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Abstract

We fit a Bayesian model to data on the number of deaths attributable to COVID-
19 with the goal of estimating the number of infected individuals. Our model links
an underlying Susceptible Infectious Removed (SIR) model of disease dynamics to
observed deaths via a time-to-death distribution informed by previous studies. This
allows us to actually fit a statistical model to the data, unlike many epidemiological
studies in which the SIR model parameters are simply “calibrated” to obtain outputs
that look similar to the real data. The main outputs of our model are estimates of
the number of infections currently, as well as forecasts of the number of infections and
deaths under various scenarios for the effectiveness of social distancing measures. All
of our outputs have attached Bayesian credible intervals. An important conclusion
is that the confirmed case counts greatly underestimate the total number of infected
individuals.

1 Intro

The total number of people infected with the SARS-CoV-2 virus is unknown. In the
United States, there is a severe shortage of SARS-CoV-2 tests, and so even people
in hospital with obvious symptoms of Covid-19 are rarely tested. Furthermore, it is
by now well-understood that many, perhaps most people infected with SARS-CoV-2
have mild or no symptoms. The combination of these factors means that only a small
fraction of the SARS-CoV-2 cases are ever confirmed by a positive test. Because the
widely-reported case counts are based only on the number of positive tests, official
case counts cannot possibly reflect the true number of people infected with the SARS-
CoV-2 virus. Indeed, the confirmed case counts may more accurately represent the
distribution of tests than the prevalence of infections.

The true number of SARS-CoV-2 positive individuals is necessarily much higher
than the reported counts. But how much higher? Understanding the total size of
the infected population is important for planning, policy, and public communication
because it determines how many people will need critical care, and how many are
at risk of death. Knowledge of the true number of affected individuals could also

1

ar
X

iv
:2

00
4.

02
60

5v
1 

 [
st

at
.A

P]
  6

 A
pr

 2
02

0



help with public adoption of containment or mitigation measures, which may seem an
overreaction when the only publicly available numbers make it appear that the disease
affects relatively few. It is therefore important for healthcare planning, economic policy,
and transparency to estimate the population prevalence of SARS-CoV-2 infection.

This analysis models the spread of SARS-CoV-2 infection in the United States
based on data on the number of Covid-19 attributable deaths, the infection fatality
rate reported by previous studies, and the time-to-death reported by previous studies.
We chose this approach because, while we believe the case count data from which
epidemiological models would normally be built to be highly unreliable, we expect the
data on the number of deaths from Covid-19 to be reasonably close to the truth. Our
approach is founded on the belief that vast majority of Covid-19-related deaths are
recorded as such. If this is not true, the model would likely underestimate the true
prevalence of the disease.

The Bayesian model we present here is a version of the standard Susceptible-
Infectious-Removed (SIR) model. However, rather than “calibrating” the parameters
of the SIR model to obtain a reasonably close match to the observed deaths, we develop
an explicit probabilistic model linking the dynamics of new infections in the SIR model
to observed deaths. This allows us to give estimates of uncertainty in parameters such
as the number of infected individuals. The sampling model for the daily number of
deaths uses a model of disease progression conditional on the past time series of new
infections. The parameters defining the disease progression model are fixed and based
on existing clinical data. The underlying process generating the time series of new
infections is the SIR model, the parameters of which are estimated by Markov Chain
Monte Carlo (MCMC). We place informative priors on these parameters using existing
estimates of the R0 and the infectious period of SARS-CoV-2.

Using this model, we are able to “work backwards” from the time series of ob-
served deaths to estimates of the standard epidemic curves in a principled way. This
fully model-based approach allows us to incorporate detailed information on disease
progression, such as a distribution over the time to death as opposed to assuming ev-
ery person dies exactly x days after their infection, as has been done in similar more
informal analyses. Our approach allows us to provide uncertainty intervals on param-
eters estimated by our model, and using our fitted model, we make rough preliminary
estimates of the actual number of SARS-CoV-2 positive Americans.

The goal of this work is not to provide specific forecasts of the infected population
and likely deaths, although our initial estimates here fit the observed patterns of deaths.
Accurate forecasts will require location-specific measures of containment and treatment
efficacy, as well as age- and comorbidity-specific infected fatality rates. We don’t have
these data at present, but our model could incorporate them as better information
becomes available. Our paper offers a modeling approach using minimal but probably-
good data, describes a likelihood and priors, is fitted to data, and is underpinned by a
widely-used epidemiological model that is designed to approximate the real dynamics
of disease spread.
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2 Related Work

Several previous studies have offered methods for estimating the total number of in-
fections, although estimating the size of the infected population has been largely a
side-effect of other analytic goals. For example, Li et al. [5] propose that in China in
the first month of the epidemic 82-90 percent of infections were undocumented. Riou
et al. [8] use a SEIR model—an analogue of the SIR model in which there is a lag
between exposure and the individual becoming infectious—and calibrate their model
to the time series of reported deaths and reported infections. By modeling the under-
reporting of symptomatic cases, and by assuming that approximately half of infections
lead to symptomatic cases, they estimate the infected population in Hubei, finding
that approximately 30% of infections were documented.

Ferguson et al. [1] model the effect of transmission between susceptible and infec-
tious individuals using a microsimulation model built on synthetic populations designed
to mimic the populations of the United Kingdom and United States. They assume a
fixed time-to-onset and a range of R0 values from 2.0-2.6, and they assume symptomatic
cases to be 50% more infectious than asymptomatic cases. They calibrate their model
to the cumulative number of deaths seen by March 14, 2020. This is conceptually
similar to our approach in that the model ignores case counts and is fitted only to
death information. However, the calibration is based on only one observation—the
cumulative number of deaths at a fixed time point—rather than fitting to the full time
series of deaths, and there is no likelihood or sampling model from which to estimate
parameter values.

Having calibrated their model to the cumulative number of deaths, Ferguson et al.
estimate deaths and hospital loads under different non-pharmaceutical interventions
(NPI) involving social distancing and isolation; the estimated infected population is a
side-effect of their model. By contrast, Perkins et al. [7] estimate directly that in the
US, more than 90% of infections have been undocumented by tests using Chinese data
and initial reports in the US.

The CHIME app1 is an online tool created by researchers at the University of
Pennsylvania to help hospitals anticipate the number of incoming Covid-19 patients
and their needs. It takes a conceptually similar approach to the work we present
here. The CHIME model uses the current number of Covid-19 hospitalizations to
back out the total number of cases based on external estimates of the hospitalization
rate of the disease. Similar to our work, they do not use data on the case counts.
They make forward projections for the number of hospital admissions, ICU admissions,
and ventilators needed over the coming weeks. They allow the user to specify the
parameters of their underlying epidemiological model as inputs in terms of the doubling
times.

Two other models are worth noting. The New York Times online tool allows the
user to specify inputs to understand how those inputs affect likely infections, hospital
loads, and deaths; infections are a side-effect of the rest of the model. The model given
in Murray [6] has a goal similar to CHIME (hospital use planning). However, Murray
[6] does not use an SIR model, or any mathematical model of disease spread. Instead
his projection uses only the pattern of observed deaths, which he fits to an arbitrary

1chime
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curve chosen because it fits the data well (p.4). He uses location-specific parameters
and the time between infection and death as predictors; this model avoids predicting
the infected population at all.

The size of the infected population and the extent to which the reported case count
underestimates it are important questions. The size of the infected population could
inform health care providers about the number of cases likely to require hospitalization
in the coming 1-2 weeks. Furthermore, knowing the probable size of the infected
population would alert policymakers and the public about the likely number of deaths
in the next 2-4 weeks.

3 Model

We model the infection spread in the entire U.S. population with a single SIR model.
With the unfortunate recent growth in the number of reported deaths and hospitaliza-
tions, there will soon be enough data to disaggregate the modeling to individual states
or even cities. The use of a single model for the entire U.S. population is clearly a
limitation of our approach and we anticipate disaggregating geographically in the near
future.

Let νt be the number of new infections on day t of the epidemic, and let p denote
the infection fatality rate, i.e. the probability of death given infection. We denote the
day of the first infection by T0. Let θ “ tθs : s “ 0, 1, ....,mu be the set of probabilities
defining the discrete time-to-death distribution, where θs denote the probability that,
for those who die, death from Covid-19 occurs s days after the initial infection. Let
Xpt, t1q denote the number of individuals newly infected on day t who die on day t1.
Our death model is

Xpt, t1q | p, θ „ Poissonppνtθpt1´tqq.

The observed deaths on day r are thus given by

Dprq “
r
ÿ

t“1

r
ÿ

t1“t

Xpt, t1q,

the sum over all previous days of the number of individuals infected on that day who
went on to die on day r. This has marginal distribution

Dprq „ Poisson

˜

p
r
ÿ

t“1

r
ÿ

t1“t

νtθpt1´tq

¸

.

The use of a Poisson distribution in specifying our model may seem unnatural
compared to the specification Xpt, t1q | p, θ „ Binomialpνt, pθpt´t1qq. The Poisson
specification simplifies computation (as we will see in Section 4), and fortunately in
cases where pθs is small and ν is large (precisely the situation in which we find ourselves
after the very early days of the epidemic), the Poissonppθsνq distribution is a good
approximation to Binomialpν, pθsq. Furthermore, allowing for νt to take real values (as
opposed to integer values, as would be required for a Binomial distribution), allows us
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to use simpler, deterministic models for the underlying epidemiological curves defining
the νts. This also simplifies computation.

The observed number of deaths D are linked to the compartmental model via the
total number of newly infected individuals on day t, νt, which appears in the above
equations. In our preliminary analysis, we have used a discrete-time version of the
Susceptible-Infectious-Removed (SIR) model with a modification of the state evolution
to make the model consistent with the observed number of deaths on each day that
enter into our likelihood. The state evolution of this model is deterministic and given
by

νt “ St´1It´1βN
´1

Rt “ Rt´1 ` γrpIt´1 ´Dt´1q `Dt´1

St “ St´1 ´ νt

It “ It´1 ` νt ´ γrpIt´1 ´Dt´1q ´Dt´1

where St is the number of susceptible individuals at time t, It is the number of infected
individuals at time t, N is the total population size (set to 330 million in the United
States) and Rt is the number of removed (recovered or deceased) individuals at time
t. In this model, infected individuals are considered contagious. This model is nearly
identical to the classic SIR model with the exception that γIt´1 in the canonical model
has been replaced by γrpIt´1 ´ Dt´1q ` Dt´1 in our specification. In our evolution
model, the expected number of individuals who move from state I to stateR is explicitly
decomposed into the number who died (which is an integer count that comes directly
from our observed data) and the expected number who recover each day, γrpIt´1 ´

Dt´1q. The logic behind the latter term is that pIt´1 ´Dt´1q is the number of people
who were infected as of time t´1 who did not die during that time period. Of those, we
expect γr to recover per unit time, so in our model γr is the rate of recovery for those
who will eventually recover. Thus, the mean time between infection and “recovery”
(the end of the contagious period) for those who do recover is given by γ´1

r , and R0

is approximately given by βγ´1
r . These equivalences are approximate in our case,

since our compartmental model is discrete-time rather than continuous-time, and we
explicitly split the removed population between deceased and recovered.

Figure 1 shows one realization of our modified SIR model. The top panel shows
one draw of the daily number of deaths. Notice that this is not a smooth curve. When
fitting our model, these Ds will be our data, and will be the only thing we observe
directly. The other panels are what we will infer from the Ds. The middle panel of the
figure shows the νs, the number of daily new infections. The series of Ds has roughly
the same shape as the νs, though it lags it by about 25 days. This lag is due to how we
have set θ, the parameter governing the time-to-death distribution which we describe
below. The bottom panel gives the standard view of the SIR model, showing the total
number of susceptible, infected, and removed at any given time point.

This model has several parameters. Due to identifiability constraints, we do not es-
timate all of them. Rather, we fix those for which there exists high quality information
on reasonable values that is applicable in the context studied here. By and large, this
includes those parameters pertaining more to the biology of the disease than to the
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Figure 1: One realization of our modified SIR models

social dynamics of its spread.2 These include θ and p. For θ, we draw primarily from
two studies. Zhou et al. [10] reports that in Wuhan, China, the time from symptom
onset to death had a median time of 18.5 days with an interquartile range of 15 to 22
days. A Poisson-Gamma distribution with parameters tα, βu “ t27.75, 1.5u matches
the reported quantiles well. Lauer et al. [3] estimate the incubation period of the dis-
ease, also using data from China. They report a median incubation time of 5.1 days
with an estimated 97.5th percentile of 11.5 days and a 99th percentile of 14 days. The
quantiles of a Poisson-Gamma distribution with parameters tα, βu “ t5.5, 1.1u match
these reported quantiles well. We calculate the distribution of the total time from in-
fection to death by generating 100,000 samples from the described distribution of the
incubation period and the described distribution of the time from symptom onset to
death. The time to death is the sum of these two numbers. We truncate the maximum
time to death from infection to be the 99th percentile of the generated samples. This
results in a time to death distribution shown in Figure 2.

To set p we rely on several external data points. Russell et al. [9] use data from
individuals on the Diamond Princess cruise ship to estimate an infection fatality rate of
1.2% (95% CI: 0.38%-2.7%) after adjusting for delays between infection confirmation
and death. The ship was a closed population: we know who was on the ship and
therefore who to test, so we have confidence in the denominator (all individuals infected

2Clearly, it is impossible to make a clear distinction between these two types of parameters. For example,
if the rate of spread allows for the number of people requiring care to overwhelm existing healthcare
infrastructures, the case fatality rate will increase, as those who require medical support to survive but
cannot get it will die.
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Figure 2: Conditional on death occurring, the probability of death on each day following
infection.

with COVID-19 were identified because all people on the ship could be tested).
As of 25 March 2020 there were 9,137 confirmed positive cases and 126 deaths in

South Korea.3. This gives a crude case fatality rate of 1.4%. Although this statistic
focuses on confirmed cases, this number may be reasonably close to the true infection
fatality rate because South Korea has aggressively tested and traced contacts, including
testing of asymptomatic individuals. Moreover, South Korea’s epidemic is relatively
old, giving sufficient time that many of the infected individuals who will go on to
die have already done so. Keep in mind that computing an infection fatality rate in
this way—by dividing total deaths at time t by total cases that have been identified
up to time t—would give an underestimate of the infection fatality rate because the
denominator includes some people who are currently infected who will eventually die.
To give some estimate of how much of an underestimate this may be, South Korea
as of 25 March reports 59 patients in serious or critical condition. If 1/4 of these
patients die, then the empirical case fatality rate would rise to 1.6%. On the other
hand, despite the very high level of testing in South Korea (as of 25 March, they had
performed about 7 tests per 1000 population), the number of reported cases is still an
underestimate of the total number of cases.

The other country that was very aggressive about testing and surveillance from the
early days of the epidemic is Germany. As of 27 March, Germany reports 281 deaths
and 47,278 total cases, giving an IFR estimate of 0.59 percent. Germany’s case count

3https://www.cdc.go.kr/board/board.es?mid=a30402000000&bid=0030
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still appears to be rising, whereas South Korea appears to have largely controlled the
spread. So, many of the fatalities in Germany may be yet to come. If this is true, then
the raw IFR from Germany’s data could be an under-estimate if this effect is enough
to offset the infections that have gone undetected despite the aggressive testing taking
place. In both the comparison to Germany and South Korea, differences in underlying
demographics, comorbities, and other risk factors could limit the applicability of these
estimates to the United States. However, such factors are difficult to adjust for, since
data on risk factors is preliminary and limited. We believe that the comparison is still
useful in providing a rough ballpark estimate.

Finally, a recent paper in Science attempts to estimate the total size of the infected
population during the epidemic in China [5]. Their estimates of the total number of
infected implies an adjusted infection fatality rate of about 0.4 percent (see the note
between Li et al. (2020) co-author J. Shaman here) . Thus, consistent with all of
these estimates, and because the infection fatality rate is arguably the most important
parameter in our model that cannot be learned from the data, we consider two different
cases: 0.5 percent and 1.0 percent.

We estimate the parameters of the model that govern the spread of the disease
rather than its progression conditional on infection. The parameters we estimate in
our model are γr, β, and T0. Previous estimates of the length of the infectious period
γ´1
r vary widely, so we choose a fairly diffuse prior γ´1

r „ Uniformp3, 25q, corresponding
to an infectious period that ranges from 3 to 25 days. To set the prior on β | γr, we use
the reported 95 percent confidence interval in [4] to establish upper and lower bounds
on the R0, and put β | γr „ Uniformp1.4γr, 3.9γrq, encompassing possible R0 values of
between 1.4 and 3.9 for all of the allowed values of γr. We place a uniform prior on T0
between January 1 and January 30.

4 Computation

We do computation by MCMC using the following algorithm. This algorithm is an
adaptive Metropolis-within-Gibbs algorithm (see e.g. [2]). The algorithm produces
samples from the Bayesian posterior distribution of the parameters of our model.

1. Sample X given D, ν, p, θ from

Xp¨, sq „ MultinomialpDs, πq

where

πt9 pνtθps´tq.

Each multinomial sample of Xp¨, sq imputes the number of people infected on
each day that went on to die on day s, conditional on having observed exactly
Ds deaths at day s. This follows because a vector of independent Poisson ran-
dom variables constrained to sum to some positive integer has a Multinomial
distribution with probabilities proportional to the Poisson rate parameters (see
4).

4https://ecommons.cornell.edu/bitstream/handle/1813/32480/BU-39-M.pdf?sequence=1 for a
proof
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2. We update β, γr, and T0 using the adaptive Metropolis algorithm. To do this,
we propose a new set of parameters, tβ˚, γ˚r , T

˚
0 u from Nppβ, γr, T0q,Σq, with

the time-inhomogeneous covariance Σ computed using the method of [2]. We
then calculate the corresponding set of ν˚t s. We accept or reject the proposed
tβ˚, γ˚r , T

˚
0 u using Metropolis-Hastings, with target density propportional to

`pν, β, γrq “
T
ÿ

t“1

ρt logppνtηpT´tqq ` logpπpβ, γr, T0qq,

with ρt “
řT

t1“1Xpt, t
1q and πpq representing the prior.

We fit our model to the daily number of deaths in the United States as recorded
on https://worldometer.com. We use data up until 28 March 2020 to fit our model.

We run for 50,000 iterations, begin adaptation after 5,000 iterations, and use 10,000
iterations of burn-in. Trace plots for the parameters β, γr, T0 are shown in the appendix.
R code for all of the analysis here is available at [XXX].

5 Results

Figure 8 shows the observed deaths in the U.S. (red), as well as 1,000 posterior samples
of the number of deaths (gray) and the pointwise posterior mean (blue). The model
provides a reasonably good fit to the observed data.

Figure 4 shows posterior samples of the R0. The mean value is about 2.75, with a
95 percent posterior credible interval of approximately [2.2, 3.75]. This is in line with
previous estimates of R0 for this disease.

The left panel of Figure 9 shows the posterior distribution of the number of newly
infected individuals on March 18, and the right panel shows the total number of infected
plus recovered individuals on 18 March. We focus on an estimate of the number of
infections on March 18, because this is roughly the time at which social distancing
measures began in earnest in the United States. For example, California put into place
statewide social distancing measures on 19 March. Because we fit our model to only
deaths through March 28, and very few individuals die within 10 days of infection,
we do not expect that social distancing has had much effect yet on our estimates.
However, it does affect the interpretation of our estimates. The deaths being observed
today are of individuals infected several weeks ago, at a time when few social distancing
measures were in place and the virus was spreading essentially unchecked in the United
States. Thus, our estimates of R0 reflect the transmissibility of the virus without social
distancing in place. Once social distancing measures took effect, we expect that the
R0 would decline. We study several cases for how social distancing has changed R0 in
the next section.

Our mean estimate of the total number of infected plus recovered on March 18 is
about 475,000. Comparing this to the number of reported cases on 18 March (9,187),
we find that the reported case numbers underestimate the total number of infected
by a factor of about 50. Of course, infected individuals take some amount of time
to develop symptoms, and thus we would not expect everyone who had ever been
infected as of March 18 to have sought or received testing. One study [4] reports the
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Figure 3: The observed deaths in the United States (red), posterior samples of the
number of deaths (gray), and pointwise mean of the posterior samples of the number of
deaths (blue).

incubation period is about 5 days, and the 90th percentile is about 12.5 days, while
another study Lauer et al. [3] reports the median incubation period is about 5.1 days,
the 2.5th percentile about 2.2 days, and the 97.5th percentile about 11.5 days. Thus
a better comparison may be between our estimate of the total number of infected on
March 18,2020 and the total number of reported cases on 23 March 2020 (43,781) or
on 27 March 2020 (85,435), which suggests that the case count underestimates the
total number of infected who are “visible” to testing by a factor of between 5 and 10.
The latter is in line with the recent paper on the undercount in Hubei [5]. Although
the extent of under-testing could be very different in the United States and in Hubei,
we find it interesting that these estimates correspond and suspect this is because the
numbers are linked by the fact that in both places, asymptomatic people were rarely
tested.

Next we look at model predictions under several scenarios. Since significant mitiga-
tion strategies began to be put in place about ten days ago, in each scenario we assume
that the R0 is as estimated by our model up until March 18, at which point the R0

drops. Several options for after-mitigation R0s are considered in each of the figures,
each new R0 corresponding to a different colored trajectory. Plots of the number of
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Figure 4: Estimated approximate R0 under our model.

new infections by day along with a 95 percent posterior credible bands, are shown in
the left panel of Figure 10.

The right panel of Figure 10 shows the estimated number of deaths by day in each
of the scenarios. In the absence of social distancing measures, the number of daily
deaths continues to rise. If this curve were extended out further, we’d find that the
number of daily deaths peaks at around 105 in early to mid May under this scenario.
On the other hand, if social distancing measures have the effect of reducing the R0

by about 36 percent to 1.75, then the number of deaths would be less by an order of
magnitude at this time, though will not yet have peaked. Similarly, under the “no
effect of social distancing” scenario, new infections peak in early to mid-April at about
107.4 at more than 10 million new infections. If social distancing measures reduce R0

to 1.75, the number of new infections at this time is less by more than an order of
magnitude. In a more hopeful scenario where the R0 drops to 1.25—almost to the
point of suppression—the number of daily deaths in mid-May is only about 4,000 and
the number of daily new infections in mid-April is only about 400,000.

All of these results have been conditional on the assumption that the IFR is 1%.
This is the most important assumption in the model, and the value of the IFR cannot
be learned directly from the data used in this analysis. It must be included as an input
or assumption to the model. Because of this, we also give results for an alternative,
lower IFR of 0.5% in the appendix.

6 Discussion and Conclusion

Our model strives to use only information which has a reasonable chance of being
measured correctly. We condition our findings on the observed number of deaths, and
we use the infected fatality rate (p) and the time from infection to death (θs) measured
in specific clinical settings to estimate the number of people infected and the number
likely to die. Our model predictions of the number of deaths in the US are consistent
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Figure 5: Histograms of the number of newly infected people on March 18 (left) and the
cumulative number of infections on March 18 (right).

Figure 6: log10 of new infections (left) and deaths (right) under different scenarios for the
effect of social distancing on R0.

with the time series of deaths observed from the beginning of the pandemic to the
present.

In contrast to models that use a wider range of information that may be less pre-
cisely measured, our approach minimizes information use and prioritizes parameter
identifiability. The uncertainty from the clinical measures is propagated to the esti-
mates of new infections νt and likely deaths Dt by means of explicit priors that reflect
the ranges of the reported measures.

The model has several underlying assumptions: perhaps most importantly, we as-
sume that after an individual has recovered, they cannot be reinfected. The parameters
we draw from prior studies, p and θ, may be better measured as more data is collected
and clinicians improve reporting. It is easy to update our model with improved values
of these parameters.

Finally, our model uses the SIR approach to link observed deaths to the underlying
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unobserved infections. It would not be difficult with our approach to change the linkage
for some other model.
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A Trace plots

Figure 7 shows traceplots of β, γr, and the implied R0 for p “ 0.01. Once adaptation
begins, the algorithm evidently mixes quite well.

Figure 7: MCMC samples of β, γr, the implied approximate R0, and T0 in the case where
p “ 0.01.

B Alternative IFR

All figures in this section pertain to the scenario where we assume the IFR is p “ 0.005.

References

[1] Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin,
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