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Lacking a drug or vaccine, our current strategy to contain the COVID-19 pandemic is by

means of social distancing, specifically mobility restrictions and lock-downs. Such measures

impose a hurtful toll on the economy, and are difficult to sustain for extended periods. The

challenge is that selective isolation of the sick, an often viable and effective strategy, is

insufficient against COVID-19, due to its relatively long incubation period, in which exposed

individuals experience no symptoms, but still contribute to the spread. Here we propose an

alternating lock-down strategy, in which at every instance, half of the population remains

under lock-down while the other half continues to be active, maintaining a routine of weekly

succession between activity and lock-down. All symptomatic individuals continue to remain

in isolation. Under this regime, if an individual was exposed during their active week, by the

time they complete their lock-down they will already begin to exhibit symptoms. Hence this

strategy isolates the majority of exposed individuals during their asymptomatic phase. We

find that this strategy not only overcomes the pandemic, but also allows for some level of

flexibility, withstanding a fraction of defectors or essential workers that remain continuously

active. We examine our strategy based on current epidemiological models with parameters

relevant for COVID-19. We wish, however, following this communication, to further test

and fine-tune our scheme based more refined data, and assess its actual effectiveness.

Note from the authors. In light of the imminence of the matter, we have decided to publish this

report, even in its preliminary form, forgoing the scientific instinct of scrutiny and reservedness.

We will continue to refine and retest our results and update this report on the go. We also welcome

feedback, comments, questions or advice that can help further test or improve our proposed strategy.

Overview

As we battle the virulent spread of COVID-19 we seek efficient strategies to mitigate its global

impact. Lacking therapeutic interventions, such as drugs or vaccines, we resort to social distancing,

aimed primarily at lowering the reproduction rate R0 and flattening the curve, i.e. reducing the

total number of infected individuals, while spreading their infection over an extended period [1–3].

Such measures are designed to avoid shocking the health-care system, reducing the medical burden,

and slowing its onset, hence keeping it within the bounds of the system’s capacity. To achieve this

many countries have imposed social restrictions [3], from complete lock-downs, to severe mobility

constraints, indeed, slowing down the viral propagation, but at the same time, taking a sever

toll on social and economic stability. Most current projections on COVID-19 indicate that such

social distancing policies must be put in place for extended periods (typically months) to avoid

reemergence of the epidemic once lifted [4]. This, however, may be unsustainable, as individual

social and economic needs will, at some point surpass the perceived risk of the pandemic.

Another challenge, specific to COVID-19, is its incubation period, estimated at ∼ 5 days on average
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[5, 6], and, at times observed to be as long as two weeks. During this period exposed individuals

are asymptomatic, but may still spread the virus - essentially behaving as invisible spreaders that

continue to interact. Under such circumstances it is difficult to selectively isolate the sick, as the

asymptomatic spreaders continue to infect the population [3]. This, we believe, may be the reason

that, despite our seclusion of the infected individuals, we continue to witness a rapid growth in

the disease coverage - further strengthening the need for an economically hurtful population wide

lock-down.

We, therefore, seek a balanced mitigation strategy, that is, on the one hand economically viable

and sustainable for an extended period, and, on the other hand allows us to bypass the challenge

posed by the invisible spreaders. We arrived at an efficient policy of an alternating lock-down,

based on two principals: (i) Complete isolation of the infected individuals, as already practiced

at present [3]; (ii) Partitioning of the remaining population into two groups that undergo weekly

successions of lock-downs and routine activity. Hence while group 1 remains active, group 2 stays

at home and vice versa. This allows half of the population to remain active at any instance, by

enabling each individual to participate in the work force and partake in social activities for half of

the time. Of course, at all times, infected individuals, who already exhibit COVID-19 symptoms

should remain in isolation, regardless of their group affiliation. It is also crucial that the partition

is at a household level, rather than per individual (e.g., based on address), such that all people

sharing the same habitat are in the same group, avoiding inter-group spillover.

This strategy of alternating lock-downs limits social mixing, while providing an outlet for people

to sustain their economic and social routines. At the same time it treats one of the main obstacles

for COVID-19 mitigation - the 5 day incubation period. Indeed, isolating people for, e.g., an entire

week after they have been socially active, ensures that the majority of the exposed individuals are

confined to their homes. To understand this consider an individual in Group 1 who was active

during week 1, and therefore might have been infected. According to the proposed routine, this

individual will anyway enter lock-down in week 2, and hence will be isolated precisely during their

suspected incubation period. If, at the end of week 2 they remain asymptomatic, most chances

are that they are, in fact, healthy, and can, therefore, resume activity at week 3 according to

the planned routine. Conversely, if they do develop symptoms during their lock-down week, they

must remain in isolation, similar to all symptomatic individuals. Hence, the weekly succession is

in resonance with the natural COVID-19 disease cycle, and in practice, leads to isolation of the

majority of invisible spreaders.

Our numerical analysis indicates that this strategy, if implemented successfully, leads to an imme-

diate and rapid decline in infection levels, effectively pushing the system from the pandemic state

(R0 > 1) to the healthy state (R0 < 1) [9]. This is despite the potential variability in incubation

times, in which a fraction of individuals may remain asymptomatic for more than the typical 5

days. We also examine the case of imperfect implementation by including a percentage of social de-

fectors who violate their lock-down terms and remain active at all times. We find that our strategy

is generally robust against such violations. As defection levels increase, however, the steep decline

of the epidemic is replaced by a more minor reduction in R0 and, hence, an effective flattening of

the curve. Both results represent desirable mitigation outcomes.
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Analysis

Modeling the COVID-19 epidemic. We consider a Susceptible-Exposed-Infected-Recovered

(SEIR) model [7], in which the population is divided into four states: S, available to contract the

disease; E, exposed individuals that are asymptomatic, yet infectious; I, infected and R, recovered.

We assume that, even without employing major social distancing measures, such as lock-downs or

quarantines, the infected individuals (I), who exhibit symptoms, are generally isolated, and hence

do not contribute to the spread. Therefore, the spreaders are the exposed individuals (E), who

continue to interact with their network of acquaintances, unaware that they are infectious. Under

these conditions the transitions between the S,E, I,R states follow

S + E
β−−→ 2E (1)

E
g(t)−−−→ I (2)

I
α−−→ R, (3)

such that upon infection susceptible individuals enter an incubation period, in which they are at

the exposed state E.

In the standard implementation of the SEIR model Eq. (2), capturing the transition from E to I, is

simulated via a Poissonian process, in which exposed individuals transform into the infected state at

a constant rate. This leads to an exponential decay in E(t) that begins upon infection, representing

a memory-less process, whose probability is independent of the time since exposure. In reality,

however, incubation has a typical time-scale, and therefore, the transition to I occurs preferably

around that time after initial exposure. Hence, in our implementation, to model the incubation

period more realistically, we assume that incubation times follow an arbitrary distribution g(t),

describing the probability density for an individual to remain asymptomatic for a period t′ ∈ (t, t+

dt). The density g(t) captures both the average incubation time, as well as its potential variability

across the population. Denoting the fraction of individuals in each state by S(t), E(t), I(t) and

R(t), i.e. S(t) +E(t) + I(t) +R(t) = 1, we can model transitions (1) - (3) as shown in Appendix

A.

In Fig. 1a we show the results of the SEIR dynamics, starting from a fully susceptible population

penetrated by a small seed of infectious individuals, i.e. S(t = 0) = 1−10−3, E(t = 0) = 10−3, I(t =

0) = 0 and R(t = 0) = 0. This captures the evolution of the unmitigated epidemic, absent any

intervention policy, aside from isolation of the sick, i.e. people in the I state. We set the parameters

to match the observed epidemiological data obtained for COVID-19: for the incubation period we

set g(t) ∼ N(µ, σ2), a normal distribution with mean µ = 5 days and σ = 0.5 [5, 6]. Assuming an

average 11 day recovery from the onset of symptoms [8], we set α = 0.09 (days−1). To evaluate

the infection rate β we collected data capturing all diagnosed cases in Israel over a period of 20

days, providing an empirical observation of I(t). We find that the diagnosed cases can be well-

approximated by an exponential inflation of the form I(t) ∼∼ ekt, with k ≈ 0.3 days−1. Setting

β = 0.32 in (1) provides the desired exponential increase that best concurs with the observed data

(Fig. 1a).

Using these coefficients we obtained a projection of the expected evolution of the epidemic (Fig.

1b). We extract three crucial parameters, directly quantifying the severity of the spread: First is



4

R∞ = R(t→∞), (4)

designed to capture the overall fraction of infected individuals throughout the spreading period.

Our results indicate that, unmitigated, COVID-19 will lead to an order of R∞ ≈ 0.65, i.e. ∼ 65%

total infection (purple). Next we seek

IPeak =
∞

max
t=0

(
I(t)

)
, (5)

capturing the fraction of infected individuals at the peak of the spread. If IPeak is large, the health

care system resources may be stretches beyond capacity. Our results project a peak infection of

IPeak ≈ 0.25 (yellow). Finally, to quantify the duration of the epidemic spread we measure the

time T for I(t) to decay below η following the peak infection, namely

I(t ≥ T ) < η. (6)

Here, setting η = 10−3, we estimate the duration of the spread at T ≈ 120 days, a projected four

month or more of sustained pandemic state.

A proper mitigation strategy aims to eliminate the spread, or, at the least,flatten the I(t) curve:

reduce R∞ and IPeak, to ensure a manageable level of infection across the population. At the

same time, however, we wish to avoid over-extending T , to allow a return to normalcy within a

reasonable time-frame. Below we examine the behavior of the SEIR model under the alternating

lock-down regime.

Mitigation

Weekly alternating lock-down. Our mitigation begins at time t = t0, at which point the state

of the system is given by S(t0), E(t0), I(t0) and R(t0). With this initial condition, we partition the

population randomly into two equal groups 1 and 2, which are instructed to alternate in succession

between a complete lock-down and regular activity. Individuals at the I state are instructed to

always remain isolated, regardless of whether their group is in the active phase or on lock-down.

The lock-down/activity periods are set to τ = 7 (days), i.e. weekly shifts between the groups. This

time scale is selected in order to approximately resonate with the disease average incubation period

of ∼ 5 days. Hence, if incubation is longer, one must set longer shifts. In our simulations we also

allow for variability in incubation period, as captured by the distribution g(t), and quantified by

the variance σ2.

The level of cooperation in the society is captured by the fraction f of defectors, who despite being

on lock-down continue their out of home activities. Hence, f = 0 represents a fully disciplined

society, which abides by the lock-down rules, and f = 1 captures a defiant society, in which all

individuals violate the lock-down. This fraction f may also capture a limited amount of essential

workers who are officially exempt from the lock-down. Despite the presence of potential defectors

or essential workers, it remains crucial that individuals exhibiting symptoms (I state) continue to

be isolated. Indeed, while asymptomatic E state individuals may have the audacity to defect, we

assume that once they become symptomatic, even they will choose to abide by the social distancing

norms. In Appendix B we construct the relevant equations to realize this mitigation strategy.
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To err on the safe side, we examine the impact of the alternating lock-downs in the absence of any

other preventive measures, namely, we assume that the population continues its pre-COVID-19

behavioral norms, with the only difference being the bi-weekly lock-down routine. Hence all the

epidemiological parameters obtained in our analysis of the unmitigated spread remain unchanged

- specifically the infection rate, which we continue to set at β = 0.32. Starting our mitigation at

t0 = 10 days we observe that the infection curve I(t) changes dramatically (Fig. 2a, blue, see inset).

The peak infection, IPeak (5), as well as the total infection, R∞ (4), become orders of magnitude

lower compared to the unmitigated spread (grey). Responding at later times (blue - red gradient)

increases IPeak, however, for all response times, ranging from t0 = 10 to 50 days, the alternating

lock-down consistently leads to am immediate and rapid decay of the epidemic.

Next, we examine the impact of defectors, f , from 10−30% defection rate (Fig. 2b - d). We find that

even under a 15% defection rate our strategy practically eliminates the spread, observing a dramatic

reduction in infection. Setting f = 0.3, we begin to observe a decline in the performance of our

strategy, as now the viral spread continues, albeit at a lower rate. Indeed, under these conditions

instead of fully eliminating the spread, the alternating lock-down scheme allows to merely flatten

the curve. Hence, in all scenarios, alternating lock-down achieves efficient mitigation, either fully

blocking the spread in a cooperative regime, or, at the least, if cooperation levels are insufficient,

flattening it to manageable levels.

To examine the performance of our strategy more systematically we measured the three parameters,

R∞, IPeak and T as appear in Eqs. (4) - (6), while gradually increasing the defection rate f (Fig. 2e -

g). We find that the system undergoes a transition, similar to the pandemic transition, at a critical

rate of defection, here observed at f ≈ 0.17. Below this value, alternating lock-downs effectively

push R0 below unity, and hence eliminate the epidemic: I(t) rapidly decays, and R∞ and IPeak both

approach zero, similar to the behavior below the pandemic threshold [9, 10]. Above this defection

level, our strategy no longer eliminates, but flattens the epidemic curve: I(t) continues to grow,

however R∞ and IPeak become smaller, equivalent to the effect of reducing R0. This transition

is also observed in the behavior of T . Indeed in the elimination phase (f < 0.17) the epidemic

rapidly decays within a short time, while under flattening (f > 0.17) the duration is extended, and

T becomes large. In both regimes, however, successful mitigation is achieved - either eliminating

of flattening the curve.

Another challenge to our strategy is the potential variability in the incubation period. This allows

a fraction of people, whose asymptomatic phase is longer than average, to remain in the E state

throughout their lock-down week, then continue to infect others as they resume activity. Our

model accounts for such variability through g(t) and its variance σ2. In Fig. 2h - j we examine the

impact σ on our mitigation. Quite strikingly, we find that even extreme levels of heterogeneity in

incubation time, with σ as high as 5 or 10 (namely, two times the mean), still have little impact on

the performance of our strategy. In fact, under all values of σ the peak infection remains at a level

of less than 1%. The only exception is when t0 = 50, a late response in which I(t) was already

above 1%, and hence IPeak reached, at its maximum level 3% (Fig. 2i, red). For the duration T

we continue to observe a similar trend, where T is low under small σ, but becomes higher as σ is

increased, and the I(t) curve is flattened rather than eliminated. Overall, however, we find that

our strategy is, by and large, insensitive to incubation time variability.



6

Taken together, we find that alternating lock-down is highly efficient, thanks to its resonance

with the natural COVID-19 disease cycle. Under ideal conditions, i.e. f, σ → 0 is eliminates

the disease within a single two week cycle, guaranteeing that all invisible spreaders remain

locked down. Our results, however, indicate that its efficiency extends beyond that. The

method is found to be robust both against imperfect implementation (large f) and against

individual variability in incubation times (large σ). It should therefore be considered as a

leading strategy, tailored for the mitigation of COVID-19.

Discussion

Alternating-lock-downs offer a sustainable strategy to overcome COVID-19. It allows to continue

the socio-economic activity at a 50% rate, while mitigating the spread. We designed our strategy

under the assumption of imperfect social compliance [11], allowing a defection fraction of f . We

believe, however, that the weekly relief, allowing people an outlet to continue and be active half of

the time, may, itself, increase cooperation levels. Indeed, while a complete lock-down is extremely

stressful for the individual, the bi-weekly routine offered here relaxes the burden, and may en-

courage compliance. This also provides a degree of freedom to allow a certain level of authorized

defection, i.e. a quota of essential workers that can be relived from the lock-down periods.

In practice, we believe that the simplest implementation can be by regulating schools and work-

places. Each house-hold will be informed on its lock-down/active schedule, and in parallel work-

places and schools will only be allowed to operate in weekly fully partitioned shifts. Under such

regulations the strategy has little dependence on social cooperation, as schools and employment

will naturally drive the population between activity and inactivity. The only enforcement of the

lock-down that will still be required is for recreational activities, beyond school and work. We

believe that the pressure to defect for such activities is lower, and hence overall defection levels

can be sustained well within the bounds of successful mitigation.

Our analysis assumes an incubation period that is of the order of a single week, specifically in our

simulations, we set it at an average of 5 days. The rationale however is more general, and can be

adapted to longer or shorter incubation times, simply by tuning the periodicity of the lock-down

shifts, keeping them congruent with the natural cycle of the disease.

More broadly, we consider the fact that there is, inherently, some level of uncertainty regarding the

disease parameters. We therefore assumed a worst case scenario, in which the infection rate during

the active weeks is the same as that of the unmitigated spread. In practice, however, we expect

many additional measures to be implemented in parallel to the lock-downs, such as extended testing

for infections, and strict hygienic regulations at the workplace. At the least, we expect standard

prophylactic behavior, such as avoiding contact or banning social gatherings, to be observed also

during each group’s active week. Such norms, that will continue until COVID-19 is fully mitigated,

will further push down β, enhancing the effectiveness of our strategy even under higher f or σ.

Alternating lock-downs offers an additional crucial advantage, that, again - assuming worst case

- we did not exploit in our simulations. Indeed, the fact that at each time point only half of

the population is active, is, itself, an enhancer of prophylactic norms. With classrooms, public

transport, offices and marketplaces at only half capacity, it becomes more natural to maintain

social distancing, and reduce infectious interactions. Hence, our partition will further push down
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the infection rate β, likely leading to an even better performance than reported in Fig. 2.

Our simulation results are based on a simplistic SEIR model, potentially overlooking much of the

complexity and irregularity characterizing the spread in a real social setting. Moreover, while

our modeling covers the epidemiological aspects of the strategy, it cannot advise on its practical

implementation or on its economical viability. Finally, tested against real-time data of, e.g., human

mobility, will enable further fine-tuning of the proposed strategy. For example, partitioning into

more groups, if possible, allowing extended activity periods, or changing the schedule from weekly

to, e.g., 10 days, etc. • Therefore, we do not call for the immediate implementation of alternating

lock-downs. We do, however, think that the potential merits of this scheme warrant its consideration

as a leading strategy for mitigation of COVID-19. As we communicate this idea - we invite critique,

and further examination of its applicability, and especially, call for testing it against real-time

human interaction data, to fine-tune its implementation and assess its effectiveness.

Data availability. All codes to reproduce, examine and improve our proposed analysis are avail-

able at https://github.com/drormeidan/ALDCOVID19.

https://github.com/drormeidan/ALDCOVID19
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FIG. 1: Modeling COVID-19. (a) We collected data on the infection levels vs. time from the Israel
Ministry of Health (circles). We observe an exponential increase at a rate of ∼ e0.3t, congruent with data
collected in other locations. Our SEIR model (Appendix A) is found to be in good agreement with the
observed exponential increase of I(t) under the following parameters: α = 0.09, β = 0.32 and g(t) having
a mean of µ = 5 days. (b) Using this parameters we simulated the projected spread of COVID-19, lacking
any preventive measures.
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FIG. 2: The impact of alternating lock-down. (a) The infection I(t) vs. t of the unmitigated epidemic
(grey) and under our mitigation starting at t0 = 10 days (blue). The epidemic is rapidly eliminated, to the
extent that the blue curve in undecipherable. To observe it we include the log-scale representation (inset),
showing that our mitigation reduces I(t) by orders of magnitude. As our response time is increased (blue
- red gradient, see legend in panel j), we observe higher infection levels. However, under all conditions
alternating lock-downs rapidly eliminate the disease. (b) - (c) Similar results are obtained also under a
10−15% defection level f . (d) For higher defection f = 0.3, our strategy does not eliminate the disease, but
rather reduces its reproduction rate R0 and effectively, flattens the curve. (e) The overall infection R∞ vs.
f under different intervention times t0 (blue - red gradient). We observe a transition, in which for f < 0.17
the disease is eliminated. Beyond this defection rate, spread is suppressed, but not fully eliminated, i.e.
flattened. (f) Similar results for IPeak vs. f . (g) Duration T vs. f . For small f the mitigation is rapid
(elimination). For large f , however, the overall duration is increased - an inevitable price of flattening the
curve. (h) - (j) We measured the three parameters vs. the variability in incubation times σ. We find that
our strategy is highly insensitive to σ, however for σ > 5, a rather extreme level of variability, duration
becomes highly extended.
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Appendix A. Modeling COVID-19

We consider a population of N individuals, of which S(t) are susceptible, E(t) are exposed, I(t)
are infected and R(t) are recovered, hence S(t) +E(t) + I(t) +R(t) = N for all t. The exposed

individuals develop symptoms within a time t from exposure, extracted from the distribution

g(t). Therefore, the number of individuals that transition to the I state at time t depends on

dE+(t − t′), namely the number of people added to the E state at an infinitesimal range dt

around t− t′. This is driven by the process of exposure in Eq. (1), which translates to

dE+

dt
= βE(t)

S(t)

N
, (7)

proportional to the number of exposed individuals E and to the probability S/N to interact

with a susceptible individual. Of all individuals infected around t − t′, a fraction g(t′) will

transition to the I state at time t, and therefore the rate of reduction in E (or contribution to

I) at time t is captured by

G(t) =

∫ t

0
g(t′)βE(t− t′)S(t− t′)

N
dt′. (8)

Equation (8) sums over all individuals exposed from t = 0 until the present time t, who will

transition from E to I around the time t. Incorporating all the transitions of Eqs. (1) - (3),

the SEIR dynamics take the form

dS
dt

= −βS(t)
E(t)

N
(9)

dE
dt

= βE(t)
S(t)

N
−G(t) (10)

dI
dt

= G(t)− αI(t) (11)

dR
dt

= αI(t). (12)

Note that infections is primarily driven by E-state individuals, as the symptomatic I individ-

uals are isolated.

Next, we rewrite the equations for the normalized populations S(t) = S(t)/N, I(t) =

I(t)/N,E(t) = E(t)/N and R(t) = R(t)/N , capturing the fraction of individuals in each

state. We arrive at our final SEIR equations
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dS

dt
= −βS(t)E(t) (13)

dE

dt
= βE(t)S(t)−G(t) (14)

dI

dt
= G(t)− αI(t) (15)

dR

dt
= αI(t), (16)

where

G(t) =

∫ t

0
g(t′)βS(t− t′)E(t− t′) dt′. (17)
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Appendix B. Modeling alternating lock-downs

To track the dynamics of COVID-19 under alternating lock-downs we first partition the popu-

lation into 2 groups that alternate between the lock-down state L and the free state F. In each

of these groups there is a fraction f of defectors D and 1−f of cooperators C. This divides all

individuals into four distinct classes: LC,LD,FC and FD, capturing the cooperators/defectors

in the locked-down/free groups. We use superscript to denote an individual’s class, hence,

e.g., ELC(t) represents the amount of exposed individuals who are in the lock-down group and

are cooperative. These individuals will not contribute to the infection, as they comply with

the stay-home instructions. Conversely, ELD(t) captures the defective individuals, who choose

to remains active and violate the lock-down. Together with EFC(t) and EFD(t), the exposed

individuals in the F group, they will contribute to spreading the virus. This results in two sets

of equations. For the lock-down group L we obtain

dSLC

dt
= 0 (18)

dELC

dt
= −

∫ t

0
g(t′)βSLC(t− t′)ET(t− t′) dt′ (19)

dILC

dt
=

∫ t

0
g(t′)βSLC(t− t′)ET(t− t′) dt′ − αILC(t) (20)

dRLC

dt
= αILC(t) (21)

dSLD

dt
= −βSLD(t)ET(t) (22)

dELD

dt
= βSLD(t)ET(t)−

∫ t

0
g(t′)βSLD(t− t′)ET(t− t′) dt′ (23)

dILD

dt
=

∫ t

0
g(t′)βSLD(t− t′)ET(t− t′) dt′ − αILD(t) (24)

dRLD

dt
= αILD(t), (25)

where

ET(t) = ELD(t) + EFC(t) + EFD(t). (26)

Infections are caused by all exposed individuals who remain active, whether officially or by

defection. As explained above, the infected are always isolated, even if defective, hence all I

individuals are excluded from the process of infection.

For the free group we write
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dSFC

dt
= −βSFC(t)ET(t) (27)

dEFC

dt
= βSFC(t)

(
ET(t)

)
−
∫ t

0
g(t′)βSFC(t− t′)ET(t− t′) dt′ (28)

dIFC

dt
=

∫ t

0
g(t′)βSFC(t− t′)ET(t− t′) dt′ − αIFC(t) (29)

dRFC

dt
= αIFC(t) (30)

dSFD

dt
= −βSFD(t)ET(t) (31)

dEFD

dt
= βSFD(t)ET(t)−

∫ t

0
g(t′)βSFD(t− t′)ET(t− t′) dt′ (32)

dIFD

dt
=

∫ t

0
g(t′)βSFD(t− t′)ET(t− t′) dt′ − αIFD(t) (33)

dRFD

dt
= αIFD(t). (34)

To set the initial conditions we consider the response time t0 when we employ our intervention.

At this time point the state of the system is given by S(t0), E(t0), I(t0), R(t0). We first partition

them into two equal groups, each with a fraction f of defectors. Hence at the intervention

point t0 we have

SLC(t0) = 1
2(1− f)S(t0), SLD(t0) = 1

2fS(t0)

SFC(t0) = 1
2(1− f)S(t0), SFD(t0) = 1

2fS(t0)

ELC(t0) = 1
2(1− f)E(t0), E

LD(t0) = 1
2fE(t0)

EFC(t0) = 1
2(1− f)E(t0), E

FD(t0) = 1
2fE(t0)

ILC(t0) = 1
2(1− f)I(t0), ILD(t0) = 1

2fI(t0)

IFC(t0) = 1
2(1− f)I(t0), IFD(t0) = 1

2fI(t0)

RLC(t0) = 1
2(1− f)R(t0), RLD(t0) = 1

2fR(t0)

RFC(t0) = 1
2(1− f)R(t0), R

FD(t0) = 1
2fR(t0).

(35)

Setting the initial condition according to Eq. (35) we solve Eqs. (18) - (34) for a period of 7 days.

We then switch between the L and F groups, setting SLC(t) = SFC(t), ELC(t) = EFC(t) . . .

and vice versa, proceeding to solve the equations for an additional 7 days. We continue with

such weekly iterations, until we reach steady-state where I(t→∞)→ 0.
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