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Abstract: ​Reverse transcription-polymerase chain reaction (RT-PCR) assays are used to          

test patients and key workers for infection with the causative SARS-CoV-2 virus. RT-PCR             

tests are highly specific and the probability of false positives is low, but false negatives can                

occur if the sample contains insufficient quantities of the virus to be successfully amplified              

and detected. The amount of virus in a swab is likely to vary between patients, sample                

location (nasal, throat or sputum) and through time as infection progresses. Here, we             

analyse publicly available data from patients who received multiple RT-PCR tests and were             

identified as SARS-CoV-2 positive at least once. We identify that the probability of a positive               

test decreases with time after symptom onset, with throat samples less likely to yield a               

positive result relative to nasal samples. Empirically derived distributions of the time between             

symptom onset and hospitalisation allowed us to comment on the likely false negative rates              

in cohorts of patients who present for testing at different clinical stages. We further estimate               

the expected numbers of false negative tests in a group of tested individuals and show how                

this is affected by the timing of the tests. Finally, we assessed the robustness of these                

estimates of false negative rates to the probability of false positive tests. This work has               

implications both for the identification of infected patients and for the discharge of             

convalescing patients who are potentially still infectious.  

Introduction 
Currently, most SARS-CoV-2 infected individuals are identified by the successful          

amplification of virus from throat and/or nasal swabs in the          

reverse-transcriptase–polymerase-chain-reaction (RT-PCR) assay. These tests are highly       

specific but there are many reasons why sensitivity is imperfect ​[1]​. Indeed, multiple studies              

have observed negative RT-PCR results on at least 1 occasion for SARS-CoV-2 infected             

individuals ​[1–6]​. Such false-negative results have implications for correct diagnosis ​[7] and            

subsequent community transmission ​[8]​, and thus for control initiatives.  

 

A series of previous studies have described cohorts of tested individuals. Ai et al.​[2]​, for               

instance, retrospectively considered 1014 infected patients of whom 413 (41%) tested           
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negative by RT-PCR at initial presentation. Xie et al. ​[1] similarly considered 167 infected              

patients of whom 5 (3%) tested negative by RT-PCR at initial presentation. Fang et al. ​[3]                

found that RT-PCR was only able to identify 36/51 (71%) of SARS-CoV-2 infected patients              

when using swabs taken 0-6 days after the onset of symptoms, and Luo et al. ​[9] similarly                 

reported that the initial sensitivity of throat swabs in secondary contacts was 71%.             

Meanwhile in a study of 213 patients, Yang et al. ​[4] found lower positive test rates from                 

throat swabs (24%) compared to nasal swabs (57%). 

 

Although these particular studies relate to longitudinal studies of infected patients, the data is              

not disaggregated per patient. Some authors have however presented sequential test data            

from individual patients ​[5,6,10]​. Here we use the latter type of data to characterise how the                

probability of a false-negative test result depends on the number of days between the onset               

of symptoms and the performance of the test and how this is affected by the site from which                  

swabs are taken. We couple this with data on the observed distribution of days from onset of                 

symptoms to confirmation of infection by RT-PCR ​[11] and use Bayes’ Theorem to estimate              

the number of false-negatives in different cohorts of tested individuals, under the assumption             

that they are only tested once; and assess the sensitivity of these results to the specificity of                 

the test. Our results have implications for both existing estimates of SARS-CoV-2 prevalence             

and the likelihood of specific individuals having been infected with the virus or not, where               

these rely solely on RT-PCR tests. 

Methods 

Estimating RT-PCR sensitivity 

We aimed to determine the false negative rate of RT-PCR tests on SARS-CoV-2 infected              

patients. Three studies ​[5,6,10] reported extractable results for longitudinal RT-PCR tests           

from hospital patients who tested positive for COVID-19 at least once. This provided data on               

426 tests across 39 patients in 3 study cohorts. However, only two studies ​[5,10] reported               

the swab location (nasal or throat) for each individual test; we therefore restricted our              

analysis to these data, yielding 298 tests across 30 patients (150 nasal and 148 throat               

swabs). Data were analysed using binomially-distributed (logit-link) generalised additive         

mixed models (GAMM) with the package mgcv in the statistical software R ​[12]​. We tested               

hypotheses that the probability of a positive result will change through time after symptom              

onset, that different swab locations may have different detection probabilities and that each             

study may have a different baseline detection probability (due to, for example, differing             

testing procedures). The effect of the number of days since symptom onset was modelled as               
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a continuous smooth function (cubic regression splines), while swab location and data            

source were included as two-level categorical variables. Random effects were included in            

the form of patient-specific smooth functions, modelling between-patient differences in the           

probability of returning a positive test through time. All of the models we examine included               

this random effect, as patient samples were pseudo-replicated by design. Models were            

compared in a stepwise down procedure from the most complex structure using Akaike             

Information Criterion (AIC). The difference in AIC values (ΔAIC) values were calculated in             

relation to the lowest AIC value.  

Results 

Our most complex model included a smooth effect of day as well as swab type and study                 

specific intercepts, along with the random effect of the patient. The model without swab              

location was not supported (AIC 323.43, ΔAIC = 7.82), nor the model excluding the effect of                

days since symptom onset (397.48, ΔAIC = 68.24). However, the model without a             

study-specific effect was supported (AIC = 316.29, ΔAIC = 0.68), suggesting that the             

baseline probability of detection was consistent between each study cohort. The final model             

structure with the most support contained the fixed effect of swab location, the effect of time                

since symptom onset and the random effect of patient (AIC = 315.61). The full model output                

is given in the supplementary information.  

 

Swabs taken from the throat immediately upon symptom onset were predicted to be 6.39%              

less likely to yield a positive result than a nasal swab (logit-scale effect size -0.83 CI [-1.39,                 

-0.27]). The probability of a positive test decreases with the number of days past symptom               

onset; for a nasal swab, the percentage chance of a positive test declines from 94.39%               

[86.88, 97.73] on day 0 to 67.15% [53.05, 78.85] by day 10. By day 31, there is only a 2.38%                    

[0.60, 9.13] chance of a positive result (numbers for throat swabs: 88% [75.18, 94.62],              

47.11% [32.91, 61.64] and 1.05% [0.24, 4.44] for day 0, 10 and 31 respectively). The model                

fit is shown in Figure 1.  

Visualising the impact of time to test on false-negative test probabilities 

As shown above, the probability of a false-negative test result depends on the number of               

days since symptom onset. This means that simple reports of positive and negative test              

counts among individuals who are only tested once will underestimate the true number of              

positive tests in that group. We can illustrate the potential impact this has on average               

false-negative test rates by supposing that the time from onset of symptoms to testing              

follows a gamma-distribution.  
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Figure 1: ​Model fit of a binomially-distributed GAMM to longitudinal RT-PCR test data. Tick marks               
denote positive (top) and negative (bottom) tests (jittered on the x-axis for visual purposes). The black                
line shows the model fit and blue ribbons the 95% confidence intervals on the fixed effects. The                 
left-hand panel gives results for nasal swabs and the right throat swabs. 
 

Figure 2 explores how varying the shape and rate of this distribution affects the average               

false-negative rate among this group, and highlights that in scenarios where infected            

individuals are typically tested late we anticipate the false-negative rate to be 4 times larger               

than when patients are typically tested early. We also show how the probability of incorrectly               

identifying an individual as uninfected due to a false-negative test considerably reduces if all              

negative tests are repeated 24 hours later. Note that the realised error rate (the actual               

proportion of false negative tests) will be proportional to the underlying prevalence of             

infection; only if everyone in the group is infected would the probability of a false negative                

equal the proportion of negative tests (as there will be no true negatives from uninfected               

individuals).  

Estimating the number of false-negatives in a cohort of tested individuals 

We further demonstrate how the results of Figure 2 might affect testing outcomes in practice.               

Results from Bi et al. ​[11] suggests that the probability of an infected individual getting a                

positive RT-PCR test of SARS-CoV-2 after a given number of days since the onset of               

symptoms follows a gamma distribution with shape 2.12 and rate 0.39 (see Figure 3 and               

Table S2 in ​[11]​). We can use this together with our results and apply Bayes’ Theorem to                 
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recover the distribution of the time from onset of symptoms to getting tested (see              

Supplementary Methods), which ends up as a distribution with a heavier tail because the              

false-negative test probability increases with time. 

 

 

Figure 2. Surfaces showing the aggregate probability of false negative tests (denoted by colour) in               
Gamma-distributed cohorts of people being tested for COVID-19. The x-axis shows the mode of the               
Gamma distribution and the y-axis the standard deviation. The left-hand panel shows the error rate for                
one test, while the second panel shows the error rate for two tests taken 24 hours apart. Illustrative                  
distributions are drawn in the corresponding corners of the first panel (these are the same in the                 
second panel). Each point on the surface is a result of a unique parameterisation of the distribution,                 
with sub-plots ​A​-​D showing illustrative examples at the 4 extremes. ​A gives a scenario where most                
patients are tested early but with a “long-tail” of patients taking a long time to be tested. ​B ​shows a                    
scenario where patients are mainly tested later, with a similarly long tail. Scenarios ​C and ​D ​represent                 
scenarios where patients are consistently tested early or late (with very thin tails).  
 

If we assume further that this distribution is generally representative and does not vary over               

the course of the epidemic, then we can use it to estimate how many infected individuals are                 

incorrectly identified as uninfected among a group of symptomatic tested individuals who are             

only tested once. We can further explore how the false-positive rate affects these estimates              

and illustrate this using the numbers of tests performed and positive test results from the UK                

and South Korea as of 20th March 2020 (UK: 5.1% positive [3277 / 64621 positive tests];                

SK: 2.7% [8652 / 316664 positive tests] ​[13]​). It is important to stress that this exercise is                 

illustrative rather than assertive: we are trying to show how accounting for the false-negative              

and false-positive test probabilities affects the estimate of the number of infected individuals             

among those one has tested, and are making some pretty broad assumptions to do this (e.g.                

all individuals only tested once; that the distribution to test is as we have estimated; that all                 
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those tested are symptomatic) any or all of which is likely to be violated in these datasets.                 

Therefore, we are not making country-specific predictions but are rather presenting a            

sensitivity of scale for the overall impact of accounting for the false-negative and             

false-positive test probabilities.  

 

 

Figure 3: ​Comparison of the discretised distribution of time to confirmation among symptomatic             
individuals from [9] and the distribution of time to test that we estimate, combining this with our                 
estimate of the false-negative test probability from nasal swabs, assuming false-positive tests are             
impossible (see Supplementary Methods). 
 

Keeping this in mind, Figure 4 shows that when the false-positive test probability is very               

small then the estimated number of infections among those tested is increased by around              

30%, but this estimate decreases linearly as the false-positive test probability increases. In             

fact, for some critical (yet small) value for the false-positive test probability, the estimated              

number of infections becomes smaller than the number of positive tests: we end up with               

more false-positives than false-negatives. Moreover, the false positive test probability has a            

bigger impact on the ‘South Korean’ data because a smaller percentage of the original tests               

were positive (this follows directly from the underlying derivations - see Supplementary            

Methods).  

 

Overall this illustrates 3 important things: that for a zero or very small false-positive test               

probability, the true number of infected individuals among those tested will be substantially             

larger than the number of positive tests; that increasing false-positive test probabilities start             

decrease these estimates until they eventually go negative (even for quite small values of              

the false-positive test probability); and that such decreases are more severe in situations             

where the apparent prevalence among those tested is lower. 
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Figure 4: ​(A) Impact of the false-positive and false-negative test probability on the estimated total               
number of infected individuals among those tested in South Korea (red) and the UK (blue); dashed                
line corresponds to number of positive tests conducted as of 20th March 2020. ​(B) ​Similar, but now                 
showing the percentage change from the number of positive tests to the estimated number of cases.                
Note that in both cases the x-axis refers to a percentage i.e. 1 = 1%, not 100%. 
 

Discussion 

On its own, testing throat and nasal swabs by RT-PCR is not guaranteed to yield a positive                 

result for SARS-CoV-2 infection and this probability decreases with time since the onset of              

symptoms. In other words, the longer the time from the onset of symptoms until a suspected                

case is tested, the more likely a false-negative result. Repeat testing of suspected but              

RT-PCR negative infections drastically decreases the chances of failing to identify infected            

individuals by this method, but may not always be feasible. 
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Meanwhile, failing to account for the possibility of false-negative tests potentially biases            

upwards many of the existing estimates for case and infection fatality risks of SARS-CoV-2              

e.g. where they rely on perfect sensitivity among international travellers ​[14,15]​. 

 

On the other hand, we also show how even small false-positive test probabilities can have               

an opposite impact on any assessment of the “true” number of infections in a tested cohort                

and hence bias case and infection fatality risk estimates in the opposite direction. Better              

understanding of the false-positive test probability and accounting for precisely when and            

how individuals have been tested would therefore improve the quality of any estimates that              

rely on the number of positive tests in a cohort of tested individuals.  

 

Our results have important implications for SARS-CoV-2 testing strategies. Presently,          

RT-PCR testing regimes vary significantly between countries, determined both by policy           

decisions and testing capacity. Some opt (or, rather, are able to) test large portions of the                

population, including those who are asymptomatic or self-isolating with mild symptoms. In            

countries such as South Korea, where testing has been thorough, the distribution of test              

timing will be crucial; if many of those tested were infected some time ago but only had mild                  

or asymptomatic infections (and therefore did not present for treatment), they will be more              

likely to return a false negative result. In countries that do not currently have mass testing,                

there are calls for testing to be expanded to the population at large with the aim of                 

determining how many people have, or have recently had, infection. While RT-PCR testing             

of key workers will be of great importance (particularly those working with vulnerable             

groups), our results suggest that there may be some benefit to testing indiscriminately;             

conducting a single test on someone who had symptoms 10 days ago will have a nearly                

33% false negative rate (using a nasal swab; 52.89% for a throat swab). As a means of                 

determining population level exposure to SARS-CoV-2, serological tests are far more likely            

to provide an accurate profile.  

 

In almost all countries, tests will be conducted on patients presenting with symptoms at a               

hospital in order to streamline treatment and prevent further infection. We do not suggest              

that the problem of false negatives is under appreciated by medical professionals; it is              

presently recognised by both the guidelines from the World Health Organisation (WHO) ​[16]             

and the European Centre for Disease Control (ECDC)​[17] that a single negative test is              

insufficient to rule out infection, with discharge criteria stating that a patient should only be               

released if two repeat tests return negative results. Early in the outbreak, doctors used CT to                

look for evidence of SARS-CoV-2 in symptomatic patients who returned a negative result,             
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minimising the risk of false negatives. We also note that RT-PCR tests will return positive               

results even if the virus is inert - only by culturing the sample is it possible to verify that a                    

patient is truly infectious 16s]. Residual virus genetic material will not pose a risk when               

releasing convalescing patients after false negative tests.  

 

In conclusion, we demonstrate how the sensitivity of the RT-PCR assay for detecting             

SARS-CoV-2 infection depends on the time from the onset of symptoms in symptomatic             

individuals, and show how nasal swabs appear more sensitive than throat swabs. In the              

absence of other testing procedures, this has implications for clinical decisions about            

treatment, and decisions about who needs to be quarantined or can be released safely into               

the community. We also illustrate how, assuming that the false positive test probability is              

negligible, the count of positive tests underestimates the count of infected individuals in a              

group of tested individuals, which in turn has implications for estimates of case and infection               

fatality risks in the wider population. However, if the false-positive test probability is             

non-zero, then values as low as 0.5% - 1% could mean that the true prevalence among                

those tested is lower than suggested by the naive count of positive tests.  

Limitations 

First, more data exists than we have been able to analyse. Many of the studies cited here (&                  

others - e.g. ​[18]​) have more longitudinal data from more patients but which is not currently                

publicly available, or not disaggregated by swab type. Inclusion of this data would provide              

superior estimates, in particular if it is disaggregated into tests done from different samples              

via different routes in the same patient. Moreover, explicit reporting of dates when tests are               

performed in all patients (& not just those who test positive) would be especially useful to                

any subsequent similar analyses for SARS-CoV-2 or other emerging viruses. 

 

Second, we have attempted to account for possible differences among labs performing            

RT-PCR tests and although we do not find any evidence here in favour of this being                

relevant, nor is there enough evidence to rule it out based on this alone. There may also be                  

variation in terms of the gene that is targeted by RT-PCR, which we have also not been able                  

to consider. Although we hope our results are broadly representative, they may not capture              

the full extent of variation as test protocol and testing laboratory vary. 

 

Third, we have attempted to account for possible differences among patients in their             

sensitivity to the test. In reality, one might expect this to be related to either the underlying                 

severity of the infection or, at least, viral load, neither of which we have been able to assess                  
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with the available data. Furthermore, the data here all comes from symptomatic patients and              

it could be that the test is less sensitive in asymptomatic individuals, not least because there                

is no onset of symptoms and it is therefore unclear from which baseline test sensitivity               

should be measured. On the other hand, a recent Italian study offered evidence that, among               

those testing positive, viral loads were equivalent in symptomatic and asymptomatic           

individuals ​[19]​. This does not show, however, that viral loads are the same in both groups,                

but that they are equivalent conditional on a positive test, which is what we might expect if                 

the probability of a positive test is indeed linked to viral load. If this is true, then it could be                    

that many asymptomatically infected individuals are asymptomatic because their immune          

system managed to check viral replication early on in their infection and viral loads sufficient               

to result in a positive test were not achieved. If true, however, this might be difficult to square                  

with the apparent transmission potential of asymptomatic individuals ​[20]​. Better          

understanding of the sensitivity of the test in asymptomatic individuals is of paramount             

importance. 

 

Fourth, when estimating the true number of positives in a cohort of tested individuals we               

have to additionally assume that the distribution of the time to test is the same as we infer                  

from our results here and the distribution of time to confirmation in Guangdong (Bi et al.                

[11]​). Even if this distribution is broadly representative from country to country, it may not be                

consistent over time. For example, as testing capacity gets stretched, the time to test may               

increase and so too the probability of a consequent false-negative. These particular results             

should therefore be taken as indicative rather than authoritative. Furthermore, these results            

only relate to the cohort of tested individuals rather than the population at large: they say                

nothing about the prevalence of the virus among those not tested. That said, individual              

hospitals, testing centres or studies will know the timings of their tests and can use this in                 

conjunction with this paper to assess how likely any one test is to represent a false-negative.  
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Supplementary Material 

Estimating the false-negative error rate in cohorts of tested individuals  

Using the GAMM model, we estimated the aggregate false negative rate for hypothetical cohorts of               

tested patients. To do this, we considered a range of Gamma distributions as parameterised by the                

mode and standard deviation. These distributions were used to describe the time between the onset               

of symptoms and patients being tested. The shape (S) and rate (R) parameters were written as                

functions of the mode (M) and standard deviation ( ) ​[21]​:σ  

 R =
2σ2

 M  + √(M + 4σ )2 2

 

 R  S = 1 + M  
We explored arrival time distributions with modes ranging from 0.1 to 5 days and standard deviations                

ranging from 0.5 to 5. We discretised the arrival time distribution ( ) to give the proportion of           (x)Γ       

patients in a cohort being tested on a given day. These fractions were then multiplied by the estimated                  

probability of a false negative predicted by the GAMM function (f(x)) for a single nasal swab on that                  

day; summing these together gives the aggregate false negative rate (​P(Neg|Inf)​) for cohorts tested              

according to this particular arrival time distribution. To get the probability of 2 false-negatives 1 day                

apart, we simply took the product f(x).f(x+1) and used this in place of f(x).  

Estimating the time to test 

Let 

●  correspond to being tested on day iτ i  

●  correspond to having a positive test resultψ  

● correspond to being infectedη  

Then  

(τ ∩ η) P i = P (ψ |τ ∩ η)i

 P (τ  ∩ η | ψ) × P (ψ)i   

Now if we assume the test has perfect sensitivity then since all          (τ ∩ η | ψ) (τ | ψ)  P i ≡ P i    

individuals with positive tests must be infected, and so we estimate this for each day using                

the distribution of time to positive test results for symptomatic individuals from Bi et al. ​[11] (a                 

gamma distribution with shape 2.12 and rate 0.39). We discretise this distribution (such that              

[0, 0.5) corresponds to 0 days from symptom onset, [0.5, 1.5) corresponds to 1 day after                

symptom onset etc) and truncate it to 31 days, which is the maximum number of days from                 
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symptom onset present in the data we analyse. This truncation has no practical impact              

because > 99.99% of the density of this particular gamma distribution is accounted for at this                

point. 

 

Meanwhile is the probability of a positive test result for infected individuals given (ψ |τ  ∩ η)  P i              

the day of the test, which is exactly what we estimate in this study. Of course, is                (ψ)  P   

unknown. This gives us but as we are assuming that individuals are tested only    (τ  ∩ η)  P i            

once then for which means that we can easily retrieve:τ  ∩τ  {∅}   i j =  i =   / j  

(τ ) (τ  ∩ η) / (τ  ∩ η) P i = P i ∑
 

j
P j  

and then the unknown  appears in every term on the RHS and so vanishes.(ψ)  P   

Estimating the true prevalence in a cohort of tested individuals 

Supposing that all tests were performed the same number of days after symptom onset; let’s               

define: 

●  as the (unknown) true prevalence among those testedα  

●  as the false-positive rate i.e. P(positive test | uninfected)β  

●  as the false-negative rate for tests done on that day i.e. P(negative test | infected)γ  

● T​ is the total number of tests done on that day, of which a fraction q are positive 

Then the true prevalence among those tested for infection is equal to the sum of (a)                

P(infected|positive test) multiplied by the number of positive tests and (b) P(infected|            

negative test) multiplied by the number of negative tests (i.e sum of the true positives and                

false negatives). These conditional probabilities can be separately rearranged via Bayes’           

Theorem and then added together to give: 

T  qT   (1 )T  α =  α(1−γ)
α(1−γ) + (1−α)β +  − q αγ

α + (1−α)(1−β)  

 

If we rearrange this as a quadratic in alpha then we discover it has 2 roots:  

 α = q −β
1 −γ −β  

 α = 1  
And so the first root allows us to estimate the true prevalence among the test cohort, while                 

accounting for the false-negative test probability for those tested on that day. 
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In reality, however, individuals are tested on different days on which the false negative test               

probability depends, which makes it much harder to estimate 𝛂 in this way. One way it can                 

be done is to use the distribution for time to test to calculate the average false-negative test                 

probability across all tests conducted, again assuming that all tests are done by nasal swab -                

here this gives a false-negative test probability of 23.1%. If we do this, then we can still apply                  

the same equations as above and explore how accounting for the false-negative and             

false-positive test probabilities affects the consequent estimates of the true prevalence           

among those tested, which we illustrate for some different scenarios. Importantly, this only             

tells us about prevalence in the test cohort and not in the wider population i.e. this does                 

nothing to correct for not finding and not testing mild/asymptomatic cases. 

Summary model output 

This is a representation of the fitted values in the final model for test sensitivity as returned                 

by mgcv::summary in R: 

 
Predictors Estimate SE p df (edf for smooth) 

Intercept (inc. Nasal swab) 1.59 0.29 0.115 - 

Swab type (Throat) 0.44 0.28 0.004 1 

Smooth term (Days since symptom onset) -  <0.001 0.98 

RE Smooth term (Patient) -  <0.001 17.66 

Observations 298 

R​2​ adj 0.37 

AIC 317.96 
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