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Determining the Spatial Effects of COVID-19 using the Spatial Panel Data Model 
 
Hasraddin Guliyeva,* 
 
a Department of Economics and Business Administration; Scientific-Research Institute 
of Economic Studies, Azerbaijan State Economic University, Baku, Azerbaijan 
 
Abstract 
This study investigates the propagation power and effects of the coronavirus disease 
2019 (COVID-19) in light of published data. We examine the factors affecting COVID-
19 together with the spatial effects, and use spatial panel data models to determine the 
relationship among the variables including their spatial effects. Using spatial panel 
models, we analyse the relationship between confirmed cases of COVID-19, deaths 
thereof, and recovered cases due to treatment. We accordingly determine and include 
the spatial effects in this examination after establishing the appropriate model for 
COVID-19. The most efficient and consistent model is interpreted with direct and 
indirect spatial effects. 
Keywords: COVID-19, spatial effects, spatial panel data models 
JEL: C21, C23, C31 
 
1.Introduction 
Twenty-seven cases of pneumonia of unidentified aetiology were discovered in 
Wuhan city, Hubei province of China on 31 December 2019. Wuhan city is the most 
densely populated city in central China, with more than 11 million residents. In the 27 
cases, most patients were admitted into hospitals with clinical symptoms of fever, dry 
cough, dyspnoea, and bilateral lung infiltrates as seen on imaging. All incidents were 
correlated to the city’s Huanan Seafood Wholesale Market which predominantly sells 
a diversity of fish as well as live animals such as marmots, bats, poultry, and snakes 
(Lu, Stratton, & Tang, 2020). The causative agent was detected from throat swab 
samples of patients, taken by the Chinese Centre for Disease Control and Prevention 
(CCDC) on 7 January 2020. The coronavirus disease 2019 (COVID-19), as labelled by 
the World Health Organization (WHO), was declared to cause Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). ("WHO Director-General's 
remarks at the media briefing on 2019-nCoV on 11 February 2020," 2020, February 11).  

To date, most patients with SARS-CoV-2 have had developed mild symptoms, 
such as sore throat, dry cough, and fever. Many cases have been unexpectedly 
determined. However, a minority of patients have been known to develop fatal 
complications, such as septic shock, organ failure, severe pneumonia, pulmonary 
oedema, and acute respiratory distress syndrome. 

As per recent statistics, 54.3% of those diagnosed with SARS-CoV-2 were male 
with a median age of 56 years. Patients who required intensive care help were, on 
average, older and/or were previously diagnosed with comorbidities, such as 
cerebrovascular, cardiovascular, digestive, endocrine, and chronic respiratory disease. 

Those in intensive care were also more likely to report abdominal pain, 
dizziness, dyspnoea, and anorexia (Wang et al., 2020). 
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Efforts directed toward interpreting the pathophysiology of COVID-19 have led 
to the EU mobilising €10,000,000 into research that would “contribute to more efficient 
clinical management of patients infected with the virus, as well as public health 
preparedness and response” ("Coronavirus: EU mobilises €10 million for research," 
2020, January 31). Further, US-based corporations such as Co-Diagnostics and the 
Novacyt's molecular diagnostics division Primerdesign have been developing  
COVID-19 testing kits for use in the research setting ("Primerdesign launches 
molecular test for new coronavirus," 2020, January 31). The UK government has also 
sanctioned £20,000,000 to support the development of a COVID-19 vaccine 
("Coronavirus: UK donates £20m to speed up vaccine," 2020, February 3). Given the 
nature of the pandemic, COVID-19 has been a subject of intense discussion since the 
beginning of 2020. As the pandemic spreads exponentially, healthcare enterprises and 
non-profit organizations have already begun work to counter it.  

In this study, we investigate the propagation power and effects of COVID-19 in 
light of published data. Thus, the factors affecting COVID-19 are examined together 
with spatial effects, and spatial panel data models are used to determine the 
relationship among the variables (factors) with spatial effects. Using spatial panel 
models, we analyse the relationship between the rate of confirmed cases (Rc) of 
COVID-19, the rate of deaths (Rd), the rate of recovered cases (Rr) due to treatment, 
with spatial and temporal effects.  
 
2. Methodology  
We first estimate a standard linear panel data model devoid of spatial effects. This 
model can be used as a reference for the estimation results of spatial panel data models 
as well as to check the robustness of these estimation results (Yang, Chen, Cao, Li, & 
Li, 2017). The formulation of a standard linear regression model (SLM) is as follows 
(Lan, 2012; Tatoglu, 2012): 

𝑦𝑖𝑡 = 𝑥′𝑖𝑡𝛽 + 𝑢𝑖 + 휀𝑖𝑡,             (1) 
where 𝑦 is the explained variable, 𝑖 denotes the individuals, and 𝑖𝑡 constitutes the 
regions (𝑁 = 31). 𝑡 is the dimension of the time series, that is, from 22 January 2020 to 
10 March 2020. 𝑥′𝑖𝑡 is the 1 ×  𝑘 vector of observations of the explanatory variables and 
𝛽 is the 𝑘 × 1 vector of undetermined coefficients. 𝑢𝑖 is an individual effect that cannot 
be directly observed and quantified and 휀𝑖𝑡 is a disturbance term that varies with the 
individual and time. If 𝑢𝑖 is related to 𝑥𝑖𝑡, the panel data model is a fixed effects model; 
otherwise, it is a random effects model (Fotheringham & Rogerson, 2008). 

Spatial panel data models include the spatial autoregression model (SAR), 
spatial error model (SEM), spatial autocorrelation model (SAC), and spatial Durbin 
model (SDM). These models consider the spatial effects based on the SLM and they are 
estimated using the maximum likelihood principle. Among them, the SAR model 
considers the spatial spillover effect of the dependent variable. Hence, its formula 
includes the spatial lag term of the dependent variable, which can be expressed as 
follows: 

𝑦𝑖𝑡 = 𝜌𝑊𝑦𝑡 + 𝑥′𝑖𝑡𝛽 + 𝑢𝑖 + 휀𝑖𝑡,              (2) 

where 𝜌𝑊𝑦𝑡 is the spatial lag of the dependent variable and 𝑊𝑦𝑡 = ∑ 𝑤𝑖𝑗𝑦𝑖𝑡
𝑛
𝑗=1  is the 

contiguity based on the weighted Rook matrix. 𝜌 is the spatial autoregression 
coefficient. If 𝜌 has statistical significance, it demonstrates the existence of a significant 
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spatial dependence among the dependent variables. That is, a confirmed case in a 
region depends on the contiguous regions. The value of 𝜌 reflects the degree of the 
spatial dependence (Gelfand, Diggle, Guttorp, & Fuentes, 2010). 

The SEM discovers the effects of the omitted variables on the observation of the 
determined (dependent) variable in a provincial area, which contains a spatial error 
term. A spatial autocorrelation among residuals is thus practical and the SEM can be 
formulated as follows: 

𝑦𝑖𝑡 = 𝑥′𝑖𝑡𝛽 + 𝑢𝑖 + 휀𝑖𝑡,             (3) 
휀𝑖𝑡 = λWε𝑡 + 𝑣𝑖𝑡,             (4) 

where λWε𝑡 is the spatial error term, 𝜆 is the autoregressive factor, and 𝑣𝑖𝑡 is a random 
error term that is usually assumed to be independent and identically distributed 
(i.i.d.). We can confirm the existence of hidden independent variables with spatial 
autocorrelation if 𝜆 is statistically significant, which results in the trend of a noticeable 
spatial autocorrelation in the residuals. The SAC model is a combination of the SAR 
models and SEMs; it consists of the dependent variable spatial lag and a spatial error 
term, which can be expressed as follows: 

𝑦𝑖𝑡 =  𝜌𝑊𝑦𝑡 + 𝑥′
𝑖𝑡𝛽 + 𝑢𝑖 + 휀𝑖𝑡 

휀𝑖𝑡 = λWε𝑡 + 𝑣𝑖𝑡, 
             
            (5) 

In the above equation, corresponding to various research functions and needs, SWM 
W1 and SWM W2 (spatial weight matrix) can be the same or different (LeSage, 2008; 
Yang et al., 2017). In this study, we used the same SWM to estimate the model, that is, 
𝑊1 =  𝑊2 =  𝑊, and the residual terms are the same as those revealed above. 

The SDM includes the dependent variable spatial lags and explanatory 
variables. It uses the marginal effects of the explanatory variables from the nearby 
regions/state based on the SAR model. The common specification for the SDM is as 
follows: 

𝑦𝑖𝑡 =  𝜌𝑊𝑦𝑡 + 𝑥′
𝑖𝑡𝛽 + 𝑊𝑋𝑡δ + 𝑢𝑖 + 휀𝑖𝑡             (6) 

where 𝑊𝑋𝑡δ is the explanatory variables’ spatial lag, 𝑋𝑡 is the 𝑛 × (𝑘 − 1) constant 
independent variable matrix, and 𝛿 is the (𝑘 − 1) ×  1 vector of the parameters that 
determine the marginal effects of the independent variables from nearby observations 
on 𝑦𝑖𝑡, the dependent variable. 
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Figure 1. Relationships among Spatial Panel Models 
Source: Some Spatial Models (Golgher & Voss, 2016) 

Figure 1, which is similar to a part of the figure presented in (Elhorst, 2010), 
illustrates the relationships among the previously stated spatial panel models. First, 
we examine the SLM estimated by ordinary least squares. We start with this model, as 
it is the simplest and most common. Though it is a non-spatial effect model, it is 
frequently used as a diagnostic tool for model specification and is a benchmark for 
comparisons with spatial models. 

We also represent the SEM, as the interpretation of the coefficients is similar to 
that of an SLM. The SAR is introduced in section 3. Because of endogenous spatial 
dependence in this model, it is more challenging to interpret the coefficients. This 
section also examines the SAC model (Kelejian & Prucha, 1998), which is 
characteristically close to the SAR model. In section 4, we present two regression 
models with spatial lags only in the independent variables—the spatially-lagged X 
model (SLX) other than the spatial Durbin error model, both of which include 
exogenous spatial dependence. In section 5, we consider the interpretation of 
coefficients for an SDM, which includes both exogenous and endogenous spatial 
dependencies, consequently complicating the interpretation more than for the 
preceding models (Golgher & Voss, 2016). 
 
3. Data and Empirical Results 
3.1 Dataset and Descriptive Statistics 
For the purpose of our objective, we include sampling data from 22 January 2020 to 10 
March 2020 for the 31* regions in Mainland China. The data are collected from the 

 
* Anhui, Beijing, Chongqing, Fujian, Gansu, Guangdong, Guangxi, Guizhou, Hainan, Hebei, Heilongjiang, Henan, Hubei, Hunan, 
Inner Mongolia, Jiangsu, Jiangxi, Jilin, Liaoning, Ningxia, Qinghai, Shaanxi, Shandong, Shanghai, Shanxi, Sichuan, Tianjin, 
Xinjiang, Tibet, Yunnan, and Zhejiang 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



COVID-2019 situation reports** by WHO. We analyse the relationship between the rate 
of confirmed cases (Rc) of COVID-19, the rate of deaths (Rd), and the rate of recovered 
cases (Rr), with spatial and temporal effects. The rates are calculated classifying each 
variable by the population in the province. Population statistics for each province is 
collected from the National Bureau of Statistics of China***. The statistics of the rate of 
confirmed deaths and recovered cases on 10 March 2020 and average statistics  are 
presented in Table A.1. 

Table A.1. shows that Hubei had the highest concentration of the rate of 
confirmed cases (10.714 cases per 100,000 people), followed by Guangdong (0.214 cases 
per 100,000 people) and Henan (0.201 cases per 100,000 people). The least rate of 
confirmed cases was from Ningxia, Qinghai, and Tibet. These data are up to 10 March 
2020. In Hubei, an average of 6.498 out of 100,000 people tested positive for           
COVID-19, 2.126 out of 100,000 patients recovered, and 0.241 out of 100,000 people lost 
their lives. For Guangdong, these statistics are 0.159, 2.126, and 0.241, respectively. 

 
3.2 Comparison of Spatial Panel Models Estimation 
Before fitting spatial panel models, we require an SWM matrix. An SWM characterizes 
the spatial relationships among variables in a dataset (Fotheringham & Rogerson, 
2008; Zeren, 2010). The 𝑊 in this research was 31 × 31, row-standardized with zero 
diagonal factors and developed via the conceptualization of spatial relations of the 
polygon rook contiguity in Stata 16. Formally, 

wij
' = {

1 if regions j shares a common boundary with province i

0; otherwise
 (7) 

wij=
wij

'

Σj=1
n wij

'
 

(8) 

Σj=1
n wij = 1, i=1, …, n (9) 

This form is then transformed into a suitable format for Stata 16.0 and is used in spatial 
panel regression. 

To manage the spatial autocorrelation effect of the dependent variable and 
correctly analyse the affecting factors and their spatial spillover effects, spatial panel 
data models can be used. Compared with standard linear panel data models, spatial 
panel data models take on spatial effects, such as the spatial dependence and spillover 
effects. Further, compared with the spatial model built on cross-sectional data, the 
spatial panel data model can grasp the individual heterogeneity of spatial units—that 
is, individual effects—and can escape missing variables and estimation errors more 
efficiently (Elhorst, 2014) 

Before estimating spatial panel data models, we need to test for cross-sectional 
dependence. The primary issue when confronted with spatially referenced data is to 
determine whether spatial dependence exists, that is, whether “nearby” cases are more 
correlated than distant ones. A flexible way of assessing whether dependence in the 
cross-section of a panel dataset is spatially related is the particularization of the 
Pesaran (2004) test for general cross-sectional dependence (Croissant & Millo, 2019; 
Tatoğlu, 2013). 
 

 
** https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports 
*** http://www.stats.gov.cn  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 
Figure 2. Spread of COVID-19 in Mainland China on 10 March 2020 

 
Table 2 shows the cross-sectional dependence test reports; we can reject that the 

null hypothesis errors are i.i.d. This is not surprising given our hit map visual      
(Figure 2) appraisal of confirmed COVID-19 cases. Consequently, we require spatial 
panel models. 

 
Table 2. Spatial Panel Models for COVID-19 in China 

 Spatial Panel Models 

Variables SLM 
SAR  
(1) 

SEM  
(2) 

SAC  
(3) 

SLX  
(4) 

SDM  
(5) 

SDEM  
(6) 

Rr -0.729 -0.734*** -0.729*** -0.734*** -0.734*** -0.734*** -0.734*** 

Rd 32.378 32.467*** 32.391*** 32.472*** 32.486*** 32.498*** 32.487*** 

cons 0.001 0.067*** 0.068*** 0.067*** 0.067*** 0.067*** 0.067*** 

ρ  0.052***  0.059***  -0.048  

λ   -0.033  -0.117**   -0.067 

lag.r     -0.127** -0.060 -0.024 

lag.d     1.719*** 3.290*** 1.717*** 

Temporal 
effects 

                                              Appendix A.2 

Statistics 

F-stat / LR 
stat 

1564*** 82731*** 78735*** 84297*** 85972*** 83092*** 83649*** 

R2 /Pseudo 
R2 

0.9905 0.9910 0.9905 0.9914 0.9916 0.9911 0.9913 

LM test of 
common 

spatial terms 
 31.627*** 0.600 40.590*** 41.853*** 38.282*** 40.328*** 

AICc -3802.08 -3720.996 -3690.331 -3724.130 -3725.134 -3723.516 -3724.639 

BIC -3530.47 -3444.054 -3413.389 -3413.862 -3445.866 -3435.922 -3437.045 

Peseran-CD test stat = 21.791 prob<0.01 
SLX model Hausman Test chi (49) = 25.18 (prob<0.001) 
SLX Model LMr test chi (1) = 4.02 (prob<0.050) 
SLX Model LMd chi (1) = 11.94 (prob<0.001) 
* p<0.10; ** p<0.05; *** p<0.01 
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The estimation results for the SLM and the six spatial panel data models are 

shown in Table 2. The parameters of the spatial panel models are estimated using the 
quasi-maximum likelihood estimator derived by Lee and Yu (2010) and the p-value is 
calculated using the robust standard error. All of spatial panel data models include 
two-way effects: individual (cross) and temporal (time) effects. Temporal effects for 
each spatial panel model are shown in Table A.2. 

Firstly, we eliminated SEM (2), SDM (5) and SDEM (6) models since there was 
spatial effect no statistically significant at %5 level. Following, we had to choose from 
models such as SAR (1), SAC (3) and SLX (4). The estimated coefficient of the spatially 
lagged independent variables (LMr and LMd) in the SLX (spatially-lagged X) model 
was statistically significant at the %5 level. That is, the rate of confirmed COVID-19 
cases for provinces in China are spatially correlated. This further suggests that it is 
necessary to construct spatial panel data models rather than SLMs, which do not 
consider spatial effects, if our objective is to explore the influencing factors of the rate 
of confirmed cases and their spatial spillover effects.  

  The pseudo-R2 (99.16), likelihood ratio-stat (LR-stat) (85972), and Lagrange 
multiplier (LM) test of common spatial terms stat (41.853) for the SLX are higher than 
SAR (1) and SAC (2) models. Its value of the corrected Akaike information criterion 
(AICc) (-3725.134), which is calculate for small samples, and Bayesian information 
criterion (BIC) (-3725.134) are also lower than the SAR and SAC models. The LMr, and 
LMd test statistics for the SLX are significant at the %5 level, and, hence, spatial effects 
of explanatory variables (LMr, LMd) are different from zero. Hausman test statistics is 
21.791 for SLX; further, the fixed effects SLX is more consistent in comparison with the 
random effects SLX (prob<0.001). Consequently, the SLX can be considered a better-
fitting spatial panel regression model. Therefore, we mainly interpret the influencing 
factors based on the estimation results of the SLX in the following analysis. 
 
3.3 Analysis of Spatial Effects 
 The average direct, indirect, and total effects of these explanatory variables are 
presented in Table 3. The direct effect expresses the marginal effect of the change in 
the independent variable of one percent on the dependent variable of the same unit. 
The indirect effect is the marginal effect of the change in the independent variable in 
one percent on the dependent variable value of all neighbouring units. The total effect 
is the sum of both effects. The average direct effects of the rate of recovered cases and 
the rate of deaths are 32.485 (prob<0.001) and -0.734 (prob<0.001), respectively, 
indicating that one-percent increase in the rate of deaths (example, in Hubei) leads to 
32% positive change in the rate of confirmed cases (in Hubei) and a one-percent 
increase in the rate of recovered cases leads to 0.7% negative change in the ratio of 
confirmed cases (in Hubei), respectively. 
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Table 3. Spatial Effects of Independent Variables of the SLX  

Independent 
Variables 

dy/dx 
Delta-Method Std. 

Err. 
Prob 

95% Confidence Interval 

Lower Higher 

Direct spatial effects 

Rr 32.485 0.185 <0.001 32.122 33.849 

Rd -0.734 0.013 <0.001 -0.759 -0.708 

Indirect spatial effects 

Rr 1.663 0.481 <0.001 0.720 2.607 

Rd -0.025 0.033 0.436 -0.091 0.039 

Total spatial effects 

Rr 34.150 0.536 <0.001 33.099 35.199 

Rd -0.759 0.036 <0.001 -0.831 -0.688 

 
Compared with the average direct effects and the estimated coefficients, the 

average indirect effects can more comprehensively reflect the actual effect of the 
influencing factors. The indirect effects of the rate of recovered cases are measured at 
1.663 (prob<0.001), indicating that a one-percent increase in the rate of deaths (in 
Hubei) leads to 1.7% positive change in the rate of confirmed cases (in neighbouring 
regions of Hubei, namely, Henan, Anhui etc.). However, the indirect effect of the rate 
of recovered cases is not significant at the 5% level (prob>0.05).  

Table A.2 shows temporal effects of SLX model. We consider that the rate of 
confirmed cases in the first days increased slightly and it was not statistically 
significant at %5 level. However, for the SLX model, after 3 February 2020 date, the 
rate of confirmed case increases had become statistically significant. The increase in 
the rate of confirmed cases since the beginning of March 2020 has become dramatic. 
So, we contemplate that the confirmed cases on 10 March 2020 compared to 22 January 
2020 date increased by 0.1254 cases in 100,000 people. 
 
4. Conclusion 
Built on the spatial panel data of 31 regions in China from 22 January 2020 to 10 March 
2020, we investigated the influencing variables (the rate of deaths and recovered cases) 
and their spatial spillover effects of COVID-19. Before we built and compared the 
spatial panel data models, we tested the cross-sectional dependence using the Pesaran 
test. We thus found cross-sectional dependence between the units. 

Among the panel data regression models estimated to capture spatial effects, 
the most efficient and consistent model was determined according to the maximum 
pseudo-R2, LR-test, LM-test statistics, and minimum AICc and BIC values. The results 
of the model comparison allowed us to select the SLX from the predicted spatial panel 
data models for interpretation. 

In the SLX model, the spatial effects of the dependent and independent 
variables were examined separately. Specifically, the independent variables effects 
were split into the total, indirect (spatial spillover effects), and direct effects in order to 
improve the identification of the actual impacts and spatial interactions of the factor 
components on COVID-19. 
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We thus draw the following conclusions:  

• As per the total effect, the rate of deaths has significant positive effects, while 
the rate of recovered cases has significant negative effects on COVID-19.  

• As per the direct effect, the rate of deaths has significant positive effects on 
COVID-19. That is, a one-percent increase in the rate of deaths leads to 32% the 
rate of confirmed positive changes. In addition, the recovered cases have 
significant negative effects on COVID-19. That is, a one-percent increases in the 
rate of recovered cases leads to 0.7% confirmed negative changes. 

• As per the indirect effect, the rate of deaths has significant positive effects on 
COVID-19 in the neighbouring region. That is, a one-percent increase in the rate 
of deaths leads to 1.7% confirmed positive changes in the neighbouring regions. 
However, the rate of recovered cases did not have significant negative effects 
on COVID-19. 

• As a result of the temporal effect analysis, the rate of confirmed cases is 
increasing day by day. We compared the date of 22 January 2020 with the date 
of 10 March 2020, the confirmed cases had increased nearly by 0.13 cases per 
100,000 people, in other word, 13 cases per 10,000,000 people. 

 
Some limitations need to be addressed while discussing the results of the 

present study. We cannot model the rate of deaths because of the presence of high 
proportion of zeros. In addition, we consider that the time period is short. Future 
research can be examined with a big dataset.  

In general, this study had provided researchers with information about the 
effects of the spread of the COVID-19 virus. Therefore, the effects of the spread of the 
virus have been addressed both spatially and temporally, and efforts have been made 
to produce information that would be useful to all humanity. 
 
 
 
 
Appendix 
 
Table A.1. COVID-19 Descriptive Statistics in Mainland China 

Region 
10 March 2020 Mean 

Rc Rr Rd Rc Rr Rd 

Hubei 10.7147 7.5495 7.5495 6.4980 2.1258 0.2406 

Guangdong 0.2139 0.2015 0.2015 0.1586 0.0784 0.0005 

Henan 0.2011 0.1972 0.1972 0.1461 0.0839 0.0018 

Zhejiang 0.1921 0.1883 0.1883 0.1460 0.0788 0.0001 

Hunan 0.1610 0.1565 0.1565 0.1195 0.0692 0.0003 

Anhui 0.1565 0.1556 0.1556 0.1122 0.0610 0.0006 

Jiangxi 0.1478 0.1466 0.1466 0.1066 0.0577 0.0001 

Shandong 0.1199 0.1137 0.1137 0.0765 0.0352 0.0004 

Jiangsu 0.0998 0.0991 0.0991 0.0712 0.0402 0.0000 

Chongqing 0.0911 0.0865 0.0865 0.0683 0.0342 0.0006 

Sichuan 0.0852 0.0756 0.0756 0.0603 0.0279 0.0003 

Heilongjiang 0.0761 0.0686 0.0686 0.0507 0.0223 0.0013 
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Beijing 0.0678 0.0506 0.0506 0.0481 0.0201 0.0006 

Shanghai 0.0544 0.0504 0.0504 0.0409 0.0223 0.0003 

Hebei 0.0503 0.0485 0.0485 0.0343 0.0207 0.0005 

Fujian 0.0468 0.0466 0.0466 0.0356 0.0177 0.0001 

Guangxi 0.0398 0.0370 0.0370 0.0293 0.0129 0.0002 

Shaanxi 0.0387 0.0359 0.0359 0.0289 0.0149 0.0001 

Yunnan 0.0275 0.0269 0.0269 0.0211 0.0110 0.0001 

Hainan 0.0266 0.0251 0.0251 0.0196 0.0105 0.0005 

Guizhou 0.0231 0.0204 0.0204 0.0160 0.0083 0.0002 

Tianjin 0.0215 0.0207 0.0207 0.0151 0.0078 0.0003 

Shanxi 0.0210 0.0207 0.0207 0.0157 0.0088 0.0000 

Gansu 0.0198 0.0139 0.0139 0.0115 0.0069 0.0002 

Liaoning 0.0198 0.0176 0.0176 0.0150 0.0072 0.0001 

Jilin 0.0147 0.0144 0.0144 0.0104 0.0057 0.0001 

Xinjiang 0.0120 0.0115 0.0115 0.0082 0.0037 0.0002 

Inner Mongolia 0.0119 0.0111 0.0111 0.0085 0.0034 0.0000 

Ningxia 0.0119 0.0112 0.0112 0.0081 0.0052 0.0000 

Qinghai 0.0028 0.0028 0.0028 0.0023 0.0016 0.0000 

Tibet 0.0002 0.0002 0.0002 0.0001 0.0001 0.0000 

Note: The rates are multiplied by 100,000 

 
Appendix A.2. Temporal Effects of Spatial Panel Model 

 Spatial Panel Models 

Temporal 
Effects 

SLM SAR 
(1) 

SEM 
(2) 

SAC 
(3) 

SLX 
(4) 

SDM 
(5) 

SDEM 
(6) 

22/01/2020 Ref. 

23/01/2020 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 0.0006 

24/01/2020 0.0013 0.0012 0.0013 0.0012 0.0013 0.0013 0.0012 

25/01/2020 0.0026 0.0023 0.0026 0.0022 0.0024 0.0025 0.0024 

26/01/2020 0.0043 0.0039 0.0043 0.0037 0.0041 0.0042 0.0040 

27/01/2020 0.0050 0.0044 0.0051 0.0043 0.0046 0.0049 0.0046 

28/01/2020 0.0105 0.0093 0.0105 0.0092 0.0098 0.0103 0.0098 

29/01/2020 0.0138 0.0124 0.0138 0.0122 0.0131 0.0137 0.0131 

30/01/2020 0.0187 0.0168 0.0187 0.0166 0.0177 0.0186 0.0178 

31/01/2020 0.0225 0.0202 0.0225 0.0199 0.0213 0.0224 0.0213 

01/02/2020 0.0275 0.0246 0.0274* 0.0242 0.0260 0.0272 0.026 

02/02/2020 0.0351** 0.0313* 0.0351** 0.0308** 0.0330* 0.0346** 0.0330** 

03/02/2020 0.0418** 0.0373** 0.0417** 0.0366** 0.0393** 0.0412** 0.0393** 

04/02/2020 0.0516*** 0.0463*** 0.0516*** 0.0455*** 0.0488*** 0.0512*** 0.0487*** 

05/02/2020 0.0594*** 0.0534*** 0.0594*** 0.0524*** 0.0562*** 0.0589*** 0.0561*** 

06/02/2020 0.0660*** 0.0593*** 0.0659*** 0.0582*** 0.0624*** 0.0654*** 0.0622*** 

07/02/2020 0.0716*** 0.0641*** 0.0715*** 0.0631*** 0.0675*** 0.0708*** 0.0674*** 

08/02/2020 0.0743*** 0.0663*** 0.0743*** 0.0651*** 0.0698*** 0.0731*** 0.0697*** 

09/02/2020 0.0756*** 0.0669*** 0.0756*** 0.0659*** 0.0705*** 0.0740*** 0.0705*** 

10/02/2020 0.0759*** 0.0667*** 0.0759*** 0.0655*** 0.0702*** 0.0737*** 0.0702*** 

11/02/2020 0.0747*** 0.0651*** 0.0747*** 0.0638*** 0.0685*** 0.0719*** 0.0684*** 

12/02/2020 0.0782*** 0.0684*** 0.0782*** 0.0672*** 0.0720*** 0.0756*** 0.0720*** 

13/02/2020 0.1051*** 0.0926*** 0.1051*** 0.0911*** 0.0975*** 0.1023*** 0.0975*** 

14/02/2020 0.1161*** 0.1025*** 0.1161*** 0.1008*** 0.1078*** 0.1131*** 0.1078*** 

15/02/2020 0.1127*** 0.0987*** 0.1127*** 0.0969*** 0.1037*** 0.1088*** 0.1036*** 
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16/02/2020 0.1135*** 0.0990*** 0.1134*** 0.0971*** 0.1040*** 0.1091*** 0.1038*** 

17/02/2020 0.1150*** 0.1002*** 0.1150*** 0.0982*** 0.1051*** 0.1103*** 0.1050*** 

18/02/2020 0.1120*** 0.0968*** 0.1119*** 0.0946*** 0.1014*** 0.1064*** 0.1012*** 

19/02/2020 0.1067*** 0.0915*** 0.1066*** 0.0892*** 0.0957*** 0.1004*** 0.0954*** 

20/02/2020 0.1008*** 0.0855*** 0.1007*** 0.0831*** 0.0893*** 0.0937*** 0.0889*** 

21/02/2020 0.1058*** 0.0905*** 0.1057*** 0.0880*** 0.0944*** 0.0991*** 0.0940*** 

22/02/2020 0.0990*** 0.0834*** 0.0988*** 0.0809*** 0.0868*** 0.0911*** 0.0863*** 

23/02/2020 0.1005*** 0.0849*** 0.1004*** 0.0826*** 0.0884*** 0.0928*** 0.0880*** 

24/02/2020 0.0905*** 0.0749*** 0.0904*** 0.0724*** 0.0778*** 0.0817*** 0.0773*** 

25/02/2020 0.0924*** 0.0767*** 0.0923*** 0.0742*** 0.0796*** 0.0835*** 0.0790*** 

26/02/2020 0.0952*** 0.0794*** 0.0950*** 0.0769*** 0.0823*** 0.0864*** 0.0817*** 

27/02/2020 0.1012*** 0.0855*** 0.1011*** 0.0830*** 0.0885*** 0.0929*** 0.0880*** 

28/02/2020 0.1056*** 0.0898*** 0.1055*** 0.0874*** 0.0930*** 0.0975*** 0.0924*** 

29/02/2020 0.1102*** 0.0943*** 0.1100*** 0.0918*** 0.0976*** 0.1023*** 0.0970*** 

01/03/2020 0.1159*** 0.1000*** 0.1158*** 0.0975*** 0.1035*** 0.1084*** 0.1028*** 

02/03/2020 0.1194*** 0.1034*** 0.1192*** 0.1010*** 0.1070*** 0.1121*** 0.1063*** 

03/03/2020 0.1230*** 0.1071*** 0.1229*** 0.1046*** 0.1107*** 0.1160*** 0.1100*** 

04/03/2020 0.1264*** 0.1105*** 0.1263*** 0.1080*** 0.1141*** 0.1196*** 0.1134*** 

05/03/2020 0.1285*** 0.1126*** 0.1285*** 0.1104*** 0.1163*** 0.1219*** 0.1157*** 

06/03/2020 0.1305*** 0.1146*** 0.1305*** 0.1123*** 0.1183*** 0.1240*** 0.1177*** 

07/03/2020 0.1320*** 0.1161*** 0.1320*** 0.1138*** 0.1198*** 0.1255*** 0.1192*** 

08/03/2020 0.1340*** 0.1181*** 0.1340*** 0.1159*** 0.1219*** 0.1277*** 0.1213*** 

09/03/2020 0.1355*** 0.1196*** 0.1354*** 0.1173*** 0.1234*** 0.1292*** 0.1227*** 

10/03/2020 0.1375*** 0.1216*** 0.1374*** 0.1193*** 0.1254*** 0.1314*** 0.1248*** 

Note: The values of the coefficient are multiplied by 100,000 
* p<0.10; ** p<0.05; *** p<0.01 
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