

such as pastoralists, butchers or veterinarians (Anyangu et al., 2010; Linthicum et al., 2016), but can40

be a concern for the general population, e.g. in a context of massive slaughters during religious festivals41

(EMPRES, 2003; Lancelot et al., 2019). Vector-to-human transmission is possible but does not seem to42

be the major route of infection (Gerdes, 2004). Animal-to-animal transmission by direct contact seems43

possible but is not yet confirmed (Chevalier et al., 2010). Since 2015, RVF is part of the R&D Blueprint44

programme of the World Health Organization (Mehand et al., 2018).45

46

Models are a powerful tool to explore pathogen transmission dynamics, and several approaches have47

already been used to answer questions about RVF virus emergence and spread (Métras et al., 2011;48

Danzetta et al., 2016). Statistical models evidenced an association between El Niño events and RVF49

occurrence in the Horn of Africa for the 2007 epidemic in Kenya (Anyamba et al., 2009), as well as the50

link between rainfall patterns and population dynamics of RVF vectors (Mondet et al., 2005). Network51

models highlighted factors influencing host mobility in regions affected by RVF (Apolloni et al., 2018;52

Kim et al., 2018; Belkhiria et al., 2019). The use of remote-sensing and geographic information systems53

3
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(GIS) enabled the identification of landscape properties associated with RVF virus transmission (Tourre54

et al., 2009; Tran et al., 2016). However, prior to studying the transmission dynamics of a pathogen55

at large time- and spatial- scale, it is critical to understand the local impact of its introduction and in56

particular, its potential to trigger the onset of an epidemic.57

58

The use of compartmental models together with the next generation matrix provides a way to estimate59

the basic reproduction number R0 and gain a deeper understanding of the underlying processes contribut-60

ing to the epidemic potential (Hartemink et al., 2008). R0 represents the average number of secondary61

cases produced by one infected individual introduced in an entirely susceptible population over the course62

of its infectious period. Several theoretical mechanistic models have been proposed to formulate R0 for63

RVF (Gaff et al., 2007; Niu et al., 2012; Xue and Scoglio, 2013; Pedro et al., 2016), without being applied64

to real areas. However, R0 is context-specific and studies mapping R0 in space using data on hosts65

and vectors were done only for RVF-free regions, such as the Netherlands (Fischer et al., 2013) or the66

United States (Barker et al., 2013). In regions with regular RVF outbreaks, such as the West African67

Sahel, modelling R0 could explain what locally drives the rapid increase in RVF incidence and creates68

amplification hotspots.69

70

Senegal and Mauritania have experienced several outbreaks since 1987. Most cases were reported in the71

Sahel region, more specifically in Northern Senegal and Southern Mauritania (Caminade et al., 2014; Sow72

et al., 2016). This region encompassing semi-arid to arid climate bridges the gap between the Sahara73

desert and the tropical rainforests of equatorial Africa. In Northern Senegal, RVF outbreaks have mainly74

been reported in two distinct ecosystems, along the Senegal river and in the Ferlo region. The hypotheses75

underlying RVF epidemic potential are assumed to differ between these two study areas. Indeed, along76

the Senegal River, water, vectors (mainly Culex ) and hosts are in contact year round due to the develop-77

ment of irrigated agriculture (Bruckmann, 2018). In contrast, the Ferlo is much dryer. When the rainy78

season starts in July, temporary ponds are flooded and Aedes eggs, layed at the edges of ponds the year79

before, hatch and induce a rapid and massive emergence of adult mosquitoes (Ndione et al., 2008). In the80

meantime, vegetation grows and creates the suitable conditions for nomadic herds to stop during their81

transhumance pathway (Adriansen, 2008). Therefore, the presence at the same place of mosquitoes and82

livestock, which could both introduce the virus, create opportunities for RVF outbreaks.83

84

Previous studies mapping RVF risk in West African Sahel overlapped climate anomalies and host den-85

sities, but without linking mechanistically the underlying processes to the disease outcome (Caminade86

et al., 2011, 2014). At very local scales, in particular around the village of Barkedji in the Ferlo region of87

Senegal, different approaches such as remote-sensing (Lacaux et al., 2007; Ndione et al., 2009) or statisti-88

cal models (Bicout and Sabatier, 2004; Vignolles et al., 2009; Talla et al., 2016) were used. These studies89

focused on the link between landscape features (typically ponds, Soti et al., 2013; Bop et al., 2014) and90
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vector abundance. Therefore, there is still a need for an indicator integrating all the major mechanisms91

suspected to play a role in RVF epidemic potential.92

93

The aim of the present paper is to map the epidemic potential of RVF virus in a Sahelian setting during94

the rainy season, comparing two different study areas, namely the Senegal river delta and valley, and95

the Ferlo. For this, we give an expression of R0 in a multi-species (2 hosts and 2 vectors) context,96

accounting for vector feeding preferences. We identify parameters varying in time and space as well as97

relevant data sources to map contact zones between hosts and vectors. Then, we map the local epidemic98

potential for three consecutive rainy seasons for weekly dates of virus introduction. We identify locations99

and introduction times with higher epidemic potential. We assess the role of vector densities and herd100

immunity to reduce R0. Eventually, we test the robustness of our results through a sensitivity analysis.101

Material and methods102

We built a compartmental, mechanistic model of RVF virus (RVFV) transmission with 2 host and 2 vector103

populations (Figure 1, Eq. S.1-S.3). We only included mechanisms accurately occuring at the onset of a104

potential epidemic, locally, upon the introduction of the virus, either by a host or a vector. The model105

was used to obtain the next-generation matrix. We derived the expression of the basic reproduction106

number R0 by using the method by van den Driessche and Watmough 2002. The value of R0 was107

computed for all pixels (of resolution 3.5 km2) containing both hosts and vectors, and for weekly dates of108

virus introduction spanning three rainy seasons (July to November) of 2014, 2015, and 2016. Dates and109

location of RVFV introduction were assumed independent from each other. In addition, host infectious110

period is rather short (around a week) and temperatures did not strongly vary in our study area (Figure111

S.2) over the course of a vector lifetime (around a month). Thus, parameters were kept constant within112

each R0 computation (i.e. each date and location of introduction) for the whole duration of secondary113

case generation, but were updated at each new computation.114

Model structure and assumptions115

Vectors were modelled using susceptible (Si), latently infected (Ei), and infectious (Ii) health states,116

i ∈ {1, 4}. In the Ferlo, vector species considered were Aedes vexans arabiensis (subscript 1) and Culex117

poicilipes (subscript 4). In the Senegal river delta and valley (SRDV), vector species considered were118

Culex tritaeniorhynchus (subscript 1) and C. poicilipes (subscript 4). This was based on previous ento-119

mological studies conducted in both areas (Diallo et al., 2011; Fall et al., 2011; Biteye et al., 2018). Ae.120

v. arabiensis and C. poicilipes are confirmed vectors of RVFV in Senegal (Fontenille et al., 1998; Diallo121

et al., 2000; Ndiaye et al., 2016). C. tritaeniorhynchus is highly abundant and was identified as a RVFV122

vector in the 2000 outbreak in Saudi Arabia (Jupp et al., 2002). In the model, vectors were assumed123

to become infected either after biting infectious cattle or small ruminants, but could not transmit the124
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virus transovarially. Whilst limited evidence of vertical transmission of RVFV in mosquitoes is available125

(Linthicum et al., 1985), we assumed that this mechanism would be related to interannually patterns,126

rather than epidemic potential during a given rainy season (Lumley et al., 2017).127

128
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Figure 1: A - Study area, northern Senegal. Pixels highlighted correspond to locations with hosts
and vectors at least once in the 3 rainy seasons, the colour indicating the region and thus the vector
species they contain. Ferlo (pink), n = 1702, Senegal river delta and valley (SRDV, blue), n = 2665. B
- Flow diagram of the RVFV mechanistic model used to obtain the next-generation matrix and derive
the analytical formula of the basic reproduction number R0. Formulas give the force of infection in host
populations (from vectors) fji (light grey) and in vector populations (from hosts) fij (dark grey).

Host populations contained susceptible (Sj), latently infected (Ej), infectious (Ij), and recovered (with129

immunity, Rj) individuals, j ∈ {2, 3}. They were stratified into cattle (subscript 2) and small ruminants130

(i.e goats and sheeps, subscript 3). Livestock could only be infected by the bites of infectious vectors.131
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Animal-to-animal transmission by direct contact was here considered marginal compared to vector trans-132

mission, playing a minor role at the onset of a potential epidemic. Even though it might explain observed133

endemic patterns observed in unfavourable areas for mosquitoes (Nicolas et al., 2014), this transmission134

route has yet to be documented.135

136

Mosquito biting rate, mortality and extrinsic incubation period (defined as the time between infection137

through a blood meal and virus presence in the salivary glands, Tjaden et al., 2013) were assumed138

to be temperature-dependent for all vector species. In addition, we assumed that a proportion ci of139

mosquito populations i could have double, partial, blood meals (Table 1 , Supplementary Information 1.2).140

Transmission was modelled as reservoir frequency-dependent (Figure 1, Eq. S.1), as defined by Wonham141

et al. (2006). This means that an individual vector was considered to have a constant contact rate (biting142

rate + feeding preferences) with livestock populations regardless of surrounding vector densities, whereas143

an individual host had a contact rate with vectors dependent on the vector-to-host ratio in the area144

(Gubbins et al., 2008). This type of transmission function can induce unreallistically high R0 values145

when livestock densities are too low or vector densities are too high (Wonham et al., 2006). Therefore,146

for each introduction date, we removed pixels with vector-to-host ratio (N1 + N4)/(N2 + N3) > 1000.147

The force of infection included the relative preference of vectors for both livestock populations (πij , Table148

1) combined with relative abundance of hosts to compute the proportion of blood meals taken on each149

host population (parameter φij , Table 1). Parameter values and references are in Table 1, Supplementary150

information 1.2.151

Input data152

A schematic representation of the inclusion of data into our modelling framework can be found in Figure153

S.1.154

Spatio-temporal data on vector abundance155

The vector abundance in space and time was derived from the predictions of a mechanistic model of156

mosquito population dynamics developed by Tran et al. (2019). This model provides the abundance of157

host-seeking female mosquitoes for the three vector species and the two regions of interest. Mosquito158

abundance is driven by rainfall, temperature, location of waterbodies, and the surface dynamics of ponds159

throughout the year. This model uses satellite-derived meteorological data and multispectral images160

to assess the habitat suitability for vectors. Tropical Applications of Meteorology using SATellite data161

(TAMSAT) daily rainfall estimates are used (http://www.tamsat.org.uk/cgi-bin/data/index.cgi), along162

with the European Centre for Medium Range Weather Forecasts (ECMWF) 10-daily minimum and max-163

imum temperatures (https://confluence.ecmwf.int). Water bodies are detected using cloud-free Sentinel164

2 scenes (level 1-C, https://earthexplorer.usgs.gov/). Their filling dynamics is estimated with an existing165

7
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hydrologic model (Soti et al., 2010). The predictions of this model have been validated against entomo-166

logical data collected in several sites in our study area (Biteye et al., 2018). We used weekly mosquito167

abundance for three consecutive rainy seasons (July to November 2014, 2015 and 2016). Our spatial units168

were hexagonal pixels of 1 km radius (' 3.5km2) as in Tran et al. (2019).169

Definition Value Source
Vector populations subscripts i ∈ {1, 4}

i = 1: Ae. v. arabiensis (Ferlo),
C. tritaeniorhynchus (SRDV)
i = 4: C. poicilipes

Ni number of host-seeking female
mosquitoes

Tran et al. (2019)

ai biting rate
1 + ci
gi(T )

ci proportion of double blood meals 17% Ba et al. (2006)

gi(T ) duration of gonotrophic cycle
1

(0.0173× (T − 9.6))
Madder et al. (1983)

1/εi extrinsic incubation period
1

(0.0071T − 0.1038)
Barker et al. (2013)

φij proportion of blood meals taken on host
population j

πijNj

πi2N2 + πi3N3
, j ∈ {2, 3}, πi2 + πi3 = 1

πij relative preference for host population j 0.843 for j = 2, 0.157 for j = 3 Ba et al. (2006)

1/di vector lifespan

1

(0.000148T 2 − 0.00667T + 0.1)
, i = 1, Ferlo

Tran et al. (2019)
1

(0.000148T 2 − 0.00667T + 0.1)× (1− 0.016H)
i = 1, SRDV, i = 4

Host populations subscripts j ∈ {2, 3}
j = 2: cattle, j = 3: small ruminants

Nj Number of hosts of population j Gilbert et al. (2018)
pj proportion of immune individuals at

disease-free equilibrium
0

1/εj incubation period 2 Spickler (2015)
1/γj infectious period 6 Bird et al. (2009)

1/dj Host natural lifespan
8×365, j = 2 †
2400, j = 3 Hammami et al. (2016)

µj RVF-induced mortality rate in cattle 0.0176 for j = 2, 0.0312 for j = 3 Gaff et al. (2007)
Transmission i ∈ {1, 4}, j ∈ {2, 3}

αij host-to-vector successful transmission
probability

0.6
Cavalerie et al. (2015)

αji vector-to-host successful transmission
probability

0.4

T temperature (◦C) (Tmin + Tmax)/2 Tmin, Tmax

from ECMWF
H relative humidity (%) 100.

exp( 17.27(Tmin−2)
(Tmin−2)+237.3 )

exp( 17.27Tmax

Tmax+237.3 )

Table 1: Parameter values of the basic reproduction number R0 derived from the mecanistic RVFV
transmission model with two host and two vector populations. Durations are in days, rates in days−1. †:
to the best of our knowledge. ECMWF : European Center for Medium Range Weather Forecasts.

Spatial distribution of livestock170

For livestock host densities, we used the Gridded Livestock of the World (GLW 3, Gilbert et al., 2018)171

database, which provides subnational livestock distribution data for 2010, at a spatial resolution of172

0,083333◦ (approximately 10km at the equator). We used the distributions of cattle and small ruminants173

8
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(goats and sheeps) based on Gilbert et al. (2018) dasymetric weighting, which disaggregates census data174

according to weights established by statistical models using high resolution spatial covariates (land use,175

climate, vegetation, topography, human presence). This dataset was downscaled to match Tran et al.176

(2019) model pixel size by homogeneously distributing animals in smaller space units. The GLW 3 dataset177

is an average snapshot and does not provide time series of animal densities.178

Analytical expression of the basic reproduction number179

R0 was computed only for pixels in which both hosts and vectors were present. We considered the chosen180

spatial resolution large enough to neglect vector dispersal among pixels, in agreement with entomological181

studies conducted in the Ferlo and SRDV which show that vectors rarely disperse further than 1km from182

ponds (Ba et al., 2005; Diallo et al., 2011; Fall et al., 2013). In addition, quantitative information on183

seasonal variations in livestock abundance at large scale was not available. As a result, we considered184

that pixels were disconnected and that animal densities remained constant.185

186

R0 is the dominant eigenvalue of the next generation matrix of our model (Eq. 1-5). The details of187

its computation can be found in Supplementary Information 2. Compared to the expression derived by188

Turner et al. (2013) for bluetongue, we accounted for an incubation period, a natural mortality rate and189

a proportion of immune individuals at the disease-free equilibrium in livestock hosts. We also considered190

transmission probabilities (vector-to-host and host-to-vector) to be host-population specific and not only191

vector-population specific.192

R0 =

√
1

2

[
(R11 +R44) +

√
(R11 +R44)2 − 4(R11R44 −R14R41)

]
(1)

R11 =
ε1

(d1 + ε1)d1
×

(
N1

N2
ε2α21α12(φ12a1)2

(d2 + ε2) (d2 + γ2 + µ2)
(1− p2) +

N1

N3
ε3α31α13(φ13a1)2

(d3 + ε3) (d3 + γ3 + µ3)
(1− p3)

)
(2)

R44 =
ε4

(d4 + ε4)d4
×

(
N4

N2
ε2α24α42(φ42a4)2

(d2 + ε2) (d2 + γ2 + µ2)
(1− p2) +

N4

N3
ε3α34α43(φ43a4)2

(d3 + ε3) (d3 + γ3 + µ3)
(1− p3)

)
(3)

R14 =
ε4

(d4 + ε4)d4
×

(
N1

N2
ε2α21α42φ12φ42a1a4

(d2 + ε2) (d2 + γ2 + µ2)
(1− p2) +

N1

N3
ε3α31α43φ13φ43a1a4

(d3 + ε3) (d3 + γ3 + µ3)
(1− p3)

)
(4)

R41 =
ε1

(d1 + ε1)d1
×

(
N4

N2
ε2α24α12φ12φ42a1a4

(d2 + ε2) (d2 + γ2 + µ2)
(1− p2) +

N4

N3
ε3α34α13φ13φ43a1a4

(d3 + ε3) (d3 + γ3 + µ3)
(1− p3)

)
(5)

Spatio-temporal pattern of R0193

First, we identified dates and locations of RVFV introduction with high epidemic potential. For each194

area under study, we looked at the introduction date inducing the highest number of pixels with R0 > 1195

9

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2020. .https://doi.org/10.1101/2020.02.25.20027821doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.25.20027821
http://creativecommons.org/licenses/by-nc/4.0/


each season. For clarity hereinafter, pxl1 is the number of pixels with R0 > 1 at a given introduction196

date. For each season, we computed an R0 threshold corresponding to the value of the third quartile,197

independently of the study area and date of introduction within a given season, Q3,year. We mapped198

pixels for which R0 > Q3,year at least once within the season ; we also recorded the number of times (i.e199

weeks) it happened during the season. For two specific locations, namely Rosso in SRDV and Barkedji200

in the Ferlo, we normalized R0 values (dividing them by the maximum R0 value of the season) and201

compared seasonnal patterns.202

203

We then investigated the role of vector and host populations on the epidemic potential. In the Ferlo,204

in 2015, we looked at temporal variations of the relative abundances of vector populations within pixels205

with R0 > 1. In Barkedji, we assessed how decreased vector densities would affect the value of R0 for206

three different dates of virus introduction. The first date we chose corresponded to the maximum pxl1207

in the Ferlo over the season. The other two dates both induced R0 > 1 in Barkedji but exhibited dia-208

metrically opposed vector composition, quantified with log10(N4/N1). Similarly, we looked at the effect209

of herd immunity, which could be acquired either through vaccination or previous exposure to RVF, on210

the number of pixels with R0 > Q3,year, per study area and season.211

212

Finally, we performed a variance-based global sensitivity analysis using a Fourier Amplitude Sensitivity213

Testing (FAST, Saltelli et al., 2008). This method was used to quantify first order effects of parameters214

but also interactions between parameters varying simultaneously, which is not possible with “one-at-a-215

time” sensitivity analyses (Saltelli et al., 2019). Parameters varied within a 10% range using scaling216

factors (reference value of 1). A given set (scenario) of scaling factors was applied to all R0 computations217

of a given study area and rainy season, to maintain the spatial heterogeneity as well as the relative218

temporal dynamics of vector densities and temperature-dependent parameters. Temperature-dependent219

function formulas were kept, and temperature was not varied. We sampled 10,000 values per parameter.220

We tested whether introduction dates and locations with high epidemic potential were robust to these221

parameter variations.222

Results223

Overall, there are 2.5 times more R0 values computed in the Senegal river delta and valley (SRDV) than224

in the Ferlo. Initially, input data provides 4419 independent pixels (1702 in the Ferlo, 2717 in SRDV)225

containing both hosts and vectors at least once in the 63 introduction dates (21 weeks each season)226

studied. Over the 236,430 possible R0 computations, 3.7% are discarded because the local vector-to-host227

ratio is too high (Table S.1-S.6). This mainly affects SRDV, where 52 pixels are entirely removed from228

the study because their ratio never goes below the chosen threshold during the 3 rainy seasons. We end229

up with a stable number of pixels where R0 is computed per timestep in SRDV (min 2401, max 2657230
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over the three seasons), whereas this number largely varies within a season in the Ferlo, minimums being231

54, 7, and 5, and maximums 1673, 1702, and 1614, for 2014, 2015, and 2016 respectively. In addition,232

the number of pixels with R0 > 1 per introduction date (pxl1) never goes below 1801 for any date of233

introduction in SRDV (always >68% of R0 computations in this study area), and reaches its absolute234

maximum on 2016-09-12 (n = 2504). In the Ferlo, pxl1 can go from 0 for introductions in November235

(2014-11-24, 2015-11-30 and 2016-11-28) to 1527 (93% of R0 computations) on 2015-09-21.236

237

Figure 2: September is the month when RVF virus introduction could be the most damaging.
A, C: R0 distribution by introduction week for 3 consecutive rainy seasons, spatially aggregated by region
(A : Ferlo, C: SRDV). R0 values are computed independently for each introduction week, assuming
constant parameters over the course of the secondary cases generation. Coloured lines show the temporal
patterns of Barkedji (Ferlo) and Rosso (SRDV). Yellow bands highlight the introduction weeks inducing
the highest number of pixels with R0 > 1, for each rainy season. Ferlo : 2014-09-22, n = 1313, 2015-09-21,
n = 1527, 2016-09-12, n = 1023. SRDV, 2014-08-11, n = 2352, 2015-09-14, n = 2482, 2016-09-12, n =
2504. In the box plots, the boundaries of the box indicate the 25th (bottom) and 75th (top) percentile.
The line within the box marks the median. Whiskers above and below the box indicate the 10th and 90th

percentiles. Points above and below the whiskers indicate outliers outside the 10th and 90th percentiles.
B, D: Comparison of yearly R0 pattern for Barkedji and Rosso. Values are normalized by the maximum
of each rainy season.

In both study areas, each season, dates of introduction resulting in the highest pxl1 happen most of the238

time (5/6) in September (Figure 2). Seasons 2015 and 2016 exhibit similar temporal patterns of R0, both239

at the regional level (Figure 2A,C) and in two particular locations (Figure 2B,D). However the observed240

trend in 2014 is different, with an earlier peak (in August) in both regions. In addition, a third peak is241

observed in SRDV in November 2014. The pixel closest to Rosso has its R0 > 1 for every possible date of242

introduction over the three consecutive rainy seasons, which is not the case for the pixel closest to Barkedji.243
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244

Figure 3: Zones of high RVF epidemic potential change between rainy seasons. Map of
northern Senegal showing pixels with R0 ≥ Q3,year (third quartile of R0 values) at least once in the
season. Pixels are coloured by percentage of season spent above the threshold (1 to 21 weeks). Orange
points are important locations to ease figure reading. Lights grey pixels are other pixels where R0 is
computed during the season.

The map of areas with highest epidemic potential varies across the three rainy seasons of 2014, 2015 and245

2016 (Figure 3). In the Ferlo, the south-west of Barkedji exhibits a high epidemic potential in 2014 but246

not in 2015-2016. Conversely, the north-east of Barkedji exhibits a high epidemic potential in 2015-2016247

but not in 2014. In SRDV, around Matam, there is a strong density of pixels with R0 above the third248
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quartile of the season (Q3,year) in 2015-2016 but less so in 2014. Overall, SRDV accounts for a larger249

proportion of pixels with R0 > Q3,year than the Ferlo, every season (at least three times more, Table250

S.7). In addition, R0 values above Q3,year appear less often per pixel in the Ferlo than in SRDV, every251

season (Figure 3, pixels ranging from green to yellow, Table S.7).252

253

The results of the sensitivity analysis show that in both study areas and for each season, dates and254

locations of RVFV introduction resulting in high epidemic potential are robust to parameter variations.255

Dates of introduction inducing the highest pxl1 are similar between scenarios (Table S.8), as well as the256

distribution of pixels with high R0 values (R0 > Q3,year) and the number of times for which it happens257

for those pixels (Figure S.8).258

259

In the Ferlo, Ae. v. arabiensis tends to be the most abundant vector population within pixels with R0 > 1260

at the beginning of the rainy season, while C. poicilipes is the most abundant later in the season (Figure261

4A, Figure S.4). Nonetheless, the vector composition shows a large variability between pixels for a same262

date of introduction. For instance on October 12th 2015, minimum and maximum relative abundances263

are log10(N4/N1) = −3.74 and log10(N4/N1) = 4.44 respectively (Figure 4A). In addition, when looking264

at dates resulting in the highest pxl1, Ae. v. arabiensis is on average the most abundant in pixels with265

R0 > 1 in 2014 (2014-09-22, Figure S.4), while C. poicilipes is on average the most abundant in pixels266

with R0 > 1 in 2015 and 2016 (2015-09-21, 2016-09-12, Figure 4A, Figure S.4). In Barkedji, diametrically267

opposed vector compositions can induce R0 > 1, such as 2015-08-24 when log10(N4/N1) = −1.08 and268

2015-10-12 when log10(N4/N1) = 1.08 (Figure 4A,B,D). In SRDV, C. tritaeniorhynchus is always the269

most abundant species in every pixel with R0 > 1, but the difference between the two populations is less270

important than in the Ferlo (Figure S.4).271

272

Decreased vector densities can hardly reduce R0 values of at-risk pixels below 1 (Figure 4). In Barkedji,273

this is observed regardless of RVFV introduction date and whichever species is the most abundant. In274

addition, the vector composition is not an indicator of which population, if decreased, will more strongly275

affect R0. Indeed, for RVFV introductions on August 24th 2015 and September 21st 2015, decreasing276

the density of the most abundant vector population has the most important effect on R0 value (Figure277

4A,B,C). This is not observed on October 12th 2015, when C. poicilipes are more numerous than Ae. v.278

arabiensis in Barkedji (Figure 4A, third red star), but decreasing the density of Ae. v. arabiensis has279

the strongest impact on R0 (Figure 4D).280
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Figure 4: Decreased vector densities do not highly reduce RVF epidemic potential in at-risk
locations. Example of Ferlo 2015. A: Relative abundance of vector populations log10(N4/N1) within
pixels having R0 > 1 over time. Light grey line indicates equal densities. For boxplots, see legend
of Figure 2. Boxplots width is proportionnal to the number of pixels with R0 > 1 (pxl1, min 4, max
1527). Colours inside box plots indicate the proportion of pixels with R0 > 1 among those where R0 is
computed (min 7%, max 93%). Black line corresponds to the particular value of the ratio in Barkedji,
for introduction weeks inducing R0 > 1. Stars are positionned at introduction weeks 2015-08-24, 2015-
09-21 and 2015-10-12. 2015-09-21 corresponds to the maximum pxl1 in the Ferlo this season. The other
two dates both induce R0 > 1 in Barkedji but exhibit diametrically opposed vector composition. B-D:
Variation of R0 in Barkedji when decreasing vector densities, for 3 different weeks of introduction. Axes
represent the proportion of initial vector density applied for the R0 computation, the reference is at the
top right corner (1, 1).

In both study areas, an increase in the proportion of immune cattle decreases the number of pixels with281

high R0 values (R0 > Q3,year) more effectively than increasing the proportion of immune small ruminants282

(Figure 5B,C, Figure S.5). In most pixels (4302/4367 = 98,5%), the number of small ruminants is higher283

than the number of cattle (Figure 5A). However, the difference in host populations sizes is smaller in284

SRDV than in the Ferlo. Indeed, there are on average 7.5 times more small ruminants than cattle in the285

Ferlo, and only twice more in SRDV. This is related to the presence of both very low cattle densities and286

very high small ruminant densities in the Ferlo, while the range of SRDV host distributions is narrower287

(Figure S.3). As a consequence, since cattle are in fewer numbers than small ruminants while being the288

prefered host of all vector species studied. (Table 1, Supplementary information 1.2) they are more likely289

to get bitten more than once. These bites, provided they result in successful transmission (first to the290

host, then to a vector), can strongly contribute to RVF epidemic potential.291

14

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2020. .https://doi.org/10.1101/2020.02.25.20027821doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.25.20027821
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5: In both study areas, an increase in the proportion of immune cattle decreases the
number of pixels with high R0 values (R0 > Q3,year) more effectively than increasing the
proportion of immune small ruminants A - Map of relative densities of hosts log10(N3/N2) within
pixels of our study area. Blue pixels have more cattle than small ruminants, the biggest difference being
log10(N3/N2) = −0.08. B-C - Variation of the number of pixels with R0 > Q3,2015 by study area (B :
SRDV, C : Ferlo) when increasing host immunity. Axis represent proportion of immune hosts applied for
the R0 computation. The reference is the absence of herd immunity, (0, 0), in the bottom left corner.

Finally, in the Ferlo, every rainy season, the feeding preferences and the gonotrophic cycle duration of the292

most abundant vector species are the most influential parameters on the epidemic potential at the region293

scale (Figure 6, Figure S.6). In 2015, the first order effects of these parameters explain respectively 47%294

and 19% of the variance observed in pxl1, for the date of introduction inducing the highest pxl1 (Table295

S.8). In SRDV, pxl1 does not vary much in our sensitivity analysis (maximum 3% from the reference296

value in 2016, Figure S.7) for the dates of introduction inducing the highest pxl1, because pxl1 quickly297

reaches the total number of pixels where R0 is computed for the study area. It is nonetheless influenced298

by the same parameters than highlighted for the Ferlo (Figure S.7). Precisely, the more the feeding299

preference of the most abundant vector population is skewed towards cattle, and the more often these300

vectors have to take a new blood meal, the higher pxl1.301

15

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2020. .https://doi.org/10.1101/2020.02.25.20027821doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.25.20027821
http://creativecommons.org/licenses/by-nc/4.0/


Figure 6: The feeding preferences and the gonotrophic cycle duration of the most abundant
vector species are the most influential parameters on the epidemic potential at the region-
scale. Example of Ferlo, 2015. Results of the FAST sensitivity analysis showing contribution of model
parameters to the number of pixels with R0 > 1, pxl1, for the introduction week inducing the highest pxl1
of the rainy season. Sensitivity indices for principal effect in grey and for interactions in black. Definition
and reference values of parameters can be found in Table 1. The introduction week inducing the highest
pxl1 during the 2015 rainy season is 09-21 for 299,999 scenari and 09-14 for one scenario (Table S.8). At
these dates, C. poicilipes is the most abundant vector population in the Ferlo (Figure S.4)

Discussion302

The results of our analyses show that an introduction of Rift Valley fever virus in September has the po-303

tential to trigger an epidemic almost everywhere in northern Senegal. Areas with high epidemic potential304

during most of the rainy season also exists, particularly in the Senegal river delta and valley, due to the305

continuous presence of water. In contrast, in the Ferlo region, the most at-risk ponds change between306

rainy seasons. These results are robust to parameter variations tested in our sensitivity analysis, following307

a global variance-based approach requested for models with nonlinearities and interactions (Saltelli et al.,308

2019).309

310

We provide the first mapping of RVF epidemic potential in the West African Sahel using the basic repro-311

duction number. We achieve better spatial and temporal resolutions than previous studies in RVF-free312

regions (Barker et al., 2013; Fischer et al., 2013), which was made possible by the use of satellite Sen-313

tinel 2 images by Tran et al. (2019) along with ground truth validation data and a precise knowledge314

of temporary ponds filling dynamics. However, host densities, which do not stand out in our sensitivity315

analysis, may vary beyond the range presentely allowed. Indeed, their temporal dynamics, mostly driven316

by animal mobility, is not incorporated into GLW 3 data, and might affect the population-specific contact317

rate with vectors and therefore R0 values. Remote-sensing methods are considered a promising tool to318

measure human mobility (Bharti and Tatem, 2018), but we also need qualitative data on factors guiding319

decisions of nomadic herders in order to include animal mobility in a mechanistic way (Apolloni et al.,320
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2018; Belkhiria et al., 2019).321

322

The mechanistic approach used in this paper is the best suited to describe the complexity of RVF epidemic323

potential in our study region. Indeed, neither host nor vector densities alone are sufficient to predict the324

local epidemic potential, contrary to what was implied by previous mappings and statistical studies (Bi-325

cout and Sabatier, 2004; Caminade et al., 2011). Indeed, it is actually the process of blood feeding, during326

which host and vector populations interact, which should accurately be described to achieve the most327

reliable estimates of RVF epidemic potential. We account for the influence of temperature in our model,328

which is known to strongly influence the risk of vector-borne diseases transmission (Mordecai et al., 2017;329

Kamiya et al., 2020; Mordecai et al., 2019), but we do not simulate the consequences of global changes,330

which is beyond the scope of this study. The adequate contact rate, an aggregated parameter used in331

previous models (Gaff et al., 2007; Mpeshe et al., 2014), is decomposed here to assess the importance332

of each of its components, as in Turner et al. 2013. Based on our sensitivity analysis, we recommend333

that future biological investigations focus on the feeding preferences of vectors and the duration of their334

gonotrophic cycle, in relation with temperature.335

336

The inclusion of two host and two vector populations provides new insights on RVF epidemic potential,337

and this structure should be kept for future models studying RVF in the region. We show that decreased338

vector densities are not sufficient to limit the epidemic potential of RVF, regardless of the introduction339

date considered. Indeed, vector abundances are not always a good predictor of RVF epidemic potential,340

with high R0 values sometimes driven by the least abundant vector population. Moreover, cattle con-341

tribute strongly to RVF transmission and their immune status is likely to influence the epidemic potential342

at the regional scale. Favoring vaccination of cattle over small ruminants is not what is usually done in343

the field. Veterinary services, along with herders, tend to promote small ruminant vaccination as they are344

more likely to die from the disease and thus need more protection (Sow et al., 2016). The importance of345

small ruminant trade, particularly around the Tabaski festival, might also justify this approach (Lancelot346

et al., 2019). Operationnal decisions regarding targeted vaccination campaigns should therefore consider347

the potential benefits of cattle immunity at the population scale.348

349

In the present study, we provide a better understanding of conditions which could trigger the onset of an350

epidemic. However, this should be interpreted with caution, and should not be considered as an indicator351

of epidemic size. Indeed, multiple introductions or sudden unfavourable conditions might lead to diseases352

persisting with R0 < 1 or dying out with R0 > 1 (Li et al., 2011). In addition, our results could be used as353

initial conditions for a stochastic mecanistic model of spatio-temporal transmission, which would include354

processes underlying epidemic dynamic after RVFV introduction, such as animal mobility. Such a model355

would benefit from an increased availability of epidemiological data for validation and parametrisation,356

which are necessary to unravel the underlying mechanisms driving the spatio-temporal dynamics of RVF357
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in the West African Sahel.358
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Métras, R., Collins, L. M., White, R. G., Alonso, S., Chevalier, V., Thuranira-McKeever, C., and Pfeiffer,

D. U. Rift Valley Fever Epidemiology, Surveillance, and Control: What Have Models Contributed?

Vector-Borne and Zoonotic Diseases, 11(6):761–771, 2011. doi: 10.1089/vbz.2010.0200.

Ndiaye, E. H., Fall, G., Gaye, A., Bob, N. S., Talla, C., Diagne, C. T., Diallo, D., Ba, Y., Dia, I., Kohl, A.,

Sall, A. A., and Diallo, M. Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald)

and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever

virus. Parasites & Vectors, 9:94, 2016. doi: 10.1186/s13071-016-1383-y.

Ndione, J.-A., Diop, M., Lacaux, J.-P., and Gaye, A. T. Variabilité intra-saisonnière de la pluviométrie
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