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The Chinese government began implementing extensive public health measures aimed at confronting 

COVID-19 during January 2020. These measures included contact tracing, disease surveillance, and 

enforced social distancing, as well as close monitoring of those infected and extensive quarantine and 

isolation measures. Authorities engaged in an unprecedented effort to cordon off Wuhan, the epicenter 

of the outbreak. 

 

The measures adopted in China echoed and amplified approaches undertaken during recent outbreaks 

of SARS (2003) and MERS (2012).​ ​Although their intensity is unique, these measures are largely 

grounded in long-standing public health approaches to respiratory viruses. As COVID-19 has spread to 

other parts of the globe, other nations have adopted social distancing, quarantine, and isolation 

strategies. Here, we investigate how these measures have impacted COVID-19’s time-varying 

reproduction number  at the national level and globally.R(t)  

  

Methods 

 

We use a branching point process [1] to estimate a time-varying reproduction number [2]. InR(t)  

particular, we model the intensity (rate) of infections as 

,1)  λ(t) (t )w(t )( = μ + ∑
 

t>ti
R i − ti  

where  

 

2)  p (t )w(t )/λ(t )( ij = R j i − tj i  

 

gives the probability of secondary infection i having been caused by primary infection j. Here, as in prior 

related works, the distribution of inter-event times  is modeled as Weibull. Because  mitigation(t )w i − tj  

strategies (or the lack thereof) may influence the time distribution between primary and secondary 

infections, we estimate the Weibull parameters jointly with the model instead of specifying the 

parameters using reported incubation times. The baseline rate  captures the rate of exogenousμ  

(imported) infections in a given region. The point process in Equation (1) can be viewed as an 

approximation to the common SIR model of infectious diseases during the initial phase of an epidemic 

when the total infections is small compared to the overall population size [3].  The model is estimated 



using a nonparametric expectation-maximization algorithm (details are included in the supplemental 

material) and a histogram estimator is used for .(t)R   

 

Results 

 

We analyze worldwide counts of COVID-19 deaths per day from January 22, 2020 to March 11, 2020 [4]. 

Because there is significant variability in testing levels across different countries and over time, we focus 

on mortality. In Figure 1 we plot estimated along with 95% bootstrap confidence intervals. In China,(t)R  

we estimate was 1.50 (1.15, 1.79) on January 22, 2020 and as of March 11 is 0.43 (0.26, 0.34). In Italy,R  

we estimate was 3.71 (2.00, 5.33) on February 21, 2020 and as of March 11 is 2.51 (2.24, 2.72). InR  

Countries (aggregated) outside of China the estimated  was 4.65 (3.17, 6.67) on February 21, 2020 andR  

as of March 11 is 3.37 (3.14, 3.56).  

 

Worldwide, the overall estimated was 2.17 (1.85, 2.49) on January 22, 2020. It decreased to 0.50R  

(0.39, 0.44) in mid February. By March 11, however, estimated  had increased to 2.22 (2.09, 2.39). ForR  

comparison, recent research has estimated the average reproduction rate (across several studies) to be 

3.28 (1.4, 6.5) [5]. A study conducted with data in China through mid February estimated that hasR  

been reduced from 2 to 1 [6]. 

 

 

 

 

Figure 1​.  Top row: Estimated over time and 95% confidence interval.  Bottom row: Estimated pointR(t)  

process rate of deaths along with death counts per day. 



 

Discussion 

 

These results indicate that public health measures undertaken in China reduced the of COVID-19 to(t )R   

below the self-sustaining level of 1 within China by the middle of February. They also suggest, however, 

the limitations of isolation, quarantine, and large-scale attempts to limit travel. While the world-wide 

briefly dropped below 1 as China implemented extensive public health measures, the introduction(t )R   

of the virus to other nations swiftly led to an increasing world-wide average value of . In Italy, the(t )R   

nation hardest-hit following China, social distancing measures brought the local value of down.(t )R   

Nonetheless, the value of in Italy persisted at levels well above 1, allowing for ongoing(t )R   

transmission. By mid-March 2020, as COVID-19 spread in areas without extensive public health 

interventions in place, the world-wide value of  increased to a level similar to that of late January.(t )R   
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Supplemental Material 

 

The intensity (rate) of events of the point process is defined as 

.1)  λ(t) (t )w(t )( = μ + ∑
 

t>ti
R i − ti  

The model can be represented as a branching process [s1] where the probability that infection i was 

caused by infection j is given by, 

 

.2)  p (t )w(t )/λ(t )( ij = R j i − tj i  

 

As in other related works [s2], we model the inter-time distribution as Weibull with parameters(t )w i − tj  

 and , which will be estimated from the data, and we model as a piecewise constant function:α β (t )R0 j  

3)  R(t) .( = ∑
B

k=1
r 1{t }k ∈ Ik

   

Here are intervals discretizing time, ​B​ is the number of such intervals, and is the estimatedIk rk  

reproduction rate in interval k. 

 

This representation facilitates an expectation-maximization (EM) algorithm for maximum likelihood 

inference [s3,s4,s5].  Given initial guesses for the model parameters  and , the EM algorithmμ  βα rk  

iteratively updates the parameters and branching probabilities by alternating between the 

 

E-step update 

 

(t )w(t )/λ(t )        p /λ(t ) pij = R j i − tj i ii = μ i   

 

and M-step update 

 

(t) LE ({t ; p })      μ /T           r 1{t }/Nw ~ M Weibull i − tj  ij = ∑
 

i
pii k = ∑

 

i>j
pij j ∈ Ik k   

where T is the total length of the observation period, is the total number of events in interval k, andN k  

the weibull is estimated via weighted MLE using the inter-event times as observations and branching 

probabilities as weights.  To correct for the boundary where future secondary infections are not yet 

observed we estimate r . B = rB−1  

 

We validate the model by generating synthetic data with parameters  and given inμ = 1 , βα = 8  = 4 rk  

Figure S1.  We compare the model to the TD.R0 estimator provided in the R0 software package that 

estimates a time-varying R value.  The method is similar to ours and can be viewed as an EM algorithm 

that is stopped after 1 iteration using initial guess and using a histogram estimate with bin width(t)≡1R  

equal to 1 day.  We found the R0.TD method tends to produce noisy estimates, which is why we use the 

modified algorithm outlined here.  



 

In order to assess goodness-of-fit we employ residual analysis of rescaled event times [s6]  

.(t) dtτ i = ∫
ti

0
λ  

The rescaled times are distributed according to a unit rate Poisson process if the model is correctly 

specified.  In Figure S2, we find that the estimated intensity provides a good fit for China and Italy 

mortality rates.  The estimated intensity also provides a good fit for worldwide mortality rates with the 

exception of the final 2 days (March 10 and 11) where mortality counts were under-estimated by the 

model.  

 

 

Figure S1​:  Model validation on synthetic data.  Comparison of Hawkes-EM estimator of R(t) with the 

TD.R0 dynamic R(t) estimator in the ``R0" R package.  Left: histogram of event times of simulated 

Hawkes process (black) and estimated intensity (red) using Hawkes-EM algorithm (log-likelihood 127.0 

compared to 122.3 for TD.R0).  Center: R(t) estimate and 95% confidence interval for Hawkes-EM 

estimator (red) and ground truth R(t) (black).  Right: R(t) estimate and 95% confidence interval for TD.R0 

estimator (red) and ground truth R(t) (black). 

 

 

Figure S2​:  Normalized cumulative distribution of rescaled event times along with 95% error bounds of 

the Kolmogorov-Smirnov statistic. 
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