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Abstract

There is an urgent necessity of effective medication against SARS CoV-
2, which is producing the COVID-19 pandemic across the world. Its
main protease (MP*®) represents an attractive pharmacological target due
to its involvement in essential viral functions. The crystal structure of
free MP™ shows a large structural resemblance with the main protease of
CoV-1. Here we report that CoV-2 MP™ is however 300% more sensitive
than CoV-1 MP™ in transmitting tiny structural changes across the whole
protein through long-range interactions. The largest sensitivity of MP™
to structural perturbations is located exactly around the catalytic site
Cyst-145, and coincides with the binding site of several of its inhibitors.
These findings, based on a simplified representation of the protein as a
residue network, may help in designing potent inhibitors of CoV-2 MP™.

1 Introduction

Since December 2019 an outbreak of pulmonary disease has been expanding
from the city of Wuhan, Hubei province of China [1, 2]. This disease—produced
by a new coronavirus named SARS-CoV-2 [3]-has become pandemic in about
three months, affecting more than 200 countries around the world. SARS-
CoV-2 belongs to the genus Betacoronavirus [4, 5], to which the virus which
produced the respiratory epidemic of 2003 (SARS-CoV-1) also belongs to. The
new coronavirus shares about 82% of its genome with CoV-1. In spite of this
similarity and of the fact that SARS-CoV-1 appeared almost 20 years ago, there
are currently no approved specific drugs against SARS-CoV-2 [6, 7, 8, 9]. In con-
sequence, most of the clinical treatment used against the disease is symptomatic
in combination with some repurposed drugs, such as the antiviral Remdesivir
or the antimalarials chloquine [10] and hidroxychloroquine [11]. This situation
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urges the scientific community to search for specific antiviral therapeutics and
vaccines against SARS-CoV-2.

Based on previous success in finding antiviral drugs against human im-
munodeficiency virus (HIV) [12] and SARS CoV-1 [13], the viral protease of
SARS-CoV-2 represents an attractive pharmacological target. The main pro-
tease (MP™) of CoV-2 is a key enzyme for the virus because it is essential for
proteolytic processing of polyproteins [14]. Thus, inhibiting the activity of MP™
would result in blocking viral replication. This protein does not exist in humans,
which makes it attractive for avoiding possible toxicities of anti-CoV-2 drugs.
The three-dimensional structure of CoV-2 MP™ has been resolved by Zhang et
al. at 1.75A of resolution [15]. They also reported the structure of CoV-2 MP*®
with an a-ketoamide inhibitor in two different space groups. Other structures
of CoV-2 MP™ complexed with inhibitors have been solved by Masecar [16] and
by Jin et al [17].

There are some remarkable characteristics of CoV-2 MP™ in relation to the
protease of CoV-1. They share 96% of amino acids sequence, i.e., they differ in
the amino acids at only 12 out of 303 positions in the sequence. More remark-
able the root mean square (r.m.s.) deviation between the two three-dimensional
structures is only 0.53 A for all C,, positions. It seems like the two proteases
are almost identical in their three-dimensional structures. The first question
that emerges here is whether such similarities are also reflected at the topolog-
ical structural level of the proteins. By topological we mean here the discrete
topology emerging from a network theoretic representation of a protein. In
this representation of the protein structure the nodes of the network represent
amino acids and the edges connecting them indicate that the corresponding
residues are at a distance in which they can interact to each other. Because
the Euclidean distance between the amino acids is used to construct the net-
work we more correctly should refer to this framework as topographical more
than topological. This network theoretic representation has been previously
used to answer several questions related to protein structure and functioning
[18, 19, 20, 21, 22]. Among the tools in use, the one of node centrality [23, 24|
has played a fundamental role (see for instance [22]. These indices capture the
relative importance—both structural and dynamical—of an individual amino acid
in the protein.

Here we construct protein residue networks (PRN) for CoV-2 MP*® and some
of its inhibitors. The PRN of CoV-2 MP™ is illustrated in Fig. 1. We then
analyze the similarities in the topological structure of CoV-2 MP™ with that of
CoV-1 for which we also construct the corresponding PRN. We then show that
both proteases are very similar in relation to a few topological characteristics
which account for a very close environment around the amino acids. That is,
when the descriptors used account for the locality of the topological environment
of a residue the two proteases do not differ in more than 4%. However, when
the descriptors considered account for wider environments around the nodes the
difference between the two proteins can increase up to 10%. These descriptors
quantify how a perturbation at an amino acid is transmitted through the whole
structure to the rest of the residues in the protein. When this transmission is
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Figure 1: Cartoon representation (left) of the MP™ of CoV-2 (PDB=6Y2E) and
the corresponding protein residue network (right).

allowed not only between close pairs of amino acids but also between very distant
ones, the difference between the two proteases increases up to 300%. That is,
CoV-2 MP*® is 300% more sensitive to the transmission of perturbations between
amino acids through the topological structure of the protein than CoV-1 MP*™.
We discovered that the residues with this largest sensitivity in CoV-2 MP™ are
the ones involved in the binding of the three inhibitors studied here. That
is, the most central amino acids according to this long-range indices are also
the most affected by the interaction with the inhibitors as they are either in
the binding site or very close to it. Consequently, we have discovered that the
most relevant amino acids from the topological point of view are also the most
relevant ones for the binding of some inhibitors to the CoV-2 MP™ and should
play an important role in the design of drugs inhibiting this protease.

2 Results

2.1 Free protease

The main goal of this section is to analyze a few network theoretic descriptors of
the MP™ of SARS CoV-2 and compare them with those of the protease of SARS
CoV-1. The amino acid sequence of both proteases share 96% of similarity, i.e.,
only 12 amino acids are different in both proteases of a total of 303. These amino
acids are at positions 33, 44, 63, 84 86, 92, 132, 178, 200, 265, 283 and 284. It
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o 0.0151 0.0164 8.61
<L> 6.2722 6.271 -0.02
© 0.539 0.530 159

T 0.398 0.385 -3.36
(BOY 782.92 792.71 1.26
(EC) 0.0326 0.0317 2.76
(5C) 167.71 177.93 6.09
<qu> 21.212 23.405 10.34

82.47 82.13 -0.41

{0
Zypy | 1.955-10T7 [ 7.922-10'7 | 305.44
Zpy) | 6.159-10™ | 2.355.10"7 | 282.39

Table 1: Global topological properties of the MP™ of CoV-1 and CoV-2 as
well as the relative difference between them, expressed as percentages of change
relative to CoV-1.

has been reported by Zhang et al. that the three-dimensional structures of both
proteases are very similar with an r.m.s. deviation of 0.53 A for all C,, positions
using the free enzymes (PDB=6Y2E for CoV-2 and PDB=2BX4 for CoV-1
[25]). Then, it is not surprising that most of the topological characteristics
of the first kind of the PRNs of both proteases are very similar with relative
differences not bigger than 4% for all the properties analyzed except for the
degree heterogeneity. In this case, the relative difference is 8.61% between both
proteases, showing that that of CoV-2 is more heterogeneous than the one of
CoV-1 (see Table 1). However, the values of this parameter are very close to zero
in both cases (the degree heterogeneity index is bounded between zero and one),
which indicate that both networks are poorly heterogeneous and look more like
regular graphs. In fact, both networks have almost normal degree distributions
and the main difference is that for CoV-1 about 27% of the nodes have degree
5, while for CoV-2 about 32% have degree 4.

We then continue the analysis by comparing the topological descriptors of
the second kind. We notice that neither the eigenvector centrality, which has
been found very useful in previous analysis of PRN [22], nor the communicabil-
ity angles, which account for the communication efficiency of the PRN, display
any significant difference between both proteases. However, there are differences
in the mean subgraph centrality of about 6% and of the average communica-
bility between pairs of nodes of more than 10%. In both cases, the indices
are significantly larger for the protease of CoV-2 than for that of CoV-1. This
means that the 12 punctual mutations that make the difference between the
proteases of CoV-1 and CoV-2 increase the capacity of the individual amino
acids of feeling a perturbation or thermal oscillation produced in another amino
acid of the protein. As we have previously explained these communicability
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factors penalizes very heavily any perturbation being transmitted between two
amino acids separated by a relatively long distance in the protein. Thus, they
can be considered as a indices that account for shorter range interactions than
the third kind descriptors considered here.

Both LR subgraph centrality and communicability display dramatic incre-
ment in CoV-2 relative to CoV-1. In this case the increase of these indices
is more than 280% for the LR communicability and more than 300% for the
LR subgraph centrality. In short, this means that the protease of CoV-2 has
almost 4 times more capacity of transmitting perturbations between pairs of
nodes than the protease of CoV-1. This is equivalent to say that the protease of
CoV-2 is significantly much more topologically efficient in transmitting “infor-
mation” among its amino acids than the protease of CoV-1. And, such efficiency
has been obtained only with 12 punctual mutations!

We now proceed to the analysis of the local variation of the subgraph and
the LR subgraph centralities for the amino acids of the two MP™ (see Fig. 2).
In the case of the subgraph centrality the largest change is produced for a few
amino acids which increase their centrality in CoV-2 relative to CoV-1. These
are the cases of 27, 205, 202, 295, 290, and143. But there are also other amino
acids which drop their centrality in CoV-2, such as 172, 225, 234, 171, and
235among others (see Fig. 2(b)). Therefore, the increase of the subgraph cen-
trality of a few amino acids makes that in total the average subgraph centrality
increases in CoV-2 in relation to CoV-1. An important characteristic feature
of the differences in this centrality between the two proteases is that they are
spread across the three domains of the proteases with a large increment in the
domains I and III. This is a major difference with the LR subgraph centrality
(see Figs. 2(c) and (d)), where the main change is a dramatic increase in the
centrality of the nodes in the domains I and IT of the CoV-2 protease relative to
CoV-1. The changes occurring in the domain III are imperceptible in relation
to those of the other two domains.

The distributions of the most central amino acids according to both measures
in the three-dimensional structures of the proteases is illustrated in Fig. 3. It can
be seen that the largest values of the LR subgraph centrality are concentrated
in a relatively small region of the protein structure, while those of the subgraph
centrality are more spread across the whole structure. We then inquire about
this region of the MP*™ in CoV-2 which shows the largest change in the LR
subgraph centrality relative to its analogue of CoV-1.

The first remarkable observation of the amino acids with the largest change
in the LR subgraph centrality is that they are all closely located in the three-
dimensional space. For instance, the 22 amino acids displaying the largest
change in this centrality form a connected subgraph of the PRN as illustrated in
Fig. 4. This subgraph of 22 nodes has 48 connections among these amino acids,
which produces an edge density of 0.21, almost 10 times bigger than the total
density of the protease. The second remarkable feature of this subgraph is that
it contains one of the two catalytic amino acids of the MP™ of CoV-2, which
is Cys-145. That is, the region with the largest increase in the LR subgraph
centrality of the protease of CoV-2 relative to CoV-1 is the one enclosing the
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Figure 2: Plot of topological properties of the amino acid residues for the MP™ of
CoV-1 (broken red line) and of CoV-2 (solid blue lines). (a) subgraph centrality;
(b) LR subgraph centrality.
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Figure 3: Illustration of the subgraph (a), (¢) and LR subgraph (b), (d) cen-
tralities of the amino acid residues of the chain A of CoV-1 MP™ of (top), and
of CoV-2 (bottom).
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Figure 4: Illustration of the 22 amino acids which display the largest difference
in the LR subgraph centrality in the MP* of CoV-2 in relation to that of CoV-1.
The radius of the nodes is proportional to the difference in the LR subgraph
centrality between the two proteases. The catalytic site Cys-145 is pointed to
with an arrow.

catalytic binding site of amino acid Cys-145. It is also remarkable that this
region of large increment in the LR subgraph centrality contains some amino
acids which are located in the binding site of the MP™ to a-ketoamide inhibitors
as well as other kind of inhibitors, as we will analyze further in this work. This
is the case of the residue 144-147, other amino acids in this binding site like
residues 162, 163 also display large increment in the LR subgraph centrality.
The last remarkable observation is that the domain III displays small change
in relation to the changes of domains I and II in this topological parameter.
However, as we will see in the next paragraphs this domain (residues 198-303)
which is formed by 5 helices and is involved in the dimerization of the MP™,
also increases significantly the LR communicability in relation to CoV-1.

A better picture of the changes in the different regions of the MP™ of CoV-2
relative to CoV-1 are obtained by analyzing the differences between the com-
municabilities and LR-communicabilities between every pair of amino acids in
CoV-2 in relation to CoV-1. In Fig. 7?7 we illustrate the difference matrices for
both kinds of communicabilities. In the first case it can be observed that the
communicability between all pairs of residues in the domain I (residues 10-99)
mainly increase in CoV-2 relative to CoV-1, with an increase of 20.7% relative to
CoV-1. However, in the domain II (residues 100-182) there is mainly a drop of
the communicability between the residues in the domain, which decrease 6.6%,
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Figure 5: Difference between communicabilities (a),and LR communicability (b)
between pairs of amino acids in the MP™ of CoV-2 in relation to that of CoV-1.

but there is an increase of 19.2% in the trade off between domains I and II
The domain III shows a mixed behavior with some pairs of residues increasing
and other decreasing their communicability, but the main result is an increase
of 3.28% relative to CoV-1. Although the absolute values of the communicabil-
ity between this domain and the other two are very small, there are significant
increments in relation to that in CoV-1. For instance, the communicability be-
tween domains I and IIT increases in 17.3% and that between domains II and
IIT in 10.5% relative to the same in CoV-1.

We now move to the analysis of the LR communicability between the differ-
ent domains of the CoV-2 protease. Here the changes are dramatic and in all
cases the communicability in the CoV-2 protease is higher than that in CoV-1.
For instance, the average communicability between pairs of nodes in the do-
main I is 360.9% higher in CoV-2 than in CoV-1. This percentage of increment
are 196.1% in the domain IT and 125.7% in domain III. As we have mentioned
before, although the increase in the communicability in the domain III is is
one third of that in domain I and one half of the one in domain II, it is still
significant when compared to that in the CoV-1 protease. The inter-domain
communicability also increases very significantly with increment of 269.6% (do-
mains I-1I), 239.4% (domains (I-III) and 169.8% (domains II-III). In closing,
the mutations in 12 amino acids of the MP™ of CoV-1 has produced a dramatic
impact in the LR communicability between residues in the protease of CoV-2
with huge improvement in long-range communication between residues mainly
in domain I and II and between domains I and II as well as domains I and III.

2.2 CoV-2 Protease bounded to an inhibitor

We turn now our attention to the analysis of the MP™ of CoV-2 complexed with
an inhibitor for which the crystal structure was resolved by Zhang et al. in two
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’ descriptor \ 6Y2F \ 6Y2G

5 -1.85 [ -2.08

0 1.85 | 10.85
(L) 0.68 | 2.04
(©) 0.32 1.79
r 590 | -2.45
(BO) 2.50 | 2.42
(EC) -1.65 [ 0.00

(SC) 2.33 | -11.70

(Gpg) 2.15 | -13.85
(0) 0.06 | 0.40

(Zii) 16.39 | -83.85

(Zi;) 18.57 | -82.73

Table 2: Relative differences in percentage of global topological properties of
the MP™ of CoV-2 complexed to an inhibitor in relation to free one. The PDB
of the complexes between the MP™ of CoV-2 with an inhibitor correspond to
6Y2F (space group C2), and 6Y2G (space group P212;2;).

different space groups, space group, PDB C26Y2F and space group P22:2,
PDB 6Y2G [15].

As for the case of the free protease we start the analysis by considering a
few topological descriptors of the whole PRNs for the proteins with PBD codes
6Y2F and 6Y2G [15]. In this case we consider the relative difference of the
topological descriptors for these proteins minus that of the free protease, which
has the PDB code 6Y2E. In Table 2 we resume these results. It can be seen that
here again the topological descriptors of the first class display relatively little
variation for the two complexed proteases relative to the free one. The only
exception is again the degree heterogeneity for the case of 6Y2G which shows a
relative variation of almost 11%.

Although the variation of the degree heterogeneity for 6Y2G is significant
relative to the free protease, the value of this parameter is still very close to
zero for all proteins considered here. For instance, it is 0.0172 for 6Y2F and
0.0182 for 6Y2G, which are in the range of that of the free protease which is
0.0164. These values of the heterogeneity close to zero correspond to networks
which have scarce degree heterogeneity like almost regular graphs or networks
with normal-like degree distributions.

We then move to the analysis of the descriptors of second and third type. As
can be seen in Table 2 there are significant changes in the subgraph centrality
and the communicability in 6Y2G but not in 6Y2F. In the case of 6Y2G the
main change corresponds to a drop in both parameters after the binding with the
inhibitor. The plot of the differences in the subgraph centrality for every node
of the protease bounded to the inhibitor in both space groups reveals the most
important characteristic of the change in this topological parameter. As can be

10
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Figure 6: Change of the subgraph centrality (a) and its LR version (b) for the
protease of CoV-2 bounded to an inhibitor with two different space groups.

seen in Fig. 6 (a) the change in the subgraph centrality in both structures (6Y2F
and 6Y2G) is spread across the protein chain, indicating a global response of
the protease to the binding of the inhibitor. The situation is contrasting with
that observed for the LR subgraph centrality and communicability (third class
of descriptors). In these cases the change relative to the unbounded protease
are significant for both 6Y2F and 6Y2G as can be seen in Table 2. More
importantly, the change of the LR subgraph centrality is located at very specific
regions of the protease as can be seen in Fig. 6 (b). In this case, it is clear that
although 6Y2F displays mainly increase of the LR subgraph centrality, and
6Y2G display decrease of this parameter, in both cases the changes are located
at approximately the same positions of the protease chain.

With the goal of disentangling the information contained in the changes pro-
duced at the LR subgraph centrality of the bounded protease we study it in more
detail here. For this, we consider the amino acids displaying the largest change
in this topological parameter for both PDB structures. In the case of 6Y2F the
22 amino acids displaying the largest variability in the LR subgraph centrality
forms a connected subgraph with the exception of N84, which is isolated. This
subgraph has 54 edges, which means that it is significantly more dense than
the whole protein, i.e., its density is 0.23 vs. 0.026. As can be seen in Fig. 7
(a) there are a few residues in this subgraph which increase the LR subgraph
centrality, such as N142, N28, 115, S144, while others like G146, G120, N119
decrease it. In Fig. 7 (a) we have included the inhibitor to show that this group
of amino acids displaying the largest variation in the LR subgraph centrality are
just the ones closely interacting with the inhibitor. Indeed, amino acids F140,
G143, S144, and C145 are in the binding site of the protease with this inhibitor.
These amino acids are also among the ones that display the largest variation in
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this parameter for the free protease of CoV-2 relative to the one of CoV-1. In
fact, 11 out of 22 residues with the largest change in this parameter after the
binding of the protease with the inhibitor coincide with those having the largest
variation in the free protease relative to CoV-1.

We now consider the amino acids with the largest variation of the LR sub-
graph centrality in 6Y2G. In this case the 22 residues with the largest variation
in this parameter form a connected subgraph having 76 edges, which produces
an edge density of 0.33, which is very high in relation to that of the whole
protein, i.e., 0.026. In Fig. 7 (b) we illustrate this subgraph together with the
inhibitor at its original position in the protein, which clearly indicates that the
region with the largest variation of the LR subgraph centrality is the one in-
volved with the binding of the inhibitor. In this case all the amino acids display
a significant drop of this topological parameter, indicating that the binding of
the inhibitor drops significantly the capacity of this region of the protein, and
of the whole protein, to transmit perturbations in a long-range basis. The most
remarkable observation of this subgraph is the fact that 100% of the amino acids
involved in it are the ones that previously displayed the largest increase in this
parameter in the protease of CoV-2 relative to CoV-1. Indeed, they are also
the residues with the largest absolute value of the LR subgraph centrality in
the free protease. This means that the LR subgraph centrality is a topological
parameter which is clearly related with the most important region of the CoV-2
protease for the design of molecules which inhibit this protein.

To complete our analysis we investigate other structures of the CoV-2 MP*
bounded to two different inhibitors. They corresponds to the structure with
PDB code 6W63 determined by Masecar at 2.1A of resolution [16] and the one
corresponding to the PDB code 6LU7 determined by Jin et al. at 2.16A of
resolution [17]. Here we focus only on the difference between the LR subgraph
centrality at the amino acids of these proteases relative to that of the free
one, structure 6Y2E. In Fig. 8 we illustrate the subgraphs having the 22 most
central amino acids according to this topological feature. As can be seen both
subgraphs are connected and have edge densities 0.33 (6W63) and 0.31 (6LU7).
In the case of 6W63 21 out of 22 amino acids are the same found as the most
central ones in 6Y2E according to this index. For 6LU7 16 out of 22 of the
amino acids with the largest deviations of the LR subgraph centrality coincide
with the most central ones in the free CoV-2 MP™. In both cases, these residues
are in the binding site of CoV-2 MP™ or very close to it, indicating that the
functional importance of them coincides with their topological relevance in the
PRN. An interesting difference between the responses of the CoV-2 MP™ to the
inhibitors in 6W63 and 6L U7 is that in the first the centrality of the nodes after
binding is smaller than in the free protease. Although the free protease 6Y2E
and the one bounded to inhibitor 6W63 are solved at different resolutions we
point out that this behavior is similar to the one observed for 6Y2G. However,
in the case of 6LLU7 the response of the amino acids after binding with inhibitor
is an increment of their centrality, which is equivalent to a more compactness
of this region of the protein and of the whole protein itself. It is possible that
these differences are due to the main structural variations between the inhibitor
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Figure 7: Illustration of the 22 amino ddds with the largest variation of the LR
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connected if they are at no more than 7A. The color bar corresponds indicates
the values of AZ;; and the radius of the nodes is proportional to the absolute
value of this difference.
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in 6LU7 and the other two.

3 Discussion

We present an analysis of some of the most relevant topological properties of the
main protease of the SARS CoV-2. Our approach is based on the representation
of the three-dimensional structure of the protein as a residue network in which
C,, of every amino acid is represented by a node of the network and two nodes
are connected if the corresponding C,, are at no more than 7.0 A. CoV-2 MP™
differs only in 12 punctual mutations from CoV-1 MP™ and the superposition
of their three-dimensional skeletons gives an r. m. s. of only 0.53 A. Then,
it comes at no surprise that the difference between most of the topological
properties of the PRNs representing both proteases differ in less than 5%. If
we exclude from the analysis the LR descriptors, then 70% of the topological
descriptors shows only a small variation between the two proteases. In this
situation it is certainly remarkable that there are topological descriptors which
change in about 300% from one protease to the other. These are the cases of
the LR subgraph centrality of the amino acids and of the LR communicability
between pairs of them. The increase of these parameters in about 300% for
CoV-2 MP™ relative to CoV-1 MP™ means that the 12 punctual mutations
that differentiate both proteases have created a huge increment in the efficiency
of CoV-2 MP™ in transmitting perturbations of any kind between the amino
acids of the protein using all available routes of connection and allowing for
long-distance transmission. To make clearer what this sensitivity means we
are going to use a simple example. Let us consider a tiny perturbation on the
structure of the proteases which prevent the interaction between the amino acids
P9 and G11, which have been selected at random. In CoV-1 MP™ these amino
acids are at 5.69 A and in CoV-2 MP™ they are 6.48 A apart. Thus, in both
cases they are connected in the corresponding PRN. Let us consider that the
perturbation remove this edge from the PRN of both proteases. The relative
decrement of the average path length in CoV-2 MP™ relative to CoV-1 MP*
is almost imperceptible, i.e., 5.7%. In the case of the subgraph centrality it is
of the same order, i.e., 3.4%. This means that according to these parameters
CoV-2 MP* is as sensitive as CoV-1 MP™ to perceive a structural change in
its structure produced by a given perturbation. However, when we consider
the LR subgraph centrality this relative change is 316.8%. That is, according
to this topological parameter which takes into account long-range interactions,
CoV-2 MP™ is more than three times more sensitive to a tiny structural change
than CoV-1 MP™. This remarkable finding indicates that the 12 mutations
produced in CoV-1 MP™ makes the resulting CoV-2 MP™ much more efficient
in transmitting “information” through the protein skeleton using short and long-
range routes.

The second remarkable finding of the current work is that the largest changes
in the LR subgraph centrality occurring in CoV-2 MP™ relative to CoV-1 MP*®
do not spread equally across the whole structure of the protease. Instead, they
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Figure 8: Illustration of the 22 amino acids with the largest variation of the LR
subgraph centrality in 6W63 (a) and 6LU7 (b) relative to 6Y2E. The residues
are connected if they are at no more than 7A. The color bar indicates the values
of AZ;; and the radius of the nodes is proportional to the absolute value of this
difference.

15


https://doi.org/10.1101/2020.04.03.023887

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.03.023887. this version posted April 5, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

are concentrated around a geometrical region which includes most of the amino
acids involved in the binding site of the protease to inhibitors or close to it.
One of the amino acids which has increased more dramatically its sensitivity to
long-range transmission of information in CoV-2 MP™ is Cys-145, which is one
of the two catalytic sites of the protease, and the one involved in interactions
with the inhibitors, such as the ones analyzed here. We have analyzed here
three different inhibitors of CoV-2 MP*. In the three cases we have observed a
significant variation in the LR subgraph centrality of the amino acids which were
previously observed to have increased their LR sensitivity in the free protease.
Therefore, these amino acids corresponds to those involved in the binding of
these three inhibitors, showing that their increased topological role in the CoV-
2 MP™ also may play an important functional role in it.

The analysis of PRN is easier than the study of the whole protein structure.
In this sense the PRN represents a simplified model of the three-dimensional
structure of the protein. Typically, such simplification in the complexity of the
representation of systems convey a loss in the structural information which is
represented by the global system. In this case, however, we have shown that the
use of a network representation of the proteins reveals some hidden patterns in
their structure that were escaping to the analysis by using the global structure.
To detect such important structural factors it is necessary to account for long-
range interactions among the amino acids of the proteases, which are the ones
revealing the their most important characteristics in terms of their sensitivity to
tiny structural changes produced by local or global perturbations to the system.
Such LR interactions revealed here the main differences between the proteases of
CoV-1 and CoV-2, as well as the most important amino acids for the interaction
with inhibitors, which may produce therapeutic candidates against COVID-19.

4 Methods

4.1 Construction of the protein residue networks

The protein residue networks (PRN) (see ref. [23] Chapter 14 for details) are
built here by using the information reported on the Protein Data Bank [26] for
the proteases of CoV-1 and CoV-2 as well as the complexes of the last one with
an inhibitor. The nodes of the network represent the a-carbon of the amino
acids. Then, we consider cutoff radius rc, which represents an upper limit for
the separation between two residues in contact. The distance r;; between two
residues ¢ and j is measured by taking the distance between C, atoms of both
residues. Then, when the inter-residue distance is equal or less than ro both
residues are considered to be interacting and they are connected in the PRN.
The adjacency matrix A of the PRN is then built with elements defined by

Ay — { H(Tco— Tij) zii, 1)

Here we use the typical interaction distance between two amino acids, which

16


https://doi.org/10.1101/2020.04.03.023887

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.03.023887. this version posted April 5, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

is equal to 7.0 A. We have tested distances below and over this threshold obtain-
ing in general networks which are either too sparse or too dense, respectively.

In this work we consider the structures of the MP™ of CoV-1 deposited in
the PDB with code 2BX4 [25], of CoV-2 with PDB code 6Y2E as well as the
one of the CoV-2 with an inhibitor and space groups Cs, PDB code 6Y2F and
space group P212;2; with code 6Y2G [15]. In addition we also consider two
other structures of the CoV-2 MP™ with inhibitors, which corresponds to two
other different studies from the ones of Zhang et al. [15]. The PDB codes of
these structures are: 6W63 [16] and 6LU7 [17]. The length of the proteases is
306 amino acids. However, the structure of 2BX4 is resolved for amino acids
3 to 300, which gives a length of 298 [25]. Thus, for the sake of homogeneity
of the analysis we consider here the same part of the amino acids sequence for
all the structures analyzed, i.e., from residue 3 to residue 300. This does not
alter the analysis as the two extremes of the protease are disordered as do not
participate in important interactions.

4.2 Descriptors

The first category of descriptors correspond to those related to the most local
structure around the nodes, such as those based on the degree of the nodes, i.e.,
the number of connections that a node has (see [23] for details). The degree

accounts for the immediate effect of a node to its closest neighborhood. Among
2m

n(n—1)
where m is the number of edges and n is the number of nodes. Because the

these descriptors we use here the edge density, which is defined as § =

m
average degree (k) = ——, the relation with the edge density is clear. An-

other descriptor related to the degree of the nodes is the degree heterogeneity,
2
P = D)k (k;lﬂ - k;l/z) [27], which represents a measure of how het-
erogeneous the degrees of the nodes is [28]. A regular network, i.e., a network
with all nodes of the same degree, will have p = 0, it is followed by networks
with normal-like degree distributions, then networks with more heterogeneous
ones, and will end up with networks with in which the probability P (k) of
finding a node of degree k decays like distribution of the form P (k) ~ k=1,

where p = 1. The average Watts-Strogatz clustering coefficient [29] is defined
as (C) = % S %, where t; is the number of triangles incident to the
vertex. It account flor éhe cliquishness around a node in terms of triangles, that
is it account for how crowded the immediate neighborhood of a node is. An-
other descriptor related to the degree is the degree assortativity coefficient [30],
which is Pearson correlation coefficient of the degree-degree correlation. r > 0
(degree assortativity) indicates a tendency of high degree nodes to connect to
other high degree ones. r < 0 (degree disassortativity) indicates the tendency
of high degree nodes to be connected to low degree ones. Other descriptors in
this class assume that “information” is transmitted in the network through the
topological shortest paths. The length of the shortest path is a distance d (3, )
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between the corresponding pairs of nodes i and j, and it is known as the shortest

path distance. The average path length (L) = Py —] > iy A (4, ) is typically
n(n—

used as a measure of the ‘small-worldness’ of the network [29]. We also consider

the average betweenness centrality [31] (BC) = - D ikt p;#,where Pik; is
1,

the number of shortest paths between the nodes 7 and j that cross the node k,

and p;; is the total number of shortest paths that go from i to j. It accounts

for the importance of a node in passing information through it to connect other

pairs of nodes via shortest path only.

The second category of descriptors is formed by those that account for the
transmission of information not only via the shortest paths but by using any
available route that connect the corresponding pair of nodes. These descriptors
use the concept of walk instead of that of a path. A walk of length %k in G is
a set of nodes 41,142, ...,1,9%+1 such that for all 1 <1 < k, (i;,9,41) € E. A
closed walk is a walk for which 47 = iy;. The number of walks of length &
between the nodes i and j in a network is given by (Ak)ij. The first of these
descriptors considered here is the eigenvector centrality EC' [32], which is the
corresponding entry of the eigenvector associated with the largest eigenvalue
of A. The relation of this index with walks is given by the following. Let
N (i) be the number of walks of length k starting at node ¢ and ending else-
where. Then, if the network is not bipartite, which is the case of the current
work, EC; = limy_,o0 Ni(4)/ E?Zl Ni(j) (see Chapter 5 in [23]). That is, the
eigenvector centrality of a node is the ratio of the number of walks of infinite
length that start at this node to the whole number of such walks starting else-
where. Consequently, the average eigenvector centrality (EC'), accounts for the
spread of information from the nodes beyond the nearest neighbors and using
any infinite-length walk in the graph. A type of descriptors of the second kind
are based on counting all walks of any length, but giving more weight to the
shorter than to the longer ones. These descriptors are based on the following
matrix function: G = > 77, Ak—f = exp (A), where exp (A) is the exponential of
the matrix. then, we consider the average of the diagonal entries of this matrix,

1
which is known as the average subgraph centrality (SC) = - > p—1 Gpp [33],

which accounts for the participation of the corresponding node in all subgraphs
of the graphs, giving more weight to the shortest than to the longer ones. Such
subgraphs include for instance, edges, triangles, wedges, squares, etc. Another
descriptor is the average of the non-diagonal entries of exp (A), which is known

as the average communicability of the network, (G,q) = Py Y > pqg Gpg [34].

It accounts for how much a pair of nodes can communicate to each other by
using all potential routes available in the network, but giving more weight to
the shortest than to the longer ones. Finally, in this category we include the

average communicability angle (f) = ———<3" 0,4 [35], where the angle

n(n—1)
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VGrpGag
communicability angle describes how efficiently a network transmit information
between its pairs of nodes by using all available routes.

The third category of descriptors is formed by all-walks indices that penal-
ize less heavily longer walks connecting pairs of nodes in a network. That is,
although G = exp (A) accounts for all walks connecting every pair of nodes, it
penalizes very much those walks of relatively large length, then making more
emphasis in shorter walks around a given node. In order to include longer walks

in the analysis we study the following matrix function [36]: Z = Y -, z‘—ﬁ =

% [\/ 2merf (%) + 21| exp (A;), which penalizes the walks of length k& not by
k! (simple factorial) but by k!! (double factorial). Then, we will consider here

between a pair of nodes is defined as: 6,, = cos™! pq). The average

the average of the main diagonal (Z;;) = — > " | Z;;, which accounts for the
n

participation of the node 7 in all subgraphs in the graph but ingluding bigger
nn—1) > i Zigs
which accounts for the global capacity of the network of transmitting informa-
tion between pairs of nodes and allowing longer-range transmission than in the
case of the communicability. For those reasons we propose to call these indices
long-range (LR) subgraph centrality and communicability.

subgraphs than in SC. In a similar way we consider (Z;;) =
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