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Abstract 

In this short paper, the logistic growth model and classic susceptible-infected-recovered 

dynamic model are used to estimate the final size of the coronavirus epidemic. 

1 Introduction 

One of the common questions regarding an epidemic is its final size. To answer this 

question various models are used: analytical (Danby 1985, Brauer 2019a, b, Murray 

2002), stochastic (Miller 2012), and phenomenological (Fisman D 2014, Pell et al. 

2018).  

In this note, we attempt to estimate the final epidemic size using the phenomenological 

logistic growth model (Pell et al. 2018, Chowell G 2014) and the classic susceptible-

infected-recovered (SIR) model (Hethcote 2000). With both the models, we obtain a 

series of daily predictions. The final sizes are then predicted using iterated Shanks 

transformation (Shanks 1955, Bender and Orszag 1999). The data used for the 

calculations are taken from worldmeters0F

1. 

Before proceeding, we note that the final size of the epidemic in its early stage was 

discussed by Wu et al. (Wu, Leung, and Leung 2020) using the susceptible-exposed-

infected-resistant model, by Xiong and Yan (Xiong and Yan 2020) using the exposed-

infected-resistant model, by Nesteruk (Nesteruk 2020) using the SIR model, and by 

Anastassopoulou et al. (Anastassopoulou et al. 2020) using the SIR/death model. These 

early predictions range from 65000 to a million cases. Roosa et al recently gave short-

term forecasts of the epidemic (Roosa et al. 2020). 

                                      
1 https://www.worldometers.info/coronavirus/ 
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2 Logistic growth model 

The logistic growth model originates from population dynamics (Haberman 1998). The 

underlying assumption of the model is that the rate of change in the number of new 

cases per capita linearly decreases with the number of cases. Hence, if C is the number 

of cases, and t is the time, then the model is expressed as 

 
1
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where r is infection rate, and K is the final epidemic size. If   0
0C C  is the initial 

number of cases, then the solution of (1) is 
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At this time, the number of cases and growth rate are 
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Now, if 
1 2
, , ,

n
C C C are the number of cases at times 

1 2
, , ,

n
t t t , then the final size 

predictions of the epidemic based on these data are 
1 2
, , ,

n
K K K . By using Shanks 

transformation, the predicted final epidemic size is 
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For the practical calculation of the parameters K and r, we use the MATLAB functions 

lsqcurvefit and fitnlm.  

3 SIR model 

The model equations are 
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I
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where t is time,  S t  is the number of susceptible persons at time t,  I I t  is the 

number of infected persons at time t,  R t  is the number of recovered persons in time 

t,   is the contact rate, and 1   is the average infectious period. From (1), (2), and 

(3) we obtain the total population size, N. 

 const.N S I R     (9) 

The initial conditions are   0
0S S ,   0

0I I , and   0
0R R .  

Eliminating I from (1) and (3) yields 

  0 0
expS S R R

N


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In the limit t   , the number of susceptible people left, S
, is 
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where R
 is the final number of recovered persons. As the final number of infected 

people is zero, we have, using (4), 

 N S R   . (12) 

From this and (6), the equation for R
 is 

  0 0
expR N S R R

N

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To use the model, we must estimate the model parameters  ,  , and the initial values 

0
S  and 

0
I  from the available data (we set 

0
0R   and  

0 0
I C ). 

Now the available data is a time series of the total number of cases C, i.e., 

 C I R  . (14) 
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We can estimate the parameters and initial values by minimizing the difference between 

the actual and predicted number of cases, i.e., by minimizing 

  
2
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ˆ ˆ ˆ ˆ, , ,

t n
C C C C   are the corresponding estimates calculated by the model. For 

practical calculation, we use the MATLAB function fminsearch. For the integration 

of the model equation, we use the MATLAB function ode45. 

With a series of predicted final number of recovered persons, 
,1 ,2 ,
, , ,

n
R R R  

, we can 

estimate the series limit by Shanks transformation. 
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4 Results 

The results of logistic regression and the SIR model simulation are given in Tables 1 

and 2, respectively. The comparison of the predicted final sizes is shown in the graph 

in Figure 1. We see that both methods converge and with more data, the discrepancy 

between the predicted values becomes less than 5%. From Table 1, we see that the 

peak of the epidemic was probably on 9 Feb, 2020. 

 

  
Figure 1. Evaluation of estimated final size of coronavirus epidemic (data until 20 

Feb, 2020) 
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Table 1. Data and results of logistic regression (see Eqs. (2), (3), (4))  

data Regression Peak 
date day C K r A day dCdt date 

  (cases) (cases) (1/day)     

30.01.20 15 9821 16419 0.469 482.885 13 1927 30.01.20 
31.01.20 16 11948 18165 0.45 452.557 13 2044 30.01.20 

1.02.20 17 14551 21823 0.414 394.184 14 2260 31.01.20 
2.02.20 18 17389 26068 0.383 350.318 15 2495 1.02.20 
3.02.20 19 20628 31257 0.354 316.693 16 2766 2.02.20 
4.02.20 20 24553 38821 0.324 290.892 17 3146 3.02.20 
5.02.20 21 28276 44479 0.308 279.637 18 3420 4.02.20 
6.02.20 22 31439 46180 0.303 275.4 18 3496 4.02.20 
7.02.20 23 34876 48078 0.297 268.19 18 3570 4.02.20 
8.02.20 24 37552 48596 0.295 265.417 18 3588 4.02.20 
9.02.20 25 40553 49822 0.291 256.799 19 3621 5.02.20 

10.02.20 26 43099 50903 0.286 247.807 19 3643 5.02.20 
11.02.20 27 44919 51372 0.284 243.22 19 3650 5.02.20 
12.02.20 28 60326 71335 0.226 152.937 22 4027 8.02.20 
13.02.20 29 64437 93484 0.198 137.983 24 4627 10.02.20 
14.02.20 30 67100 100456 0.192 137.028 25 4826 11.02.20 
15.02.20 31 69197 97849 0.194 137.789 25 4757 11.02.20 
16.02.20 32 71329 94252 0.198 140.336 24 4672 10.02.20 
17.02.20 33 73332 91467 0.202 143.931 24 4617 10.02.20 
18.02.20 34 75198 89575 0.205 147.671 24 4589 10.02.20 
19.02.20 35 75700 87525 0.208 153.464 24 4568 10.02.20 
20.02.20 36 76676 86067 0.212 159.069 23 4560 9.02.20 
21.02.20 37 77673 85090 0.214 163-862 23 4561 9.02.20 
22.02.20 38 78651 84468 0.216 167.584 23 4564 9.02.20 
23.02.20 39 79400 84039 0.217 170.598 23 4568 9.02.20 
24.02.20 40 80088 83756 0.218 172.864 23 4573 9.02.20 
25.02.20 41 80997 83642 0.219 173.897 23 4575 09.02.20 
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Table 2. Results of SIR simulations. After day 28, the method of data collection 

changes.  

 Day N S


 R


 , , 1n n
R R

  
        2R  

12.02.20 28 551513 473888 77625 1.429 2.897 2.689 1.077 0.988 
13.02.20 29 1300538 1189616 110922 1.048 4.026 3.854 1.045 0.988 
14.02.20 30 1434310 1318035 116275 0.925 4.157 3.988 1.042 0.990 
15.02.20 31 1203132 1095609 107523 0.932 3.905 3.730 1.047 0.991 
16.02.20 32 1002252 901990 100262 0.953 3.624 3.441 1.053 0.992 
17.02.20 33 864976 769448 95528 0.969 3.387 3.198 1.059 0.993 
18.02.20 34 774076 681530 92546 0.969 3.205 3.010 1.065 0.994 
19.02.20 35 683791 594070 89722 0.978 2.998 2.798 1.071 0.994 
20.02.20 36 619431 531645 87787 0.985 2.835 2.630 1.078 0.994 
21.02.20 37 574963 488460 86503 0.990 2.712 2.504 1.083 0.994 
22.02.20 38 544793 459126 85667 0.993 2.624 2.413 1.087 0.995 
23.02.20 39 522591 437513 85078 0.993 2.557 2.343 1.091 0.995 
24.02.20 40 506492 421823 84669 0.995 2.506 2.291 1.094 0.995 
24.02.20 41 497719 413262 84456 0.998 2.477 2.262 1.095 0.996 

 

Table 3. Estimated logistic model parameters for data until 25 Feb, 2020 

            Estimate       SE        tStat       pValue   
          ________    _________    ______    __________ 
 
    K      83643        1239.9     67.46    3.5853e-41 
    r    0.21882     0.0083521    26.199    6.2629e-26 
    A     173.89         29.73    5.8492    9.1682e-07 
 
 
Number of observations: 41, Error degrees of freedom: 38 
Root Mean Squared Error: 2.15e+03 
R-Squared: 0.996, Adjusted R-Squared 0.995 
F-statistic vs. zero model: 6.35e+03, p-value = 2.42e-51 
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Figure 2. Predicted evaluation of coronavirus epidemic (data until 20 Feb, 2020) 
 

In Figure 2, the time evaluation of the cases is shown, where we can see a good 

agreement between the models and the actual data. From Table 3, we see that the 

logistic regression model has a high coefficient of determination of 0.996, while the p-

value (< 0.000) indicates that all the regression parameters are statistically significant.  

In Tables 3 and 4, the iterated Shanks transformations for the predicted series of the 

final epidemic size are given. It appears that the predictions of the logistic model tend 

to the final size of 83231 cases, while the SIR model predictions converge to 83640 

cases. Thus, the discrepancy is less than 0.5%.  

 

Table 3. Iterated Shanks transformation for logistic model 

day K  K K    K K K     K K K K  

35 87524    

36 86067 83101   

37 85090 83386 83236  

38 84469 83071 83372 83231 
39 84039 90072 86718  

40 83576 83634   

41 83642    

Table 4. Iterated Shanks transformation for SIR model 
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day R
 R(R

) R(R(R
)) R(R(R(R

))) 

35 89722    

36 87787 83971   

37 86503 84107 84003  

38 85667 83673 83731 83640 
39 85078 83740 83663  

40 84669 84225   

41 84456    

 

5 Short term forecasting 

The models used are data-driven, so they are as reliable as data are. Namely, as can 

be seen from the graph in Figure 2 at the beginning, we have exponential growth. Then 

until 11 Feb, one can predict the final epidemic size of about 55000 cases. However, 

the collection of data changes and we have a jump of about 15000 new cases on 12. 

Feb. On 20 Feb we have another change in trend; the data begin to shows almost linear 

trend (See Fig 3). While the above models show that the epidemic is slow down, the 

linear trend predicts about 873 new cases per day (see Table 5). 

Table 5. Short term forecasting with the logistic and linear model. The linear model 

predicts 873 new cases per day. 

Date Day Actual 
Logistic 

model 

Error 

% 

Linear 

model 

Error 

% 

Actaul 

cases/day 

Predicted 

cases/day 

20.02.20 35 75700 75890 2.111 75837 0.180   
21.02.20 36 76676 77298 2.337 76709 0.044 976 1408 
22.02.20 37 77673 78468 2.267 77582 0.117 997 1170 
23.02.20 38 78651 79434 2.004 78455 0.249 978 966 
24.02.20 39 79400 80227 1.859 79328 0.090 749 793 
25.02.20 40 80088 80876 1.644 80201 0.141 688 649 
26.02.20 41 80997 81405 1.036 81074 0.095 909 529 
27.02.20 42  81836  81947   431 
28.02.20 43  82185  82820   349 
29.02.20 44  82467  83693   282 

1.03.20 45  82696  84566   229 
2.03.20 46  82880  85439   184 
3.03.20 47  83029  86312   149 
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Figure 3. Short-term forecasting from 20 Feb 2020 

 

6 Conclusion 

On the basis of the available data, we can now predict that the final size of the 

coronavirus epidemic using the logistic model will be approximately 83700  1300  

cases and that the peak of the epidemic was on 9 Feb 2020. A more optimistic final 

size of 83300 cases is obtained using the Shanks transformation. Similar figures are 

obtained using the SIR model, where the predicted size of the epidemic is approximately 

84500, and the Shanks transformation lowers this number to about 83700 cases.  

Naturally, the degree of accuracy of these estimates remains to be seen. 

In conclusion, qualitatively, both models show that the epidemic is moderating, but 

recent data show a linear upward trend. The next few days will, therefore, indicate in 

which direction the epidemic is heading. 

PS. Today it is more or less clear that the predictions of the article apply only to 

China. By February 20, 99% of the case was from China. The linear trend in data from 

Feb 20 onward meant a decreasing number of infected in China and increasing infected 

elsewhere in the world. In other words, in China, the epidemic is slowing down, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 28, 2020. .https://doi.org/10.1101/2020.02.16.20023606doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.16.20023606
http://creativecommons.org/licenses/by-nc-nd/4.0/


28.02.2020 09:27 

10 

 

however, it is now developing elsewhere in the world. We note that the forecasting 

methods used in this article are inapplicable in the early stages of an epidemic. 
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