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Abstract – COVID-19 has spread in all continents in a span of just over three months, escalating 
into a pandemic that poses several humanitarian as well as scientific challenges. We here 
investigated the geographical expansion of the infection and correlate it with the annual indexes of 
air quality observed from the Sentinel-5 satellite orbiting around China, Italy and the U.S.A. 
Controlling for population size, we find more viral infections in those areas afflicted by Carbon 
Monoxide (CO) and Nitrogen Dioxide (NO2). Higher mortality was also correlated with poor air 
quality, namely with high PM2.5, CO and NO2 values. In Italy, the correspondence between poor air 
quality and SARS-CoV-2 appearance and induced mortality was the starkest. Similar to smoking, 
people living in polluted areas are more vulnerable to SARS-CoV-2 infections and induced mortality. 
This further suggests the detrimental impact climate change will have on the trajectory of future 
epidemics. 
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Significance – We found a significant correlation between levels of air quality and COVID-19 spread 
and mortality in China, Italy and the United States. Despite the infection being still ongoing at a global 
level, these correlations are relatively robust not being influenced by varying population densities. 
Living in an area with low air quality seems to be a risk factor for becoming infected and dying from 
this new form of coronavirus. 
 
 

1. Introduction 

From the first detected outbreak of a new 
member of the coronavirus (CoV) family1 in 
Wuhan, Hubei Province, China2,3, SARS-CoV-24 
has rapidly spread around the world5, with 
governments and institutions showing mixed 
results in its effective containment6. Certain 
regions have been much more adversely 
impacted in terms of the rate of infections and 
mortality rates than others, and the full reasons 
for this are not yet clear. This paper shows 
preliminary, yet compelling evidence of a 
correlation between air pollution and incidence 
of COVID-19 in China, Italy and the United 
States. 

Air pollution is notoriously known to cause 
health problems, and, in particular, respiratory 
diseases, to individuals exposed for longer than 

several days per year7-10. Moreover, pollutants in 
the air are a significant underlying contributors to 
the emergence of respiratory viral infections11. In 
particular, PM10 and PM2.5 have been linked to 
respiratory disease hospitalisations for 
pneumonia and chronic pulmonary diseases12-18. 
There is some further experimental evidence 
that emissions from diesel and coal affect the 
lungs, causing pathological immune response 
and inflammations19,20. 

Airborne microorganisms can directly infect 
other people’s mucosae or travel further into the 
air and onto surfaces causing delayed infections. 
The particles of several pollutants such as PM 
and NO2 can act as a vector for the spread and 
extended survival in the air of bioaerosols21-26 
including viruses27-31. A first hypothesis in this 
direction has arisen for COVID-19 in Northern 
Italy32 – granted that the viral load in a flying 
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aggregate can be enough to cause morbidity. 
Several risk factors have been implicated 

with the fast spread of the virus, including super 
spread events33,34. Its further spread to different 
countries has been attributed to air travellers35-

37,6,38-42. A number of personal risk factors have 
further been implicated with higher morbidity and 
mortality rates of Covid-19, including male 
gender and smoking status. In particular, 
smoking has been associated with a higher 
morbidity and mortality of COVID-19 in men than 
in women43. 

However, the very first appearance of the 
virus cannot be directly correlated with one of 
these predictors, since, like the other SARS 
coronaviruses, SARS-CoV-2 is alleged to have 
transferred host from the originating bats to 
humans44. However, it still appeared in a 
Chinese area affected by some of the highest air 
pollution in the world, and it showed a relatively 
high virulence there. 

The strong containment measures adopted 
firstly by the Chinese government have 
necessarily biased the natural virus spread45, not 
allowing the virus to distribute evenly to polluted 
and non-polluted areas of the country. As a 
result, these measures have been highly 
effective46. This applies also to those other 
countries where similar effective containment 
measures were taken at the earlier stages of the 
outbreaks47. There is nevertheless mounting 
evidence that the outbreaks went undetected for 
weeks, as in the case of northern Italy, imputed 
to be as early as 1 January 2020 and not as the 
first case registered on 20 February 202048. This 
latter element may mitigate the role that the 
containment measures had at containing the 
diffusion of the virus, leading to air pollution 
playing a more relevant role in the incidence of 
the virus. 

Together with smoking, several others are the 
predictor variables ascribed to the incidence of 
COVID-19. 

A high population density is the first 
predictor variable for the virus spread, but it 
cannot be a predictor for a higher virulence and 
a higher mortality49. For instance, in Italy50, the 
metropolis of Milan was not as affected as the 
inhabited surrounding areas with lower density51. 

Another evident predictor variable is 
transportation. The surrounding areas of 
transport hubs such as airports and large train 
stations should witness the appearance of the 
virus earlier than other geographical areas and 
they act as transmission hubs52-56. 

The temperate-climate latitudes have been 
identified as the probable areas to be mostly 
affected by COVID-1957 due to a limited 
exposure to UV light in winter. The sole 
temperature58,59 or humidity60 appear to play less 
of a role. Indeed, other human coronaviruses 
(HCoV-229E, HCoV-HKU1, HCoV-NL63, and 
HCoV-OC43) appear between December and 
April, and are undetectable in summer months in 
temperate regions, leading to winter seasonality 
behaviour. 

One factor that has so far been overlooked is 
the role of air pollution in the spread and 
mortality rates of COVID-19. Air pollution has 
been shown to be strongly associated with high 
incidence of other respiratory 
infections12,13,7,14,15,11,10,16-18 and higher mortality 
rates8,9. 

Here we investigate whether there is a 
correlation between air pollution and air-borne 
SARS-CoV-2 causing respiratory diseases in 
China, Italy61 and the United States. Our 
hypotheses were: 

Hyp 1: Is there a higher incidence of COVID-
19 in highly polluted areas? 

Hyp 2: Is there a higher COVID-19 mortality 
rate in highly polluted areas? 

 

2. Methods 

For the time being, we renounced at 
performing a comparative study at a worldwide 
scale, due to significant differences in the 
coverage and compiling methodology of the 
COVID-19 infections and deaths among 
countries. Instead, we selected three countries 
particularly affected by the virus, and evaluated 
the potential correlation between air quality 
metrics and infections at the most detailed level 
of data available. Results for each country were 
analysed separately. China (including Taiwan, 
Hong Kong and Macau) was chosen because of 
its large size and now advanced stage of its 
epidemic, well into the recovery phase. The 
second choice was Italy, at the time of writing the 
most heavily affected country of the world, just 
passed the peak of contagion. The area with the 
largest number of infections and deaths in Italy 
is the Po Valley, which is also the foremost place 
of polluted air in Europe62. The third country 
investigated was the conterminous U.S.A., 
which currently has the highest number of cases 
worldwide, yet is still at an early stage of the 
pandemic due to its later arrival as compared to 
Asia and Europe. 
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2.1 Data collection 

The dataset was compiled at the second-level 
administrative subdivision, which corresponds to 
prefectures for China, provinces for Italy and 
counties for the U.S.A. Both cases and deaths 
due to COVID-19 were collected and normalised 
by population size (100,000 residents). Air 
quality information came from two kinds of 
sources: measured values from ground 
monitoring stations and Sentinel-5 satellite data. 
The latest available annual means of measured 
PM2.5 and PM10 values were retrieved from the 
World Health Organization Global Ambient Air 
Quality Database of 201863 and used for the 
Italian case study because of extensive 
coverage. For China, we used aggregated 
monthly air quality data for the years 2014 to 
2016, made available by the Center for 
Geographic Analysis Dataverse of the University 
of Harvard64. For the conterminous U.S.A., 
summary data on several pollutants for the year 
2019 was retrieved from the United States 

Environmental Protection Agency65. To every 
administrative unit we assigned the air quality 
value from its related station. If more than one 
point fell within a given unit, the mean was 
calculated. These three datasets were used for 
the analysis but also to validate the air quality 
data derived from satellite imagery. The 
Sentinel-5 mission from the Copernicus program 
of the European Space Agency was launched in 
October 2017 and was specifically designed to 
provide coherent information on atmospheric 
variables for air quality, ozone and climate66. By 
means of the Google Earth Engine platform67 
which provides open-access satellite data 
organized in time-series, we retrieved 6 different 
datasets derived from Sentinel-5 series. These 
variables were the UV Aerosol Index, Carbon 
Monoxide (CO), Formaldehyde (HCHO), 
Nitrogen Dioxide (NO2), Ozone (O3), and 
Sulphur Dioxide (SO2). Every time-series was 
processed to obtain the annual mean of the year 
2019 and we calculated the mean of all grid cells 
covering every administrative unit. 

Table 1 summarises the datasets used:
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Table 1 The datasets used for the viral and pollution analyses. 

 Measuring 
Unit 

Time 
period 

Format Source 

COVID-19   

China 
No. of cases, 
No. of deaths 

Updated on 
2020.03.24 

Tabular 
Prefecture level 

DXY - DX Doctor: 
http://ncov.dxy.cn/ncovh5/view/en_pneu
monia 
Chinese government health commission 

Italy No. of cases  
Updated on 
2020.03.23 

Tabular 
Province level 

Github repository : 
https://github.com/pcm-dpc/COVID-19 
Dipartimento della Protezione Civile: 
http://www.protezionecivile.it/ 

U.S.A. 
No. of cases, 
No. of deaths 

Updated on 
2020.03.29 

Tabular 
County level 

The New York Times Github repository: 
https://github.com/nytimes/covid-19-data 

Population     

China 

No. of 
residents 

Estimates 
from 2017 

Tabular 
Prefecture level 

https://www.citypopulation.de/ 
Data from Province Governments 

Italy 2019 
Tabular 
Province level 

Istat – Italian National Institute of Statistics 
http://dati.istat.it/ 

U.S.A. 
Estimates 
from 2018 

Tabular 
County level 

ESRI ArcGIS data: 
https://www.arcgis.com/home/item.html?i
d=a00d6b6149b34ed3b833e10fb72ef47
b 
Data from U.S. Census Bureau 

Air Quality (ground measures)   

China 
PM2.5, PM10, 
O3, NO2, SO2, 
CO 

AQI 2014 
Tabular 
GPS points 

University of Harvard Dataverse: 
https://dataverse.harvard.edu 
Data from http://aqicn.org 

Italy 
PM2.5, PM10 

ug/m3 
Annual 
2013-2016 

Tabular 
Location name 

Ambient Air Quality Database, WHO, April 
2018 
https://www.who.int/airpollution/data/citie
s/en/ 

U.S.A. 
PM2.5, PM10, 
O3, NO2, SO2, 
CO 

ug/m3 
ppm, ppb 

2019 
Tabular 
GPS points 

EPA – United States Environmental 
Protection Agency 
https://www.epa.gov/outdoor-air-quality-
data 

Air Quality (satellite)   

UV Aerosol 
Index 

Qualitative 
Index 

2019 
Continuous grid 
(0.01 arc 
degrees) 

Sentinel-5 Atmospheric variables 
https://developers.google.com/earth-
engine/datasets/tags/air-quality 

CO mol/m^2 

HCHO mol/m^2 

NO2 mol/m^2 

O3 mol/m^2 

SO2 mol/m^2 
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2.2 Data Analysis 

Skewness and Kurtosis were calculated for 
each variable to evaluate the normality of the 
distributions. Pearson and Kendall correlation 
matrices were produced and the corresponding 
coefficients were analysed according to the 
distribution type. We were particularly interested 
in the following relationships: 

 COVID-19 cases / 100,000 habitants vs. 

single air pollution variables; 

 COVID-19 deaths / 100,000 habitants vs. 

single air pollution variables; 

 Correlation between ground-measured 

pollution values vs. satellite-derived values. 

Satellite data should in fact be more 

advantageous than ground station data, 

because of their regular and continuous 

data acquisition, quasi-global coverage, and 

spatially consistent measurement 

methodology. On the other hand, ground 

stations offer real measures of single 

pollutants instead of deriving it from spectral 

information (satellites), however, they 

require more or less arbitrary estimations 

(such as interpolation) to fill spatial gaps. 

Thematic maps for visual interpretation were 
produced to better highlight the potential air 
quality and COVID-19 distributions within the 
three assessed countries. 

 

3. Results 

The main dependent variables for our study, 
namely the number of COVID-19 cases per 
100,000 inhabitants and the mortality rate (no. of 
deaths/no. of cases) presented both highly 
skewed distributions in the three countries that 
we analysed. However, by setting the reference 
value range between -1.96 and 1.96 for both 
skewness and kurtosis, several of the air quality 
variables showed fairly normal distributions 
(Table 2). For the following correlation results, 
we report both Pearson’s Rho and Kendall’s Tau 
coefficients, and highlight the most suitable one 
according to the distribution of the variables. 

 

 China Italy U.S.A. 

 Skew. Kurt. Skew. Kurt. Skew. Kurt. 

cases_100k 14.02 224.34 3.01 10.22 12.83 243.19 

mortality 4.77 31.05 - - 11.17 139.41 

Aerosol_sat 0.63 1.51 1.72 5.28 0.68 0.63 

CO_sat -0.91 0.18 -1.07 2.63 -1.84 3.85 

HCHO_sat -0.63 -0.27 -1.00 2.84 -0.33 0.23 

NO2_sat 1.13 0.8 1.68 3.45 2.94 21.70 

O3_sat 0.42 -0.77 -0.80 -0.08 -0.14 -0.94 

SO2_sat 1.29 2.77 4.89 30.16 0.73 4.06 

PM25_ground 0 0.02 0.44 -0.32 -0.17 0.35 

PM10_ground 0.94 1.73 0.70 0.14 1.25 2.69 

CO_ground 1.15 1.85 - - 0.29 1.01 

NO2_ground 0.27 -0.55 - - 0.36 -0.51 

O3_ground 0.55 0.48 - - -0.27 1.42 

SO2_ground 1.08 0.67 - - 8.87 103.49 

Table 2 Skewness and Kurtosis values for the distribution of the analysed variables. 
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3.1 Comparison of satellite-derived data with 
ground measures 

The data collected for China and the U.S.A. 
allowed for a comparison between some of the 
satellite-derived air pollution variables with 
ground stations measures, namely CO, NO2, O3, 

and SO2 (Table 3). The strongest correlation was 
found in the NO2 values, both in China and in the 
U.S.A. Carbon Dioxide and SO2 also showed 
significant agreement in China, while in the 
U.S.A. no correlation was found for SO2. In both 
countries, the Ozone values did not show a 
significant correlation.

 China USA 

  df (N-2) rho p-value tau p-value df (N-2) rho p-value tau p-value 

CO 306 .12 0.039 .12 0.002 158 .23 .004 .13 .015 

NO2 306 .73 0.000 .54 0.000 247 .63 .000 .45 .000 

O3 306 -.05 0.410 -.03 0.442 752 -.06 .076 -.11 .000 

SO2 306 .61 0.000 .40 0.000 315 .02 .661 -.06 .139 

Table 3 Correlations between satellite-derived values and ground measures. Greyed cells indicate the more 

adequate statistical test according to data distributions (Table 2) and the chosen range between -1.96 and 

1.96 for both skewness and kurtosis.

3.2 Correlation between air pollution 
variables with COVID-19 infections and 
mortality 

Significant positive correlations between 
COVID-19 infections and air quality variables 
were found in each country (Table 4 and Graph 
1 for NO2). In China, the strongest correlation 
was given by the satellite-derived CO values 
while in Italy and the U.S.A., the highest values 
were those of NO2 from satellite and ground 

measures, respectively. In general, Carbon 
Monoxide (CO), Formaldehyde (HCHO) and 
Nitrogen Dioxide (NO2) were positively 
correlated with COVID-19 cases, as well as 
particulate matter, especially PM2.5. Aerosol 
Index and SO2 show ambiguous behaviours, 
sometimes negatively correlated, and other 
times not significantly correlated. Likewise, 
Ozone shows a relatively strong positive 
correlation in Italy while it is negative in China 
and the U.S.A. 

cases_100k 
China Italy USA 

df (N-
2) tau p-value df (N-2) tau p-value df (N-2) tau p-value 

Aerosol_sat 345 .01 .797 105 -0.1 .000 3106 -.12 .000 

CO_sat 345 .34 .000 105 0.15 .024 3106 .14 .000 

HCHO_sat 345 .13 .001 105 0.18 .007 3106 .04 .006 

NO2_sat 345 .12 .004 105 0.52 .000 3106 .20 .000 

O3_sat 345 -.16 .000 105 0.35 .000 3106 -.06 .000 

SO2_sat 345 -.14 .001 105 -0.1 .323 3106 .00 .863 

PM2.5_ground 302 .13 .003 88 0.31 .000 428 .08 .014 

PM10_ground 302 .01 .833 99 0.13 .062 201 .14 .004 

CO_ground 302 -.04 .380 - - - 158 .16 .004 

NO2_ground 302 .07 .091 - - - 247 .33 .000 

O3_ground 302 -.02 .683 - - - 752 -.06 .009 

SO2_ground 302 -.06 .173 - - - 315 -.17 .000 

Table 4 Correlation between COVID-19 cases per 100,000 inhabitants and air quality variables.

The mortality rate shows similar results to 
the COVID-19 infections (Table 5). 

In fact, there is a clear positive correlation with 
air quality variables, in particular with PM2.5 and 
CO in China, and with CO and NO2 in the U.S.A. 
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Mortality 
China USA 

df (N-2) tau p-value df (N-2) tau p-value 

Aerosol_sat 345 .05 .276 3106 -.07 .000 

CO_sat 345 .18 .000 3106 .09 .000 

HCHO_sat 345 .16 .000 3106 .03 .030 

NO2_sat 345 .10 .019 3106 .19 .000 

O3_sat 345 .01 .885 3106 -.03 .041 

SO2_sat 345 .00 .933 3106 .01 .532 

PM2.5_ground 302 .19 .000 428 .14 .000 

PM10_ground 302 .14 .002 201 .13 .017 

CO_ground 302 .12 .006 158 .26 .000 

NO2_ground 302 .12 .005 247 .27 .000 

O3_ground 302 -.04 .396 752 -.06 .022 

SO2_ground 302 .07 .097 315 -.10 .022 

Table 5 Correlation between mortality rate and air quality variables (the mortality data for Italy were not 

publicly available at the comparable level of detail at the time of writing). 

 

 
Graph 1 Scatter plot of COVID-19 total cases (controlled for population density) and satellite NO2 
concentrations for the three countries. Compared to China and the U.S.A., Italy exhibits the most infections 
per capita correlated with increasing levels of air pollution. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2020. .https://doi.org/10.1101/2020.04.04.20053595doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.04.20053595
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 8 of 17 

 

3.3 COVID-19 cases and air quality maps 

 

 

Figure 1 Map of COVID-19 total cases (controlled for population density) and NO2 concentrations in the P.R. 

of China. 

The COVID-19 and air pollution maps for 
China were drawn with 10 and 6 classes, 

respectively. In the first case, we had to manually 
set the thresholds for the classes in order to 
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obtain the best result. Due to the very large 
population and an apparently effective policy for 
the containment of the virus, the number of 
cases per 100,000 residents were relatively low 
and highly concentrated in the epicentre of the 
outbreak (the prefectures in the Hubei province). 

The CO map was drawn using the equal count 
classification method (same number of features 
in each class). A visual correlation between the 
two maps can be perceived, especially between 
the eastern and western parts of the country. 

 

Figure 2 Map of COVID-19 total cases (controlled for population density) and NO2 concentrations in Italy. 

Both maps for Italy were drawn by using a 
Natural Breaks classification method still with 10 

and 6 classes, respectively, which highlights the 
heaviest affected areas by COVID-19 and NO2 
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in the northern regions. 

 

Figure 3 Map of COVID-19 total cases (controlled for population density) and NO2 concentrations in the U.S.A.

The U.S.A. COVID-19 maps respect the 
classification method employed for China. Here 
the virus noticeably appears more widespread 
over the country’s territory. The highest values 
are found in more polluted areas. The NO2 map, 

instead, follows the classification method used in 
Italy. 

By comparing the three countries, it seems 
that Italy faces a more critical problem of NO2 
pollution during the year 2019, relative to its size.  
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4. Discussion 

This study is the first to empirically investigate 
air pollution for three countries as a potential risk 
factor for the incidence and mortality rates of 
COVID-19. It provides preliminary evidence that 
COVID-19 cases are most often found in highly 
polluted areas of China, Italy and the United 
States regardless of population density. In 
addition, in these areas of low air quality, the 
virus kills more often than elsewhere. 

The interpretation of these findings has to be 
necessary cautious, as the virus spread 
especially in Italy and the United States is still 
ongoing68 and is being contained48. However, it 
is remarkable that we obtained consistent 
significant correlations between air pollution 
variables and risk factors for COVID-19, despite 
varying population densities within and between 
the countries. By controlling for the number of 
infections per 100,000 habitants, we found 
statistically significant, positive correlations 
between COVID-19 infections and low air quality 
in each of the three assessed countries.  

In 2020, in China, in Italy and in the Unites 
States we found more infections in those areas 
afflicted by Carbon Monoxide, formaldehyde, 
Nitrogen Dioxide, and PM2.5. In Italy, also the 
Ozone variable was strongly correlated. In Hubei 
province, a brand new time analysis gives 
preliminary evidence of a correlation between 
NO2 high levels and 12-day delayed virus 
outbreaks. 

Infected people were more likely to die in the 
Chinese, Italian, and American areas with poor 
air quality, regardless of the higher number of 
cases. Our mortality ratio was higher and in 
particular so in China, where PM2.5 and CO 
were at levels considered unhealthy, and in the 
U.S.A. where CO and NO2 were higher than the 
average. In the U.S.A., levels of PM2.5 have just 
been found responsible for 20-time higher 
mortality rate by COVID-19, a rate much higher 
than other demographic co-variables69. We 
found that in Italy, the correspondence between 
poor air quality and SARS-CoV-2 appearance 
and its induced mortality was the starkest. It 
should be noted that the Italian higher mortality 
than the one predicted from mathematical 
modelling is unlikely caused by genetic 
mutations of the virus70. Therefore, other factors 
must be attributed to such a stronger virulence. 
We still need to obtain the Italian mortality data 
at the small administrative level, but pollution 
seems to be one of the suitable predictors. 

We were able to validate this methodology, 
since the series of variables we took into 
account were correlated with each other. In 
particular, Carbon Monoxide (CO), 
Formaldehyde (HCHO) and Nitrogen Dioxide 
(NO2) were correlated, as well as particulate 
matter, especially PM2.5. Satellite NO2 and CO 
are suitable representatives for general air 
quality71, since they are more consistent than 
ground station data, providing finer detail, 
consistency, accuracy, with virtually no errors of 
counterfeits. They are also to a certain extent 
less prone to biases from weather conditions58 of 
wind and greenhouse effect of temperature 
inversion, in turn also related to air pollution. 

We used annual means, which only partially 
represent the real emission of pollutants during 
the year and do not make evident seasonal 
variations and other fluctuations. However, our 
aim was to highlight differences in air quality 
within a country’s region and show the 
correlation with the virus. Therefore, threshold 
values of air pollution cannot be inferred from 
this study. 

Since we have now some first evidence that 
the cross of the virus from animals to humans 
may have happened years earlier than the end 
of 2019 in the Chinese city of Wuhan44, we can 
speculate that air pollution could have played a 
role in gradually exacerbating morbidity and 
mortality, mutating the virus from an initial 
evolutionary stage not causing any more serious 
morbidity than a cold, to becoming so 
threatening to humans. 

In the unlikely case that the figures provided 
by the states in relation to number of infections 
and deaths are inaccurate72, our analyses and 
conclusions would not need to be reframed. If 
that is the case, this error will most likely be 
concentrated in just one or very few 
administrations and it would not affect our very 
large correlational dataset. 

The possibly large proportion of 
asymptomatic cases has been implied as an 
important factor in the fast spread of the virus 
and will necessarily lead to a biased mortality 
rate. Different government policies with regards 
to testing have led to vastly different estimates 
across countries73,41, and a COVID-19 overall 
mortality rate has not been established yet. 
Asymptomatic cases could be as high as about 
50% of total cases, as estimated by simulations74 
or recorded in Iceland75, where mass screening 
with oropharyngeal tests76 was employed. 

States have responded by trying to mitigate 
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the spread of the virus through imposing 
widespread lockdowns. This has led to a 
decrease in air pollution, which in China likely 
prevented the deaths of 4,000 children under 5 
and 73,000 adults over 7077. However, the winter 
months and low temperature caused people to 
keep the heating systems on, maintaining a 
certain amount of pollution (coal and electricity in 
China, gas methane in Italy, gas and electricity 
in the United States). In Europe78 and in China79 
a consistent reduction in air pollution was 
recorded by satellites due to reduced 
anthropogenic activities during the lockdowns, 
although it occurred gradually80,81, also due to 
weather conditions unfavourable to air quality. 
The quarantines certainly decreased the role 
that commuting has in the virus spread. 
Nonetheless, reduced anthropogenic activities 
and reduced mobility lose correlational 
significance over time, after the first stages of the 
infection55. Instead, the correlation with low air 
quality remains significant throughout the 
different epidemic stages. 

This pandemic has not ended yet, so our 
conclusions are necessarily restricted to the 
stage of infection of those three countries. There 

are also confounding factors such as how the 
virus infection was determined in patients by 
different countries. However, the larger the 
geographical areas that are affected by the 
pandemic, the lower these elements should play 
a role. 

Our study is eventually going to be completed 
with the analysis of an up to date dataset and 
possibly additional countries, before its formal 
journal submission. Further research in the field 
of physics should also be endorsed to 
investigate the capacity of air pollutants to act as 
viral vectors. Air pollutants may in fact act as a 
medium for the aerial transport of SARS-CoV-
232, potentially broadening the harm done in the 
contagions. 

Our results inform epidemiologists on how to 
prevent future, possibly more lethal viral 
outbreaks by curbing air pollution and climate 
change. Institutions need to endorse such 
interventions more seriously together with 
other comprehensive measures playing a role in 
reducing epidemics, such as impeding 
biodiversity loss, ending wars, and alleviating 
poverty82.
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