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Abstract

The COVID-19 pandemic has highlighted the need for control measures that reduce the
epidemic peak (“flattening the curve”). Here we derive the optimal time-limited interven-
tion for reducing peak epidemic prevalence in the standard Susceptible-Infectious-Recovered
(SIR) model. We show that alternative, more practical interventions can perform nearly
as well as the provably optimal strategy. However, none of these strategies are robust to
implementation errors: mistiming the start of the intervention by even a single week can be
enormously costly, for realistic epidemic parameters. Sustained control measures, though
less efficient than optimal and near-optimal time-limited interventions, can be used in com-
bination with time-limited strategies to mitigate the catastrophic risks of mistiming.

1 Introduction

Controlling a novel epidemic can be extremely difficult: there may be little standing immu-
nity within the population, and the disease itself may be poorly understood. Such a disease
can infect a large portion of the population and, if symptoms are severe, as in the ongoing
COVID-19 pandemic, healthcare systems may be strained to the breaking point. It can take
months to develop drugs, and years to develop vaccines [4]. Initial control efforts therefore
rely heavily on “non-pharmaceutical interventions”[5] such as “physical distancing” (also
called “social distancing”) measures designed to reduce rates of disease-transmitting con-
tact. These measures carry social and economic costs, and so policymakers may be unable
to maintain them for more than a short period of time.
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Here we derive the optimal strategy for limiting the peak prevalence of a novel disease using
a time-limited intervention. We consider classes of easier-to-implement but less efficient
strategies, and show that they perform nearly as well as the globally optimal strategy if
they are themselves optimized. Importantly, neither the optimal strategy nor any of these
near-optimal strategies is robust to implementation error: small errors in timing of the
intervention produce large increases in peak prevalence.

However, we show that layering a short, strong intervention on top of a sustained weak
intervention mitigates the risks of mistiming the strong intervention. Our results show that
policymakers should be wary of trying to finesse an explosive epidemic of a novel pathogen
by attempting the optimal intervention without any other controls. To avoid disasters born
of implementation error, a strong, early, and ideally sustained response is required.

2 Background

2.1 Goal: peak reduction

Non-pharmaceutical control of an infectious disease is socially and economically costly, and
it may be difficult to maintain due to political pressure and public non-compliance. A
policymaker might be tempted to optimize, intending to maximize the benefits from a time-
limited, highly efficacious intervention. To assess the prospects of this approach, including
the risks of mis-implementing such a strategy, we first specify the goal to be achieved and
determine a provably optimal intervention given that goal. We then analyze the costs
incurred by errors in implementation of the optimal strategy.

In this article, we study strategies aimed at epidemic mitigation rather than at epidemic
eradication. This makes our work particularly relevant for the study of a novel, emerging
pathogen. For such a pathogen, the effective reproduction number Re (the average number
of new cases produced by each infectious individual prior to recovery) is often much larger
than one in the absence of control. To eradicate the pathogen, we must sustain Re < 1 (so
that each currently infectious person tends to produce less than one subsequent infection)
for sufficient time to eliminate all cases. That may not be feasible, particularly during a
global pandemic when re-introductions of cases from other regions and other countries can
occur after the disease has been locally eradicated.

Since this work focuses on interventions that are constrained to be short, limited in efficacy,
or both, we will assume policymakers are aiming at mitigation: “flattening the curve” [1].
We assume that vaccination and other control strategies that render individuals immune
without having been infected are not yet available to our policymaker. Instead, interventions
are limited to transmission-reducing measures such as physical distancing [7, 3]: temporary
reductions in the rates of contacts that might cause transmission.

Our principal criterion for the success of an intervention will be minimizing the highest peak
of the epidemic. The peak is the largest single quantity of infectious individuals at any one
time. This quantity is critical because it is the point at which and health services will be
most strained. An overwhelmed system can dramatically increase case-fatality rates and
lead to increased rates of complications from infection [7, 3].
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All else equal, a policymaker would also like to minimize the total cases during the epidemic,
but for an explosively spreading novel virus, this consideration is secondary to minimizing
peak incidence. Avoiding collapse of the healthcare system is the most valuable goal. What
is more, among non-eradicative interventions, those that reduce the highest epidemic peak
(almost) necessarily reduce the total case count (or “final size”) of the epidemic, though
they may not do so as efficiently as interventions specifically targeted at final size reduction
[2].

2.2 Prior work on time-limited interventions

There have been relatively few modeling studies on time-limited strategies for peak reduc-
tion. One known result establishes that time-limited peak reduction interventions should
start earlier than final size reduction interventions, all else equal [2]. But the optimal strat-
egy to reduce the peak not known, nor is the robustness of such a strategy to implementation
error.

2.3 The importance of timing

Given perfect and complete information, what would be the optimal time-limited interven-
tion for reducing the height of the epidemic peak?

The peak incidence occurs when the Re = 1, that is, when new infections exactly balance
recoveries. This point can be hastened—and the number of infections at that point thereby
reduced—if the number of susceptible individuals in the population is depleted.

This is why time-limited intensive interventions cannot begin too early if they are to mini-
mize the peak. Locking down transmission too early and too aggressively slows the depletion
of susceptibles. If controls are then relaxed too soon, there will be a large second epidemic
peak [2].

This gives us some intuition for the importance of timing, and for the properties of the
optimal intervention: it must trade off depletion of susceptible pool against reduction in the
rate at which people become infectious. We formalize this by finding a provably optimal
peak-reduction strategy for the standard susceptible-infectious-recovered (SIR) epidemic
model [6]. We also analyze near-optimal, but more realistic, intervention strategies; and we
assess the robustness of interventions to implementation error.

3 Model

3.1 The standard SIR

We consider the standard normalized SIR model, which describes the fractions of susceptible
S(t), infectious I(t), and recovered R(t) individuals in the population at time t, where
S(t)+I(t)+R(t) = 1 and 1 ≥ S(t), I(t), R(t) ≥ 0. Each infectious individual has potentially
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disease-transmitting contacts at rate β ≥ 0, and recovers at rate γ > 0. In a large, well-
mixed population the fractions of these individuals individuals change according to the
ordinary differential equations:

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

(1)

We note that such a model has a basic reproduction number R0 = β
γ and an effective

reproduction number Re = β
γS(t). We will parameterize epidemics in terms of their R0 and

γ, which together determine β. We analyze interventions that seek to minimize the peak
prevalence (maximum fraction infected at any point in time during the epidemic). We will
call this quantity Imax.

3.2 Interventions b(t)

We consider interventions that reduce the effective rate of disease-transmitting contacts
β. This is the impact of physical distancing measures like those that have been imposed
in many countries in an attempt to curb the growth of the ongoing COVID-19 pandemic.
Many other non-pharmaceutical interventions—as well as some pharmaceutical ones, such
as antivirals that reduce “shedding”—also work by reducing β.

We permit interventions that operate on β only for some limited duration τ . We impose
this constraint in light of the political, social, and economic impediments to maintaining an
aggressive intervention indefinitely.

We model an intervention by defining a transmission reduction function b(t), such that:

dS

dt
= −b(t) ∗ βSI

dI

dt
= b(t) ∗ βSI − γI

dR

dt
= γI

(2)

If the intervention is initiated at some time t = ti, it must stop at time t = ti + τ . So
necessarily b(t) = 1 if t < ti or t > ti+τ . During the intervention (i.e. when ti ≤ t ≤ ti+τ),
we permit b(t) to assume any value between 0 and 1, inclusive. This restriction assumes
that we cannot intervene to “raise” β and thus R0 above their values of in the absence
of intervention, but also optimistically assumes that b(t) can be adjusted instantaneously,
and that R0 can be reduced all the way to zero, at least for a limited time. In formal
mathematical terms (see section B.3 of the Appendix), we require only that the intervention
function b(t) output values in the interval [0, 1] and that it be right-continuous except for
finitely many points of discontinuity.
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4 The optimal intervention

We pose the following optimization problem: given the epidemiological parameters β and
γ and the finite duration τ , what is the optimal choice of b(t) for minimizing Imax? Such
an optimal intervention is of interest for two main reasons. It provides a standard point of
comparison for evaluating other possible interventions. And it will allow us to show that
optimized, time-limited responses have inherent risks and shortcomings—even in the best
case scenario.

We prove (see Theorem 1 in the Appendix; all references to Theorems, Corollaries, and
Lemmas are to the Appendix) that for any R0, γ, and τ there is a unique, globally optimal
intervention b(t) that starts at an optimal time topt

i and is given by:

bopt(t) =

{
γ
βS , t ∈ [ti, ti + fτ)

0, t ∈ [ti + fτ, ti + τ ]
(3)

The optimal approach to reducing Imax is to “maintain and then suppress”. We first
spend a fraction f of our intervention time τ in a “maintain” phase: we choose b(t) so that
Re = 1. This maintains the epidemic at a constant number of infectious individuals equal
to I(topt

i ), while susceptibles are depleted at a rate γI(topt
i ). We then spend the remaining

fraction 1 − f in a “suppress” phase, setting Re = 0 so that infectious individuals are
depleted at a rate γI.

The effectiveness of the intervention, when it should commence, and the balance between
maintenance and suppression all depend on τ : the total duration of the intervention. The
longer we can intervene (larger τ), the more we can reduce the peak (smaller Imax), the
earlier we should optimally act (smaller topt

i ), and longer we should spend maintaining versus
suppressing (larger f) (Fig. 1 A, G, H, Theorem 1, Lemma 7, and Corollary 3).
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Figure 1: (A–F) Timecourses of epidemics under optimal (A), fixed control (B), and full
suppression (C) interventions with three different values of τ : 14 days (dark lines), 28 days
(intermediate lines), and 56 days (light lines), and their respective intervention functions
(D–F). (G, H) Effect of the duration τ on the infectious prevalence peak (G) and inter-
vention starting times (H) for the optimal intervention (green), the optimized fixed control
intervention (blue), and the optimized full suppression intervention (red). Parameters as in
Table 1.

5 Near-optimal interventions

Although optimal and theoretically enlightening, the intervention described above is un-
feasible in practice. Its implementation would require policies flexible enough to fine-tune
transmission rates continuously, imposing ever changing social behaviors. Implementation
would also require instantaneous and perfect information about the current state of the epi-
demic in the population. We therefore also consider other families of potential interventions,
and see how they perform compared to the optimal intervention.

Real-world interventions typically consist of simple rules that are fixed for some period of
time (quarantines, restaurant closures, physical distancing). We model such fixed control
strategies (previously investigated by di Lauro and colleagues [2]) as interventions of the
form:

bfix(t) = σ, t ∈ [ti, ti + τ ] (4)
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These fixed control interventions are fully determined by two parameters: the starting time
ti and the strictness σ ∈ [0, 1]. For any intervention duration τ we can then numerically
optimize ti and σ to minimize Imax.

For a given R0, γ, and τ , an optimized fixed control intervention yields an epidemic time
course that is remarkably similar to the one obtained under the globally optimal intervention
strategy. Peak prevalence Imax is only slightly lower in the optimal intervention than in an
optimized fixed intervention (Fig. 1 B G). Notably, the effectiveness of a fixed intervention
depends on τ in a similar manner to that of the optimal intervention: longer interventions
are more effective, should start earlier, and are less strict (Fig. 1 E, G, H).

The similarities between fixed control and optimal interventions can be understood by in-
specting the time course of Re during the intervention. A constant σ > 0 causes Re to
drop throughout the intervention. In this way, a fixed intervention initially depletes the
susceptible fraction, but gradually starts depleting the infectious fraction as Re falls. And
so fixed control interventions are qualitatively similar to the “maintain-suppress” phases of
the optimal intervention. As τ increases, the optimal σ decreases, promoting interventions
that have longer “maintenance”-like periods characterized by susceptible depletion. That
is, optimizing a fixed control strategy has the effect of choosing σ and ti that emulate the
optimal strategy. This emulation is in fact very successful, and leads an optimized fixed
control intervention to perform nearly as well as the optimal intervention across a large
range of durations τ (Fig. 1, G).

To further investigate the importance of the “maintenance” phases of these interventions,
we consider a third class of interventions: the full suppression interventions defined by

b0(t) = 0, t ∈ [ti, ti + τ ]. (5)

These interventions are fully determined by the starting time ti. They can be optimized
for any intervention duration τ by choosing ti appropriately. Such interventions emulate
extremely strict quarantines. They are characterized by the complete absence of susceptible
depletion during the intervention.

Note that the full suppression intervention is a limiting case both of the optimal intervention
with vanishing short “maintenance” phase (f → 0) and of the fixed control intervention with
maximal strictness (σ = 0). Accordingly, the full suppression intervention performs similarly
to the optimal intervention and to the fixed intervention for short durations, when those favor
a relatively short “maintenance” phase and a high strictness (Fig. 1 C). For longer interven-

tions, the effectiveness of full suppression rapidly plateaus at Imax = 1
2 + 1

2R0

(
log
(

1
R0

)
−1
)

(Fig. 1 G, Corollary 5). Accordingly, the starting time of a full suppression intervention
with increasing duration also plateaus: there is no benefit in fully suppressing too early
(Fig. 1 H, Corollary 5).

Taken together, these results show that the most efficient way for long interventions to
decrease peak prevalence Imax is to cause susceptible depletion while limiting how much
the number of infectious individuals can grow. For short interventions, it is most efficient
simply to reduce the number of infectious individuals.

Optimizing an intervention trades off cases now against cases later. We prove (Theorem 2)
that maintain-suppress interventions optimized given f (which includes both the globally
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optimal intervention and the full suppression interventions) cause the epidemic to achieve the
peak prevalence exactly twice: once during the intervention and once immediately afterward.
We conjecture that this result holds for optimized fixed interventions as well.

6 Mistimed interventions

The optimized interventions we have described are extremely powerful. For the COVID-
like parameters shown, 28-day optimal or fixed control intervention can reduce the peak
prevalence from about 30% of the population to under 15%. Even the full suppression
intervention reduces peak prevalence to well under 20%. These are massive and potentially
health system-saving reductions.

But interventions are not automatically triggered at a certain number of infectious indi-
viduals or a certain point in time. They are made by policymakers, who must estimate
the current quantity of infectious individuals I(t), often from very limited data, must begin
roll-out of an intervention without certainty about how long that roll-out will take, and
must also estimate the epidemiological parameters R0 and γ. These tasks are difficult, and
so policymakers may fail to intervene precisely at the optimal moment topt

i .

Indeed, the COVID-19 pandemic has highlighted how difficult real-time epidemiological
inference and response can be. Large numbers of asymptomatic and mildly symptomatic
cases [8], as well as difficulties with testing, particularly in the United States [10], have
left the public health community with substantial uncertainty both regarding the virus’s
epidemiological parameters and regarding case numbers in many locations.

All of this means that even if we grant our policymaker the capacity to tune b(t) instanta-
neously and with infinite precision so as to maintain the optimal intervention, the policy-
maker will still intervene with some timing error. The realized ti will be either greater or
smaller than topt

i . To study this, we will consider errors in both directions, though there
are reasons to believe that lateness might be more common than earliness, due to political
and regulatory difficulties in intervening, or unexpected delays in implementation once the
go signal is given.

How costly is mistiming a time-limited optimized intervention?

We find that even a single week of separation between the time of intervention and topt
i can

be enormously costly, for realistic epidemic parameters (Fig. 2).
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Figure 2: (A–F) Timecourses of epidemics under optimal (A), fixed control (B), and full
suppression (C) interventions that are possibly mistimed: a week late (dark lines), optimally
timed (intermediate lines), and a week early (light lines). Dashed black line shows timecourse
in the absence of intervention. (D–F) Timescourses of epidemics with a sustained control
that reducesR0 by 25%, combined witht the effects of a possibly mistimed optimal (D), fixed
control (B), and full suppression (F) interventions, with line lightenss as before. Dashed
grey line shows timecourse with only sustained control and no additional intervention. (G–I)
Effect of offset of intervention time ti from optimal intervention time topt

i on epidemic peak
prevalence Imax without (solid lines) and with (dotted lines) sustained control for optimal
(G), fixed control (H) and full suppression (I) interventions. Dashed black and grey lines
show Imax in the absence of intervention, without and with sustained control, respectively.
Unless otherwise stated, parameters as in Table 1.
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While the optimal intervention achieves a dramatic reduction in the height of the peak,
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mistiming the intervention can be disastrous. Intervening too early produces a resurgent
peak, but it is even worse to intervene too late. For example, if the intervention is initiated
one week later than the optimal time, then Imax is barely reduced compared to the absence
of any intervention whatsoever, particularly in the case of a full suppression intervention.

The extreme costs of mistiming arise from the steepness of the I(t) curve at topt
i . Optimized

interventions permit some cases now in order to reduce cases later. Both infectious depletion
and susceptible depletion require the presence of currently infectious individuals in order to
be effective peak reduction mechanisms. This means that, except for interventions of very
long duration τ , the optimal start time topt

i is during a period of rapid, near-exponential
growth in the fraction infectious I(t). Indeed, for epidemics that have faster dynamics, the
consequences of mistiming interventions are increasingly stark (Fig. 3, B).

The problem with this is intuitive: because S(t) and I(t) are so steep at S(topt
i ), I(topt

i ),
small errors in timing produce large errors in terms of S(ti), I(ti). But the error is also
asymmetric: being late is costlier than being early (Fig. 3 B–D). The early intervention is
strongly sub-optimal and allows a large resurgent second peak, but that resurgence is still
slower and smaller (thanks to susceptible depletion during the too-early intervention) than
the prolonged uncontrolled growth period that is permitted by a late intervention (Fig. 2,
A–C, G–I, Fig. 3).

Importantly, Theorem 2 implies that the late implementation of an optimized intervention
leads to an immediate epidemic peak, whereas the early implementation of such an inter-
vention postpones the peak (Fig 2, A-C). In practice this means that early interventions
allow for course correcting. Interestingly, the optimal intervention displays a partial self
correction for early implementation even—in fact, especially—for very fast epidemics. This
occurs because during the initial phase of the optimal intervention, the strictness actually
decreases in time (see equation 12), which allows for some growth of the infectious fraction
and improved depletion of the susceptible fraction. An intriguing side effect of this auto-
matic course-correction is that for relatively fast epidemics, some premature interventions
outperform others that are less early (note the branching in Fig 3, B).

7 Sustained interventions

Are there any sustained measures that can improve the robustness with respect to timing of
the optimized interventions? Because the severity of mistiming is governed by the steepness
of I(t), measures that reduce such steepness should alleviate the impact of mistiming an
intervention. We propose using less strict measures of a longer duration to achieve this.
Even though these measures by themselves might not strongly affect Imax, they might
buffer timing mistakes when used in combination with stricter, time-limited interventions.

We consider both a sustained control intervention, modeled as a constant reduction of R0

throughout the entire epidemic, as well as a time-limited intervention layered on top, during
the same epidemic (Fig. 2, D–F). If perfectly timed, the limited interventions by themselves
outperform the sustained intervention. Moreover, the addition of a sustained intervention
to a perfectly timed limited intervention provides little extra benefit in terms of reduction
of Imax (Fig. 2 G–H). However, even a slight mistiming of time-limited interventions makes
them worse than a sustained intervention on its own. Most importantly, if both sustained
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and time-limited interventions are adopted, the time sensitivity of the time-limited interven-
tions is reduced. This is particularly pertinent for interventions that are later than optimal
(Fig. 2 D–I).

8 Discussion

The SIR model is nearly a century old [6], and to this day it is used to inform policy, including
the ongoing response to COVID-19. COVID-19 has also thrown into relief the importance
not merely of minimizing total cases but of “flattening the curve”. Our work establishes
a provably optimal approach to curve-flattening in an SIR, given a limited intervention
duration. We also show that coarser time-limited interventions can closely approximate the
optimal intervention, suggesting a tantalizing policy opportunity. For a policymaker looking
to minimize social and economic disruption during disease control, swallowing the bitter pill
of an intensive intervention but otherwise being able to maintain business as usual might
seem extremely attractive.

But we have also seen the costs that optimization can bring in practice, when timing errors
will surely occur. Missing the optimal moment topt

i leads to a dramatic peak incidence. It
is particularly costly to be too late; a high peak is achieved rapidly and immediately, before
the health system has time to prepare.

There are many reasons a policymaker could miss topt
i even in the (already unrealistic) case

that the underlying epidemiological parameters are perfectly known. For example, one must
estimate the current number of cases in order to know the effective value of t itself, and thus
how far away topt

i is. One must also introduce and enforce control measures—full compliance
could easily take longer to achieve than planned.

For respiratory viruses, another concern is that R0 is not truly fixed in time even in the
absence of intervention. R0 for a respiratory virus tends to exhibit “seasonality”: rising in
temperate zone winters, falling in temperate zone summers. Influenza is the classic example:
the Northern Hemisphere has a winter “flu season”. Poor estimates of seasonal variation
could also disrupt attempts to optimize b(t).

In ongoing work, we aim to explicitly analyze this problem of disease control under uncer-
tainty, by coupling our intervention approaches with an analysis of epidemiological inference.
If one must determine and act at topt

i based on noisy epidemiological data, how well can one
do, and how are errors of inference magnified by the subsequent intervention mistiming?

We have assumed that b(t) can be chosen at will, provided 0 ≤ b(t) ≤ 1. But in practice
b(t) can be tuned at best coarsely; even the fixed interventions are not truly enforceable in
their idealized form. Moreover, in practice more severe interventions will carry greater costs.
An explicitly control-theoretic approach to the problem that trades off the costs of severe
time-averaged interventions against their peak-reducing benefits would also be of substantial
interest, and could also benefit from an analysis of robustness to implementation error.

Our work carries with it a number of other caveats, and leaves a great body of other
important questions for additional investigations. While the epidemic peak is a good proxy
for demands on healthcare system capacity, an even better metric would be the total person-
days over healthcare capacity: the area A between the I(t) curve and the line (or curve) of

12



maximal system capacity c. Any intervention that brings Imax < c necessarily sets that area
to 0, but when choosing among strategies that cannot reduce Imax below c, the strategy that
minimizes Imax will not necessarily minimize A. It might be preferable to permit a slightly
higher peak but then take a full suppression approach, leading to a spike with small area
above healthcare capacity. In general, however, we observe that as c approaches Imax, the
problem of minimizing the area A becomes almost identical to the problem of minimizing
Imax. When c is far from Imax, it is closer to the problem of minimizing the final size of the
outbreak, and strategies designed for final size reduction [2] may be superior to strategies
designed for peak reduction.

We have also seen (Fig. 2) that despite their suboptimality from the point of view of
reducing Imax, premature interventions delay substantially the time until Imax is achieved.
Peak delay may in some cases be a more pressing aim than peak reduction, if, for instance,
healthcare capacity can be increased in the interim. In those situations, our results suggest
that an early response weighted more toward suppression than maintenance would likely be
desired, but strategies targeted specifically at peak delay should be analyzed in their own
right. We also note that peak delay is another benefit of sustained control, even when that
sustained control is relatively weak.

That said, our results, though simple, offer several robust and practicable principles for
policymakers:

8.1 Principle 1: act early

There is an asymmetry between reacting “too early” and reacting too late. The optimal
intervention time topt

i is poised at a cliff’s edge. As γ increases that cliff only steepens; there
is an sharper transition between doing optimally and doing terribly (Fig. 3 B). The costs
of being early increase more slowly with the degree of error. Moreover, while we do not
model this, early action leaves time for a course correction if it is too strong, and delays the
higher second peak that it permits. Finally, our analysis shows that early intervention is to a
degree self-correcting: the higher-than-expected stock of susceptibles when the intervention
begins permits the epidemic to grow more or less rapidly up to the intended I(ti).

8.2 Principle 2: slow things down

It is easier to time a less steep exponential. Implementing moderate physical distancing
measures can slow case growth, which allows for robustly timed aggressive interventions
when they are needed. We also suspect that slowing the growth curve will make the inference
of epidemiological parameters easier and more accurate, improving one’s chance of hitting
topt
i even as it reduces the costs of missing it. We will study this in future work.

8.3 Principle 3: when all seems lost, bear down

The remarkable success of the crude full suppression interventions in reducing peaks and
delaying what they cannot reduce suggests that a policymaker who has evidence that they
may be acting late should bear down as soon as possible with a policy as close to full
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suppression as is achievable. For a disease like COVID-19, in which today’s case data is in
fact a snapshot of the situation one to two weeks earlier, what feels right on time may in fact
be too late, and what feels late may be disastrously late. With that in mind, a policymaker
looking to salvage matters should take a full suppression approach. In fact, full suppression
is good as any other strategy at minimizing Imax whenever ti > t0i > topt

i , where t0i is the
optimal ti for a full suppression intervention (Corollary 6), since Imax will simply be I(ti).
Moreover, if we are seeking to minimize total person-days above capacity, full suppression
will be first among equals, as it is by definition the fastest way to reduce I(t) and get down
off the peak.

9 Conclusion

Optimized time-limited interventions are extremely effective and efficient ways to reduce the
peak of an epidemic. Deriving the form of optimal strategies is illuminating. It highlights
the fundamental materials—susceptible depletion and infectious depletion—of any epidemic
mitigation strategy. But these interventions are not robust to implementation error, and
that is reason to rethink reliance on them alone, particularly when limited to incomplete
information and combating a novel, poorly understood disease. Real-world policy must
emphasize not efficiency but robustness.

10 Code availability

All code needed to reproduce numerical results and figures is archived on Github (https:
//github.com/dylanhmorris/optimal-sir-intervention) and on OSF (https://osf.
io/rq5ct/), and licensed for reuse, with appropriate attribution/citation, under a BSD
3-Clause Revised License.
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A Further methods

A.1 Parameter choices

Table 1: Model parameters, default values, and sources/justifications

Parameter Meaning Units Value Source or justification

R0 basic reproduction
number

unitless 3 Estimates for COVID
range from 2 to 3.5 [8, 9]

γ recovery rate 1/days 1
14 Infectious period for

COVID of approxi-
mately 1–2 weeks [12]

β disease-causing con-
tact rate

1/days R0γ calculated

τ duration of a time-
limited intervention

days 28 Approximately a month

A.2 State-tuned and time-tuned maintain-suppress interventions

When we ask what it means for a maintain-contain style intervention to be mistimed, we
need a model of how the intervention is implemented. One possibility is that the policy-
maker directly observes S(t) throughout the intervention and chooses b(t) = γ

βS(t) based

on the directly observed S(t). We call this a state-tuned intervention. Alternatively,
the policymaker plans to intervene at some value Si predicted to occur at ti and chooses
the values b(t) knowing that if the intervention does indeed begin at Si = S(ti), S(t) will
equal Si − γIi(t− ti) during the maintenance phase. The policymaker then chooses b(t) ac-
cording to that predicted S(t). We call this a time-tuned intervention. When we study
mistimed interventions in the main text, we use time-tuned intervention; we see time-tuned
interventions as a more realistic model of how a maintain-suppress intervention, if possible
at all, would in fact be implemented, since instantaneous epidemiological observation is not
possible. If it were possible, it could in fact permit a timing error to be better mitigated
than state-tuning itself allows—by choosing the optimal strategy conditional on intervening
at the true (Si, Ii). Indeed, it can be seen that time-tuned interventions are in fact slightly
more robust to mistiming than state-tuned interventions, as they are partially self-correcting
where the state-tuned interventions are not (see main text section 6).
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B Theorems and proofs

B.1 Useful notation

We define Scrit for an SIR model to be the critical fraction susceptible at which Re = 1 and
dI
dt = 0 (in the absence of intervention), i.e. Scrit ≡ 1

R0
.

B.2 Maximum value of an SIR

Define Imax(t) for an SIR system as the maximum value of I(x) achieved on the interval
x ∈ [t,∞). Notice that Imax(0) = Imax, where Imax is the global maximum value of I(x),
which we are seeking to minimize with our intervention.

A known result that is immediate from the original work of Kermack and McKendrick [6,
pp. 712-715] (see [11] for an explicit derivation) holds that for S(t) ≥ Scrit:

Imax(t) = I(t) + S(t)− 1

R0
log
(
S(t)

)
− 1

R0
+

1

R0
log
( 1

R0

)
(6)

Remark 1: Continuity of Imax. Imax is a continuous function Imax : [0, 1]2 7→ [0, 1]
of v = (S(t), I(t)) for v ∈ [Scrit, 1] × [0, 1], and therefore also a continuous function of t,
Imax : R 7→ [0, 1] for t ∈ (−∞, tcrit], where tcrit is the time such that S(tcrit) = Scrit

This is immediate from the fact that Imax(t) is a linear combination of univariate functions
of S(t) and I(t) that are themselves continuous on [Scrit, 1] and [0, 1], respectively. And
since S(t) and I(t) are continuous functions of t, Imax is a continuous function of t for
t ∈ (−∞, tcrit].
Lemma 1: The more fire, the bigger the blaze. If 0 ≤ Ix(tx) ≤ Iy(ty) and Sx(tx) =
Sy(ty) for two SIR systems x and y with identical parameters R0 and γ at possibly distinct
times tx, ty ∈ [0,∞] then Imax

x (tx) ≤ Imax
y (ty), with equality only if Ix(tx) = Iy(ty).

Proof. There are three cases.

Case 1: Ix(tx) = 0. In this case, Imax
x (tx) = 0 ≤ Iy(ty) ≤ Imax

y (ty), with equality only if
Imax
y (ty) = 0, which can only occur if Iy(ty) = 0.

Case 2: Sx(tx) = Sy(ty) < Scrit. In this case, Imax
x (tx) = Ix(tx) and Imax

y (ty) = Iy(ty), so
our result holds.

Case 3: Sx(tx) = Sy(ty) > Scrit. In this case, we can apply equation 6. Fixing S(t) > Scrit,
Imax(t) is an increasing function of I(t) (there is a single, positive I(t) term in the sum), so
the result must hold.

Lemma 2: The more fuel, the bigger the blaze. If Ix(tx) = Iy(ty) > 0 and Sx(ty) ≤
Sy(ty) for two SIR systems x and y with identical parameters R0 and γ at possibly distinct
times tx, ty ∈ [0,∞] then Imax

tx ≤ Imax
ty , with equality only if Sx(tx) = Sy(ty) or Sy(ty) < Scrit

Proof. There are three cases.

Case 1: Sy(ty) ≤ Scrit. If Sy(ty) ≤ Scrit, then Sx(tx) ≤ Scrit, and neither epidemic will
grow after tx or ty, respectively. It follows that Imax

tx = Ix(ty) = Imax
ty = Iy(ty)
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Case 2: Sy(ty) > Scrit, Sx(tx) < Scrit. In this case, Imax
tx = Ix(ty) but Imax

ty > Iy(ty), since
dIy
dt > 0 if Iy(t) > 0 and Sy(t) > Scrit. So we have Imax

tx < Imax
ty

Case 3: Sx(tx), Sy(ty) > Scrit. The result in this case follows immediately from the fact
that, fixing I(t), Imax(t) is an increasing function of S(t) when S(t) > Scrit. We can see
that it is by taking the partial derivative the expression from equation 6 with respect to S:

∂

∂S
Imax(t) = 1− 1

R0S
(7)

If S > Scrit,
1
R0S

< 1, so ∂
∂S I

max(t) > 0, and Imax(t) is an increasing function of S(t).

B.3 Intervention function

We say that a right-continuous function with finite discontinuity points b(t) : R 7→ [0, 1] is
an intervention beginning at ti with duration τ if b(t) ≡ 1 for all t ∈ (−∞, ti)

⋃
(ti + τ,∞).

The SIR model under such an intervention will then take the form

dS

dt
= −b(t) ∗ βSI

dI

dt
= b(t) ∗ βSI − γI

dR

dt
= γI

(8)

We wish to show that for every τ there exists an intervention that minimizes Imax and that
such an optimal intervention must be identical except at a finite set of times {tj | tj ∈
(ti, ti + τ)} to one of the form:

bopt(t) =

{
γ
βS , t ∈ [ti, ti + fτ)

0, t ∈ [ti + fτ, ti + τ ]
(9)

For some value of ti ∈ R and f ∈ (0, 1]. We divide the proof into a series of lemmas.
Lemma 3: More fire, less fuel. Let bx(t) and by(t) be two interventions beginning at the
same ti and lasting until tf = ti + τ . Let Ix(t) and Sx(t) be I(t) and S(t), respectively, for
the SIR model under intervention bx(t). Let Iy(t) and Sy(t) likewise by I(t) and S(t) for
the SIR under intervention by(t). If Ix(t) ≥ Iy(t) for all t ∈ [ti, tf ], and Ix(t) > Iy(t) for
some t ∈ (ti, tf ), then Sx(tf ) < Sy(tf ).

Proof. The difference ∆Rxy(t) = Rx(t) − Ry(t) obeys
d∆Rxy
dt = γ(Ix − Iy), which is non-

negative for all t ∈ [ti, tf ]. Therefore ∆Rxy(t) is non-decreasing during any time interval
contained in [ti, tf ]. Take t̄ ∈ (ti, tf ) such that Ix(t̄) − Iy(t̄) > 0. Because the intervention
b(t) allows only a finite number of discontinuities, the resulting I(t) is continuous. And so
there is an ε such that Ix(t)− Iy(t) > 0 for all t ∈ [t̄− ε, t̄+ ε]. Therefore ∆Rxy(t) must be
strictly increasing during [t̄− ε, t̄+ ε].

Because ∆Rxy(t) never decreases and sometimes increases during [ti, tf ], it follows that
∆Rxy(ti) < ∆Rxy(tf ), but ∆Rxy(ti) = 0 so ∆Rxy(tf ) > 0 and Rx(tf ) > Ry(tf ). But
Ix(tf ) ≥ Iy(tf ) and S = 1− (I +R), so Sx(tf ) < Sy(tf ).
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Lemma 4: Do nothing for a bigger blaze. Let b1(t) ≡ 1 be the null intervention and
take tmax such that I1(tmax) = Imax1 . Let bx(t) be an intervention that satisfies bx(t) < 1
for almost all t ∈ [t̄ − ε, t̄ + ε] for some ε and some t̄ < tmax. Then Ix(t) < I1(t) for all
t ∈ [t̄, tmax].

Proof. Let the time of divergence of the interventions be given by td = inf{t ∈ (ti, tmax) |
bx(t) < 1}. Note that this infimum must exist because it is taken over a bounded and
non-empty set. It is easy to see that bx(t) = 1 and that Ix(t) = I1(t) for all t < td.
Also, by the right continuity of bx, there exists an interval (td, td + ε) such that I1 > Ix and
b1βS1I1 > bxβSxIx. Suppose there exists a minimal te ∈ (td, tmax) such that Ix(te) = I1(te).
We will find a contradiction. Note that Ix < I1 in (td, te). Because I1 is monotonic and
continuous in (−∞, tmax), we can invert I1 and define t̂ = I−1

1 (Ix(t)) for all t ∈ (−∞, tmax).

We can see that dI1
dt (t̂) is the growth rate of the infectious class under the null intervention

when I1 = Ix(t). It follows that dI1
dt (t̂) < dIx

dt (t) for some value of t, otherwise I1 would

always dominate Ix, and te would not exist. Let tinf = inf{t ∈ (td, te) | dI1dt (t̂) < dIx
dt (t)}.

This implies that S1(t̂) ≤ Sx(t) for some interval including tinf that can be maximally
extended to the left as (tmin, tinf ]. By continuity of S, S1(t̂min) = Sx(tmin).

If tmin 6= td, then tmin > t̂min, and R1(t̂min) = Rx(tmin), but this is impossible because by
construction dI1

dt (t̂) > dIx
dt (t) for all t ∈ (td, tmin), and therefore R1(t̂min) < Rx(tmin).

If tmin = td, then tmin = t̂min. Also, R1(t̂) > Rx(t) for all t ∈ (td, tinf ). But that is

impossible because dR1(t̂d)
dt = b(td)βSI−γI

βSI−γI γI < γI = dRx(td)
dt , and trivially R1(t̂d) = Rx(td).

Lemma 5: Wait, maintain, suppress. Let bx be any intervention, and Imaxx = max{Ix(t)}.
There exists an intervention by with same beginning and duration as bx of the form

by(t) =


1 t ∈ [ti, ti + gτ)
γ
βS , t ∈ [ti + gτ, ti + fτ)

0, t ∈ [ti + fτ, ti + τ ]

(10)

For some g < f and g, f ∈ (0, 1], such that Imaxy < Imaxx .

Proof. Define Iτx = max{Ix(t) | t ∈ [ti, tf ]}. Following lemma 4, take g such that ti + gτ =

I−1
1 (Iτx ). Now take f such that (1 − f)τ = 1

γ log
Iτx

Ix(tf ) . From lemma 4 it is clear that

Iy(t) ≥ Ix(t) for t ∈ [tiτ, ti + gτ). By construction Iy(t) = Iτx for t ∈ [ti + gτ, ti + fτ), and
therefore the inequality remains true. Finally, for t ∈ [ti + fτ, ti + τ ], because Iy(t) decays
faster than Ix(t), then if Iy(t) < Ix(t) at any time, then Iy(tf ) < Ix(tf ), but by construction
Iy(tf ) = Ix(tf ). By lemma 3, Sy(tf ) < Sx(tf ), and by lemma 2, Imaxy < Imaxx .

It is possible however that this proposed by is not a viable intervention if Sy(tcrity ) = Scrit
for some tcrity ∈ [ti + gτ, ti + fτ), as this would require by to assume values larger than 1. If

that is the case we can define bȳ, by taking f such that ti + fτ = tcrity . Note that because
by the end of the intervention bȳ the infectious class will monotonically decrease because
Sȳ ≤ Scrit. This implies that Imaxȳ = Iτȳ = Iτx < Imaxx .
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Theorem 1: Maintain, then suppress. An intervention bopt(t) such that Imaxopt ≤ Imaxx

for any intervention bx(t) must take the form

bopt(t) =

{
γ
βS , t ∈ [ti, ti + fτ)

0, t ∈ [ti + fτ, ti + τ ]
(11)

For some value of ti ∈ R and f ∈ (0, 1].

Proof. If bx(t) is an optimal intervention, then lemma 5 insures that bx(t) is of the form
given by equation 10. Now consider the strategy bopt(t) of the form given by equation 3
with topti = txi + gτ and fopt = fx − g. This new intervention functions exactly like bx
for the entire duration of bx, but then bopt is held at 0 for a little longer further reducing
Iopt. This means that Sopt(t

opt
f ) = Sx(txf ) and Iopt(t

opt
f ) ≤ Ix(txf ) and therefore, by lemma

1, Imaxopt ≤ Imaxx .

Remark 2: . Because during an intervention bopt the susceptible class is depleted at a
constant rate for all t ∈ [ti, ti + fτ) , bopt can be written as

bopt(t) =


γ

β
(
Sti−Itiγ(t−ti)

) , t ∈ [ti, ti + fτ)

0, t ∈ [ti + fτ, ti + τ ]
(12)

For Sti = S(ti) and Iti = I(ti).

B.4 Results of an optimal intervention

It follows that, given an optimal intervention b of duration τ and depletion fraction f begun
at time ti and ending at tf = ti + τ :

S(tf ) = S(ti)− γτfI(ti) (13)

I(tf ) = I(ti) exp [−γτ(1− f)] (14)

In an SIR system without intervention that begins with a wholly susceptible population, we
have the relation:

I(S) = 1− S +
1

R0
log(S) (15)

And so:

I(ti) = 1− S(ti) +
1

R0
log(S(ti)) (16)

And we can likewise write S(tf ) and I(tf ) in terms of S(ti):

S(tf ) = S(ti)− γτf
(

1− S(ti) +
1

R0
log(S(ti))

)
(17)
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I(tf ) =
(

1− S(ti) +
1

R0
log(S(ti))

)
exp [−γτ(1− f)] (18)

This in turn allows us to express Imax(tf ) purely in terms of S(ti) and the parameters,
though the expression is long:

Imax(tf ) =
(

1− S(ti) +
1

R0
log(S(ti))

)
exp [−γτ(1− f)]

+ S(ti)− γτf
(

1− S(ti) +
1

R0
log(S(ti))

)
− 1

R0
log
(
S(ti)− γτf

(
1− S(ti) +

1

R0
log(S(ti))

))
− 1

R0
+

1

R0
log
( 1

R0

)
(19)

Remark 3: Continuity of I(ti), I
max(tf ). Notice that both I(ti) and Imax(tf ) are con-

tinuous functions of S(ti), since they are both linear combinations of continuous functions
of S(ti) and since S(t) is continuous in ti, they are continuous functions of ti.
Lemma 6: Don’t be late. Let tp be the infimum of times such that I(t) = Imax, and let
ti be the start of an optimal intervention. Then tp ≥ ti. That is, Imax cannot occur before
the intervention begins for an optimal intervention.

Proof. Since b(t) = 1 for t < ti tp < ti necessarily implies that S(ti) < Scrit, that is,
the epidemic is already declining when the intervention begins and will never grow again,
regardless of the intervention approach (since b(t) ≤ 1, we cannot force a declining epidemic
to grow). That in turn implies Imax = Ipeak, which we can with certainty improve upon.
So Imax must occur during or after the intervention.

Corollary 1: Start with fuel. It is immediate that S(ti) > Scrit.
Corollary 2: Peak early. Since I(t) ≤ I(ti) for t ∈ [ti, ti + τ ] during an optimal inter-
vention, if Imax occurs during the intervention, Imax = I(ti)
Theorem 2: Twin Peaks. Let bx(t) be an optimal intervention, then Ix(t) ≤ Imax

x for
all t ∈ (−∞, tf ], with equality for t ∈ [ti, ti + τf ], and furthermore Ix(tp) = Imax

x for some
tp ∈ [tf ,∞) with tp = tf only if f = 1.

That is, if 0 < f < 1, there will be a plateau during the intervention followed by a peak of
equal height that occurs strictly after the intervention finishes. If f = 0, there will be two
peaks of equal height, one at the start of the intervention and one strictly after it finishes,
and if f = 1 there will be a plateau during the intervention with no subsequent peak.

Proof. Let bx be an optimal intervention of the form given by equation 3. By Lemma 6,
Imaxx must occur during or after the intervention. First let us assume that the Imaxx occurs
during the intervention and is never again attained after the intervention. If f = 1, this
implies that the whole intervention is a plateau and no further peaks occur. For f < 1 we
can build a new intervention by of the same form as bx but that starts at ti − ε rather than
at ti. From the continuity of Imax in ti for any intervention, it follows that for some ε small
enough, Imaxy post intervention must still be smaller than Imaxy during the intervention,
but because I(ti − ε) < I(ti), corollary 2 implies that our new by outperforms bx, which
contradicts the optimality of bx.
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Now let us assume that Imax
x occurs after the intervention and is larger than any value of

Ix during the intervention. If f > 0, we can once again build a new intervention function by

by(t) =


1 t ∈ [ti, ti + ε)
γ
βS , t ∈ [ti + ε, ti + fyτ)

0, t ∈ [ti + fyτ, ti + τ ]

(20)

With fy chosen such that (1−fy)τ = 1
γ log Ix(ti+ε)

Ix(tf ) . For sufficiently small ε, Iy(ti+ε) < Imax
x .

Also, following lemma 5, Imax
y < Imax

x and therefore by outperforms bx, which once again
contradicts the optimality of bx.

Finally, if f = 0, we build yet another by of the same form as bx but that starts at ti + ε
rather than at ti. Because intervention by starts out with a smaller susceptible fraction than
intervention bx, and an increase in the infected fraction that is smaller than the susceptible
fraction decrease, it follows from equation 6 that Imax

y < Imax
x and therefore by outperforms

bx, which once again contradicts the optimality of bx.

Corollary 3: If you don’t have much gunpowder, don’t shoot until you see the
whites of their eyes. Given the optimal intervention of duration τ referred to as bτopt, let
the initial time of such an intervention be referred to as tτi . As τ → 0, tτi → tcrit.

Proof. From equation 19 we can see that Imaxopt is a continuous function of τ , and that as
τ → 0, the effect of intervention defined as Imax1 −Imaxopt → 0. We know from theorem 2 that
Iopt(ti) = Imaxopt , and therefore, as τ → 0, Iopt(ti)→ Imax1 , which implies tτi → tcrit.

Corollary 4: No need to burn all the fuel. After an optimal intervention, S(tf ) ≥ Scrit,
with equality if and only if f = 1.

Proof. By Theorem 2, I(ti) = Imax(tf ) = Imax. If f < 1, we must have I(tf ) < I(ti) = Imax,
so in order for the epidemic to reach Imax(tf ) = Imax, we must have S(tf ) > Scrit. If f = 1,
then I(tf ) = I(ti) = Imax, so then must have S(tf ) = Scrit, otherwise the epidemic would
grow to a peak above I(ti) = I(tf ), which would be a contradiction of Theorem 2.

Corollary 5: Putting out existing fire can only do so much. Consider a full sup-
pression intervention of duration τ defined by b0(t) = 0 for all t ∈ [ti, ti + τ ]. For every τ
there is a ti that minimizes Imax

0 . Consider these optimized full suppression interventions.

Then, as τ →∞, the maximum infectious prevalence Imax
0 → 1

2 + 1
2R0

(
log
(

1
R0

)
− 1
)

. In

other words, full suppression interventions have a limit in how much they can reduce Imax.

Proof. From the proof of theorem 2 for f = 0, it follows that full suppression interventions
have an optimal start time ti, and that I0(ti) = Imax

0 . Also, because no new infections occur
during a full suppression intervention, S0(ti) = S0(tf ) so substituting into equation 6

Imax
0 (ti) = I0(tf ) + S0(ti)−

1

R0
log
(
S0(ti)

)
− 1

R0
+

1

R0
log
( 1

R0

)
(21)

We the further use equation 15 to substitute S0(ti) and take τ → ∞ such that I0(tf ) → 0
which finally yields
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Imax
0 =

1

2
+

1

2R0

(
log

(
1

R0

)
− 1
)

(22)

Corollary 6: But when in doubt, put out the fire. Let b0 be the optimized full suppres-
sion intervention with duration τ and starting time t0i . For a full suppression intervention

b0̂ that also has duration τ but that has a starting time t0̂i ∈ [t0i , tcrit], the infected fraction

peak is Imax
0̂

= I0̂(t0̂i ), moreover no intervention starting at that same time can attain a
lower peak.

Proof. It suffices to show that delaying a full suppression intervention by an infinitesimal ε
diminishes the secondary peak. From equation 24 with f = 0, it is clear that

∂

∂ti
Imax(tf ) = −S

′(ti)

R0Si
+ e−γτI ′(ti) + S′(ti)

∂

∂ti
Imax(tf ) = γIi + e−γτ (βIiSi − γIi)− βIiSi

∂

∂ti
Imax(tf ) = (e−γτ − 1)(I ′(ti))

(23)

But I ′(ti) > 0 for ti < tcrit and (e−γτ−1) < 0 which means that delaying the full suppression
decreases the post intervention peak. Trivially no intervention can attain a peak lower than
its initial condition, which concludes the proof.

B.5 Optimization of ti, f

Applying equations 13, 14, the partial derivatives of Imax(tf ) with respect to f and ti are
given by:

∂

∂f
Imax(tf ) =

(γτIi)

R0

(
Si − γτf

)
Ii

+ γτIie
−(1−f)γτ − γτIi

∂

∂ti
Imax(tf ) = −S

′(ti)− fγτI ′(ti)
R0

(
Si − fγτIi

) + e−(1−f)γτI ′(ti)− fγτI ′(ti) + S′(ti)

(24)

Substituting the values of dS
dt ,

dI
dt :

∂

∂ti
Imax(tf ) = − (−βSiIi)− fγτ (βSiIi − γIi)

R0 (Si − fγτIi)
+ e−(1−f)γτ (βSiIi − γIi)
− fγτ (βSiIi − γIi)− βSiIi

(25)

Setting equal to zero and simplifying:
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∂

∂f
Imax(tf ) =

1

R0

(
Si − fγτIi

) + γτe−(1−f)γτ − 1 = 0 (26)

∂

∂ti
Imax(tf ) = − (−βSi)− fγτ (βSi − γ)

R0 (Si − fγτIi)
+ e−(1−f)γτ (βSi − γ)

− fγτ (βSi − γ)− βSi = 0

(27)

∂

∂S
Imax(S(ti), f) =

(
1

R0S
− 1

)
(exp [−γτ(1− f)]− γτf)

−
(

1

R0

)
1− fγτ( 1

R0S
− 1)

S − γτf(1− S + 1
R0

logS)
+ 1

(28)

∂

∂f
Imax(S(ti, f)) =

(
1

R0S
− 1

)
exp [−γτ(1− f)]

+ 1− γτf
(

1

R0S
− 1

)
−
(

1

R0

) 1
R0S
− 1

S − γτf(1− S + 1
R0

logS)

(29)

Lemma 7: If you have lots of gunpowder, shoot early. For an optimal intervention
bτopt acting on a SIR with full susceptibility as initial condition, as τ → ∞, Sτopt(ti) → 1;
that is, we intervene almost immediately, when almost all the population is fully susceptible.

Proof. Define an auxiliary intervention bτx with τ > 1−Scrit
γImax such that

bτx(t) =

{
γ
βS , if t > tx and S > Scrit

1, elsewhere
(30)

with tx = I−1
1 ( 1−Scrit

γτ ). It is clear that such an intervention has a duration of τ or less, and

that by the end of such an intervention Sx ≤ Scrit. Therefore Imaxx = Ix(tx) = 1−Scrit
γτ , but

by definition Imaxopt ≤ Imaxx . Combining with corollary 2, Iτopt(ti) ≤ 1−Scrit
γτ so as τ → ∞

both Iτopt(ti)→ 0 and Sτopt(ti)→ 1.

Theorem 3: Always maintain, always suppress. For an SIR with full susceptibility
as initial condition, it is the case that any optimal intervention with positive duration as
defined by equation 3 has 0 < f < 1. In other words, the optimal intervention for an
emerging pathogen (S(0)→ 1, I(0)→ 0) always has a maintenance phase and always has a
total suppression phase.

Proof. Suppose f = 1. From equation 26,

1

R0

(
Si − γτIi

) + γτ − 1 = 0 (31)
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But following corollary 4, Si − γτIi = Scrit, which substituting in the previous equation
implies that γτ = 0, which is impossible. Therefore f cannot be 1.

Now let us assume f = 0. From equation 27 we have that

γ + e−γτ (βSi − γ)− βSi = 0

(e−γτ − 1)(βSi − γ) = 0
(32)

Which implies that either (e−γτ − 1) = 0, and therefore τ = 0, or (βSi − γ) = 0 and
Si = Scrit which also implies τ = 0, which is impossible.

B.6 A general classification of interventions

From equation 6 it is clear that there are two fundamental methods of reducing the peak
of an epidemic: depleting the infected fraction and depleting the susceptible fraction. We
have shown that different interventions achieve peak reduction with different combinations of
those methods. Our optimal intervention, for example, is characterized by a pure susceptible
depletion phase followed by a pure infected depletion phase. Full suppression interventions,
in contrast, operate solely by depleting the infected fraction. We observe that interventions
can be classified in terms of how much they rely on depleting the susceptible fraction versus
depleting the infected fraction.

The effect of an intervention can be understood as the infectious peak if no intervention were
to take place minus the infectious peak given the intervention. In a more formal notation,
an intervention bx has an effect Imax − Imax

x = Imax(Ix(ti), Sx(ti))− Imax(Ix(tf ), Sx(tf )) =
∆x(tf ). By applying equation 6 we obtain

∆x(tf ) = −
[
Ix(tf )− Ix(ti)

]
−
[
G
(
Sx(tf )

)
−G

(
Sx(ti)

)]
G(S) = S − 1

R0
log(S)

(33)

Then if −
[
Ix(tf )− Ix(ti)

]
> −

[
G
(
Sx(tf )

)
−G

(
Sx(ti)

)]
we can say that the intervention

bx overall relies more on infected depletion, whereas if the opposite is true we can say that
it relies more on susceptible depletion. Moreover, by applying the fundamental theorem of
calculus, we obtain

∫ tf

ti

∆′x(t)dt = −
∫ tf

ti

I ′x(t) + S′x(t)
(

1− 1

R0Sx(t)

)
dt (34)

Which allows us to look at a certain time t ∈ [ti, tf ] and say that if

I ′x(t) < S′x(t)
(

1− 1

R0Sx(t)

)
(35)

Then at that moment t, the intervention bx acts more by depleting the infected fraction
than by depleting the susceptible fraction. The condition can be simplified to

bx(t)
(

2R0Sx(t)− 1
)
< 1 (36)
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