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 Abstract 
Infectious diseases, especially when new and highly contagious, could be devastating producing 
epidemic outbreaks and pandemics. Predicting the outcomes of such events in relation to 
possible interventions is crucial for societal and healthcare planning and forecasting of resource 
needs. Deterministic and mechanistic models can capture the main known phenomena of 
epidemics while also allowing for a meaningful interpretation of results. In this work a 
deterministic mechanistic population balance model was developed. The model describes 
individuals in a population by infection stage and age group. The population is treated as in a 
close well mixed community with no migrations. Infection rates and clinical and epidemiological 
information govern the transitions between stages of the disease. The present model provides a 
steppingstone to build upon and its current low complexity retains accessibility to non experts 
and policy makers to comprehend the variables and phenomena at play. 

 The impact of specific interventions on the outbreak time course, number of cases and 
outcome of fatalities were evaluated including that of available critical care. Data available from 
the COVID19 outbreak as of early April 2020 was used. Key findings in our results indicate that (i) 
universal social isolation measures appear effective in reducing total fatalities only if they are 
strict and the number of daily social interactions is reduced to very low numbers; (ii) selective 
isolation of only the elderly (at higher fatality risk) appears almost as effective in reducing total 
fatalities but at a much lower economic damage; (iii) an increase in the number of critical care 
beds could save up to eight lives per extra bed in a million population with the current 
parameters used; (iv) the use of protective equipment (PPE) appears effective to dramatically 
reduce total fatalities when implemented extensively and in a high degree; (v) infection 
recognition through random testing of the population, accompanied by subsequent (self) 
isolation of infected aware individuals, can dramatically reduce the total fatalities but only if 
conducted extensively to almost the entire population and sustained over time; (vi) ending 
isolation measures while R0 values remain above 1.0 (with a safety factor) renders the isolation 
measures useless and total fatality numbers return to values as if nothing was ever done; (vii) 
ending the isolation measures for only the population under 60 y/o at R0 values still above 1.0 
increases total fatalities but only around half as much as if isolation ends for everyone; (viii) a 
threshold value, equivalent to that for R0, appears to exist for the daily fatality rate at which to 
end isolation measures, this is significant as the fatality rate is (unlike R0) very accurately known.  

 Any interpretation of these results for the COVID19 outbreak predictions and interventions 
should be considered only qualitatively at this stage due to the low confidence (lack of complete 
and valid data) on the parameter values available at the time of writing. Any quantitative 
interpretation of the results must be accompanied with a critical discussion in terms of the model 
limitations and its frame of application.  
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Introduction 
Understanding the potential spread of diseases using mathematical modelling approaches has a 
long history. Deterministic epidemic models published in the early 20th century already 
demonstrated the importance of understanding the population-based dynamics as well as potential 
parameters of interest therein (Kermack & McKendrick, 1927). Numerous modelling approaches are 
available for the prediction of propagation of infectious diseases (May & Anderson, 1979; Capasso 
& Wilson, 1997; Hethcote, 2000; McCallum et al., 2001; Ruan & Wang, 2003; Li et al., 2004; Keeling 
& Eames, 2005; Grassly & Fraser, 2008; Keeling & Rohani, 2008; Balcan et al., 2010; Britton, 2010; 
Funk et al., 2010; Gray et al., 2011; Brauer et al., 2012; Miller et al., 2012; Siettos & Russo, 2013; 
Pastor-Satorras et al., 2015). Their outputs inform studies on health projections and play an 
important role in shaping policies related to public health (Murray and Lopez, 1997a, 1997b, 1997c, 
and 1997d; Ferguson et al., 2006). 

 Data availability has greatly increased in recent years, which led to direct improvements in 
epidemiological models (Colizza et al., 2006; Riley, 2007; Siettos & Russo, 2013). These models  
provided a more comprehensive understanding of recent outbreaks of diseases such as Ebola 
(Gomes et al., 2014; WHO Ebola Response Team, 2014) and Zika (Zhang et al., 2017). However, all 
modelling efforts are highly dependent on several elements: a comprehensive algorithm of clinical 
and public health true options and stages of events; probability of such options given certain 
conditions of the system; identification of parameters that reflect such events and their probabilities 
(such as mortality by age, infectiousness by contacts, etc.); assumptions for parameters with 
insufficient data; and valid data for those parameters that allow the calibration and posterior 
validation of the forecasts (Tizzoni et al., 2012).  

 In viral pandemics in particular, one of those parameters, the direct estimation of infected sub-
population fractions, is not feasible using available epidemiological data (unless universal, highly 
sensitive is testing used, rarely possible to implement in these situations), particularly if very mild 
cases, asymptomatic infections or pre-symptomatic transmission are observed or expected. This 
was the case of the previous Influenza A (H1N1-2009) pandemic (Nishiura et al., 2011) and it is the 
observation for COVID-19 pandemic (Russel et al., 2020). Thus, in many cases, modelling uses a 
combination of the best available data from historical events and datasets, parameter estimation 
and assumptions. Then, data about these parameters are computed with statistical tools for the 
development of epidemic models (Cooper et al., 2006; Biggerstaff et al., 2014). 

 The most challenging phase for the understanding of the potential spread of a disease is when 
novel disease outbreaks emerge in global populations (Anderson & May, 1992), in which data 
availability is limited (e.g. novelty of pathogen; delay of communication of case datasets from public 
health workers and facilities to researchers) or biased by external factors (e.g., limited availability 
of testing capacity; undefined or partially defined diagnostics for disease). With novel disease-
specific epidemic models, the development of models with the sufficient level of low complexity 
and meaningful parameters, that can be identified with data as the infection progresses and data 
become more available, is posited as a potential tool to inform public health policy and impact 
mitigation strategies (Berezovskaya et al., 2005; Hall et al., 2007; Bettencourt et al., 2008; Nishiura, 
2011; Wang & Zhao, 2012;  Lee et al., 2013; Nsoesie et al., 2014, Chowell et al., 2016, Rivers et al., 
2019, Chowell et al., 2020). The parameters of these models can be identified with data as the 
infection progresses and data become more available. 

 The COVID-19 outbreak and posterior pandemic has brought unprecedented attention into these 
kinds of modelling approach limitations, with multiple epidemic models and disease spread 
forecasts being published as more data becomes available. These models have evaluated the 
ongoing course of the disease spread evolution, from the earlier dynamics of transmission from 
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initial cases (Kucharski et al., 2020), to the potential of non-pharmaceutical interventions to limit 
the disease spread, such as: international travel restrictions (Chinazzi et al., 2020), contact tracing 
and isolation of infected individuals at onset (Hellewell et al., 2020), different scales of social 
distancing and isolation (Flaxman et al., 2020, Prem et al., 2020). Other statistical models tried to 
estimate fundamental characteristics (i.e. potential model parameters) for the disease, such as the 
incubation period (Lauer et al., 2020) and basic reproduction number, R0 (Liu et al., 2020), as well 
as to assess short-term forecasts (Roosa et al., 2020). Given the inherent uncertainty associated 
with most of the parameters used, a stochastic approach is employed in the above models. 

    Effective communication between health care and public health systems and science hubs is 
considered one of the bigger challenges in both health sciences and public health (Zarcadoolas, 
2010; Squiers et al., 2012). In health care It is not only necessary to take effective measures but also 
to do it timely. This requires strategies for data sharing, generation of information and knowledge 
and timely dissemination of such knowledge for effective implementations.  

 The development of strategies for interaction under the general, and correct assumption of low 
literacy health communication paradigms are especially relevant (Plimpton & Root, 1994). And we 
have good evidence that health illiteracy influences greatly health behaviours that in turn, are likely 
to play a role in influencing the degree of the effectiveness of such interventions. Given the 
complexity and the expected short and long-lasting impacts that these public health interventions 
should have when dealing with disease outbreaks and pandemics (Reluga, 2010; Fenichel et al., 
2011) sufficiently complex but user-accessible modelling tools should provide researchers, public 
health authorities, and the general public with useful information to act in moments of clear and 
wide uncertainty. In order to work properly they require access to up-to-date data, in this case of 
the COVID-19 spread (Dong et al., 2020). Additionally, simple and interactive models can contribute 
to the understanding by broader audiences of what to expect on the propagation of infectious 
diseases and how specific interventions may help. This increased awareness of the disease 
behaviour and potential course in time by public and policy makers can directly and positively 
impact the outcome of epidemic outbreaks (Funk et al., 2009). 

 Population balance models are widely use in disciplines such as chemical engineering to describe 
the evolution of a population of particles (Henze et al., 2000; Ramkrishna and Singh, 2014; Yang, 
2014; González-Peñas et al., 2020).  These types of models describe the variation over time of, so-
called, state variables as functions of state transition equations governed by transport processes, 
chemical reactions or any type of change rate from one state to another. Such models allow for the 
description of the underlying processes in a mechanistic manner, maintaining therefore a direct 
interpretation of the model behaviour. If the state transition rates are defined in mechanistic 
manner and with meaningful parameters, such models can describe a process in a way that is 
interpretable into reality and open the possibility not only of prediction but also of hypothesis 
generation when data deviate from model predictions. 

 The present work attempts to provide a deterministic population balance-based model with a 
sufficient minimum, but clinically and public health robust, set of mechanistic and interpretable 
parameters and variables. The model aims at improving the understanding of the major phenomena 
involved and of the impacts in the system’s resources and needs of several possible interventions. 
The model level of complexity is targeted such that retains mechanistic meaning of all variables and 
parameters, captures the major phenomena at play and specifically allows for accessibility to non-
experts and policy makers to comprehend the variables at play. I this way expert advice and decision 
making can be brought closer together to help guide interventions for immediate and longer-term 
needs. 
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Model description 
The model presented is based on balances of individuals transitioning between infection stages and 
segregated by age group. All individuals are placed in a common single domain or close community 
(e.g. a well-mixed city or town), no geographical clustering nor separation of any type is considered, 
neither is any form of migration in or out of the community. Big cities with ample use of public 
transportation are thought to be settings best described by the model.  

 The model also provides a direct estimation of the R0 (reproduction number or reproductive rate) 
(Delamater et al. 2019) under different circumstances of individual characteristics (such personal 
protection or awareness) as well as under population-based interventions (such as imposed social 
isolation). R0  is a dynamic number often quoted erroneously as a constant for a specific 
microorganism or disease. The ability to estimate the R0 for different times of the outbreak (given 
the interventions), outbreak settings and interventions is considered to be a valuable model 
characteristic. R0 is predicted to change over time with interventions that do not produce immune 
subjects (such as isolation or use of personal protection equipment (PPE), as opposed to 
vaccination). However, in many instances over the course of an outbreak, R0 is consistently 
estimated as a constant, frequently overestimating and not allowing correct estimations of the 
course of events. 

Model constituents 

The model solves dynamic variables or states. Every individual belongs, in addition to their age group 
(which she/he never leaves), to only one of the possible states that correspond to stages of the 
infection, namely: Healthy-non-susceptible (HN); healthy susceptible (H); pre-symptomatic (PS); 
symptomatic (S); hospitalised (SH); critical (SC) (with and without available intensive care); deceased 
(D) and recovered immune (R).  

 Definitions of the model states are shown in Table 1. Each variable is a state vector with the 
number of individuals in that stage per age group. Age groups are defined per decade from 0-9 until 
80+ year olds. Nine age groups are defined in the model, each state is therefore a vector of 
dimensions 1x9, the total number of states is a matrix of dimensions 8x9. The transitions between 
these states are governed by rates of infection and transition as defined in Table 2. Note that vector 
variables and parameters are represented in bold font and scalar ones in regular font.  

 

Table 1. Model states in vectors (1x9) of number of individuals in each infection stage. 

Definition “Number of…” Variable Totals of all ages 

Healthy non-susceptible to infection Nhn NhnT 
Healthy susceptible to infection Nh NhT 
Pre-symptomatic infected Nps NpsT 
Symptomatic infected Ns NsT 
Symptomatic hospitalised Nsh NshT 
Symptomatic critical Nsc NscT 
Deceased Nd NdT 
Recovered & immune Nr NrT 
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 A schematic representation of the modelling approach with the population groups considered 
for the infection stages, rates of infection and transition between groups and showing possible 
interactions between population groups is shown in Figure 1. 

 

 

 
Figure 1. Schematic representation of the modelling approach showing the population groups considered 
to describe the infection stages. Each arc segment represents one of the model states, while the coloured 
bands represent the rate of infection and transition between groups. Band width is proportional to the 
average rates across population ages, demographically weighted for the scenario assessed.  The arrows 
indicate the possible interactions between population groups that are part of the calculation of the rates 
of infection. Only interactions between infected individuals (both pre-symptomatic and symptomatic) and 
healthy susceptible ones can increase the rate of infections (red arrows).    
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Table 2. Rates of infection and transition between states, vectors (1x9). 

Definition “Rate of …” Variable Units 

Infection by interaction with infected pre-symptomatic  ri_ps # H infected/day 
Infection by interaction with infected symptomatic ri_s # H infected/day 
Transition to symptomatic from infected rs_ps # PS to S / day 
Transition to hospitalised from symptomatic rsh_s # S to SH / day 
Transition to critical from hospitalised rsc_sh # SH to SC / day 
Transition to deceased from critical rd_sc # SC to D / day 
Recovery from pre-symptomatic infected rr_ps # PS to R / day 
Recovery from symptomatic infected rr_s # S to R / day 
Recovery from hospitalised rr_sh # SH to R / day 
Recovery from critical rr_sc # SC to R / day 

 

Modelling interventions 

Two main interventions are described in the model that have are being used currently slow the 
spread of the COVID19 disease outbreak (i) the degree of social isolation of the individuals in the 
population in terms of the average number of random interaction individuals have per day with 
others that are also interacting and (ii) the level of personal protection and awareness that 
individuals have to protect themselves and others against contagion or spread during interactions. 
These interventions can be stratified by age groups. Table 3 describes the key parameters that 
define the interventions.  

 The degree of isolation is described by a parameter (nih) (vector per age group) corresponding to 
a representative average number of daily interactions that healthy susceptible individuals have with 
others. Different nih values can be assigned per age group to describe the impact of diverse isolation 
strategies selective to age group such as e.g. selective isolation of the elderly and/or young. The 
level of use of PPE and awareness described by the parameters (lpah) for healthy and (lpaps and lpas) 
for infectious individuals (both in vectors per age group). Values of the lpa parameters can vary 
between 0 and 1, with 1 corresponding to the use of complete protective measures and zero to the 
most reckless opposite situation. 

 An additional reduction factor is defined for decreased social interactivity of infectious 
individuals both for symptomatic (rfis), to describe e.g. self or imposed isolation of S individuals and 
for pre-symptomatic (rfips), to describe e.g. awareness of their infection if extensive random testing 
of the population is implemented.  
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Table 3. Intervention parameters 

Definition Parameter Units 

Average daily individual interactions by H nih #interactions / H individual∙day 
Reduction factor of daily interactions by S1 rfis ∅ 
Reduction factor of daily interactions by PS1 rfips ∅ 
Level of personal protection and awareness by H1 lpah ∅ 
Level of personal protection and awareness by PS1 lpaps ∅ 
Level of personal protection and awareness by S1 lpas ∅ 
Probability of infection per interaction with PS2 pi_ps infections / interactions with PS 
Probability of infection per interaction with S2 pi_s infections / interactions with S 

1Values only within the interval [0,1]; 2Calculated, not an input parameter. 

 

Rates of infection 

The infection of healthy susceptible individuals (H) is modelled as to occur only by interaction 
between them and other infected either pre-symptomatic (PS) or symptomatic (S) individuals. 
Infected hospitalised (SH) and critical (SC) are assumed not available for infectious interactions 
neither are those deceased (D). 

 Two rates of infection of healthy susceptible individuals (in number of infections per day) are 
defined, one from each one of the two possible infecting groups (PS and S). The rates of infection 
are vectors per age group from the product of (i) the fraction of interactions with PS (or S) among 
the total interactions (fips or fis) times (ii)  the probability of contagion in an interaction with PS (or 
S) (pi_ps or pi_s) (per age group), (iii) the average number of daily interactions that H individuals have 
(nih) and (iv) the number of H individuals themselves (per age group) (see Eqs 1.a-b). Note that point 
operators between vectors indicate an operation element-by-element. 

    ri_ps = fips * (pi_ps .* nih .* Nh);      (Eq. 1.a) 

    ri_s   = fis  * (pi_s  .* nih .* Nh);      (Eq. 1.b) 

 The fractions of interactions (fips and fis) among the total are calculated as per Eqs 2.a-b. Note 
that hospitalised, critical and deceased are excluded from the pool of possible interacting 
individuals. 

fips = Σ (rfips .* Nps) /   Σ [Nhn .+ Nh .+ (rfips .* Nps) .+ (rfis .* Ns) .+ Nr]  (Eq. 2.a) 

fis   = Σ (rfis .* Ns)   /   Σ [Nhn .+ Nh .+ (rfips .* Nps) .+ (rfis .* Ns) .+ Nr]  (Eq. 2.b) 

 The probabilities of infection per interaction are calculated as per Eq. 2.c-d.. 

    pi_ps = (1 – lpah) .* (1 – lpapsav);     (Eq. 2.c) 

    pi_s   = (1 – lpah) .* (1 – lpasav);     (Eq. 2.d) 

where lpaasav and lpasav are scalars corresponding to the weighted averages (Eqs 2.e-f) over age 
groups of the entire pool of PS and S with which H individuals can interact. NasT and NsT are the 
total numbers of PS and S individuals of all ages respectively. The Σ symbol indicates summation 
across all age groups. 

   lpapsav = Σ (Nas .* lpaps)/ NasT      (Eq. 2.e) 

   lpasav   = Σ (Ns  .* lpas) / NsT      (Eq. 2.f) 
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Rates of transition between infection stages 

The average rates of transition between states are defined such that epidemiological and clinical 
available data can be used such as the proportion of individuals that transition or recover (see Table 
4) and the average times reported at each stage before transition or recovery (see Table 5). 

Table 4. Epidemiological parameters (all in vectors per age group). 

Definition Parameter Units 

Fraction of population non-susceptible to infection fhn_t #HS/#H 
Fraction of PS that will become S1    (1- fr_ps) fs_ps #S/#PS 
Fraction of S that will become SH (1- fr_ss) fsh_s #SH/#S 
Fraction of SH that will become SC (1- fr_sh) fsc_sh #SC/#SH 
Fraction of cared SC that will die into D (1- fr_sc)  fd_sc #D/#SCIC 
Fraction of PS that will recover into R fr_ps #R/#PS 
Fraction of S that will recover into R fr_s #R/#S 
Fraction of SH that will recover into R fr_sh #R/#SH 
Fraction of SC with critical care that will recover into R fr_sc #R/#SCIC 

        1Calculated, not an input parameter 

Table 5. Clinical average times in each infection stage (all in vectors per age group). 

Definition Parameter Units 

Time to develop symptoms (incubation period) ts_ps days 
Time to become hospitalised if symptomatic tsh_s days 
Time to become critical if hospitalised tsc_sh days 
Time to death from critical td_sc days 
Time to death from critical with no IC available td_nc days 
Time to recover without symptoms tr_ps days 
Time to recover from (non-severe) symptoms tr_s days 
Time to recover from hospitalisation tr_sh days 
Time to recover from critical tr_sc days 

 

 The rates of individuals transitioning between stages (in number of individuals per day) are 
described in Eqs 3.a-e. All rates are vectors per age group of dimensions (1x9). 

   rps_h  = ri_ps .+ ri_s       (Eq. 3.a) 

rs_ps  = fs_ps  .* Nps  ./ ts_ps      (Eq. 3.b) 

rsh_s  = fsh_s  .* Ns   ./ tsh_s      (Eq. 3.c) 

rsc_sh = fsc_sh .* Nsh ./ tsc_sh      (Eq. 3.d) 

 In order to describe the possible shortage of critical care resources, critical individuals are 
distributed between those with available intensive care (Nsc_ic) and those without available intensive 
care (Nsc_nc). At each simulation time step Nsc_ic and Nsc_nc are computed via an allocation function 
of critical care resources over the total Nsc per age group. The function allocates resources with 
priority to lower age groups until the maximum number of intensive care units is reached. All critical 
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individuals with no available intensive care Nsc_nc are assumed to become deceased after td_nc. The 
rate of transition from critical to deceased is therefore the sum of that of those with available care 
(rd_scic) plus that of those without available care (rd_scnc) as per Eqs. 3.e-g. 

   rd_sc  = rd_scic  + rd_scnc         (Eq. 3.e) 

where 

   rd_scic  = fd_sc  .* Nsc_ic ./ td_sc      (Eq. 3.f) 

   rd_scnc  = Nsc_nc ./ td_nc       (Eq. 3.g) 

 The rates of individuals recovering from the different infected stages (in number of individuals 
per day) are described in Eqs 4.a-d. (all rates in vectors per age group). 

   rr_ps = fr_ps .* Nps  ./ tr_ps      (Eq. 4.a) 

   rr_s  = fr_s   .* Ns    ./ tr_s      (Eq. 4.b) 

   rr_sh = fr_sh .* Nsh  ./ tr_sh      (Eq. 4.c) 

   rr_sc = fr_sc .* Nsc_ic./ tr_sc         (Eq. 4.d) 

Stage transition equations  

The dynamic variation on the number of individuals in each stage over time and per age groups is 
governed by the population balance equations described in Eqs 5.a-h. (all in vectors by age group). 

dNhn/dt  = 0;        (Eq. 5.a) 

dNh/dt  = – rps_h       (Eq. 5.b) 

dNps/dt = rps_h .– rs_ps  .– rr_ps      (Eq. 5.c) 

dNs/dt  = rs_ps  .– rsh_s  .– rr_s      (Eq. 5.d) 

dNsh/dt = rsh_s  .– rsc_sh .– rr_sh      (Eq. 5.e) 

dNsc/dt = rsc_sh .– rd_sc  .– rr_sc      (Eq. 5.f) 

dNd/dt  = rd_sc        (Eq. 5.g) 

dNr/dt  = rr_ps  .+ rr_s  .+ rr_sh  .+ rr_sc     (Eq. 5.h) 

 The state transitions as governed by these rates are represented in a matrix form in Figure A2. 

Reproduction number (R0) and its calculation 

Since the model produces instant values of outputs over time based on the parameters used, the 
reproduction number (R0) simulated must be considered as an instantaneous estimation of the R0 
(Delamater et al. 2019). The model structure allows for several parameters to influence R0 including 
the duration of infectious stages for the virus known so far; the potential infection of others by the 
virus from those infected; the probabilities of infection per social interaction; and other parameters 
such social isolation and use of PPE. Elements such as the number of recovered immune individuals 
should not directly affect R0 as the reproductive number refers to only the potential infection of 
susceptible individuals from infected individuals.  

 Dynamic reproduction number (R0) during the outbreak (Delamater et al. 2019) is computed over 
time from the model state variables according to Eq. 6. Under this approach, infectious individuals 
can only infect others while they are in pre-symptomatic (PS) and symptomatic (S) stages. Although 
it is known that post-symptomatic recovered individuals may be infectious for some period of time, 
this has not been considered in the model at this time due to lack of data. Hospitalised and critical 
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individuals are assumed to be well isolated and also not able to infect others. The provided dynamic 
output of the reproduction number R0 can be used to guide and interpret the impact of 
interventions in terms of R0. 

 Modelled infected individuals can take only three possible infectious paths namely: 
 (i) PS  R; (ii) PS  S  R and (iii) PS  S  SH. These paths are made of combinations of four 
possible infectious stage intervals in which infected individuals spend time and infect at their 
corresponding rate (see Table 6). 

Table 6. Possible infectious stages intervals for R0 computation. 

Infectious 
interval 

Fraction of infected 
passing the interval 

(indinterv/indinf) 

Interval 
duration 

(d) 

Total infections per stage interval per 
individual infected 

(infinterv/indinf) 
PS  R fr_ps tr_ps (ri_psT / NpsT)* tr_ps .*  fr_ps      

PS  S (1 – fr_ps) ts_ps (ri_psT / NpsT)* ts_ps .* (1 – fr_ps) 

S  R (1 – fr_ps)* fr_s tr_s (ri_sT / NsT)   * tr_s   .* (1 – fr_ps)  .* fr_s 

S  SH (1 – fr_ps)* (1 – fr_s) tsh_s (ri_sT / NsT)   * tsh_s .* (1 – fr_ps) .* (1 – fr_s) 

 The dynamic computation of R0 consists of adding the total infection contributions of every stage 
interval as shown in Eq. 7. 

  R0 = Σ [(ri_psT / NpsT)* (tr_ps .* fr_ps  +  ts_ps .* (1 – fr_ps))  +  

   (ri_sT / NsT)   * (tr_s  .* (1 – fr_ps).* fr_s  +  tsh_s .* (1 – fr_ps).*(1 – fr_s)) ] (Eq. 6) 

in which, the age group weighted average rates of infection by PS and S are given as per Eqs. 6a-b. 

ri_psT = Σ (ri_ps .*Nps)/NpsT)  [infPS/indPS∙d]    (Eq. 7.a) 

ri_sT  = Σ (ri_s  .* Ns)  /NsT)  [infPS/indPS∙d]    (Eq. 7.b) 

 

 

Model limitations 

The model presented is deterministic and based on population balances of individuals classified by 
their stage of infection and age group only, no other differentiation within those groups is captured 
by this version of the model. This characteristic allows for the model application to single, densely 
populated clusters. The model has low complexity and requires a small number of mechanistic 
meaningful parameters, most of which can be directly estimated from epidemiological and clinical 
data. The model however carries limitations in its prediction capabilities due to the fact that all 
variables and parameters refer to representative averages for each stage and age group population. 
This may limit the model representation of the non-linear interactions in the real system and 
therefore at this stage any results interpretation for prediction purposes should be critically 
discussed against these limitations.  
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Impact of static interventions on a COVID19 outbreak case study 
A case study based on a scenario of propagation of the COVID19 pandemic using data available as 
of April 2020 is presented below. The results obtained are intended to be interpreted qualitatively 
and to be contextualized to the specific setting characteristics. They intend to serve as a 
demonstration of the model potential if applied with higher confidence parameter values. A number 
of selected scenarios aimed at illustrating the impact of different interventions were simulated. 
Conclusions should be taken qualitatively at this stage given the low confidence in some parameter 
values. 

 Default reference epidemiological and clinical parameter values were obtained from different 
information sources on the COVID19 outbreak as available in early April 2020. Details of values and 
sources are provided in the Appendix Tables A1-A2 respectively, with indication of level of 
confidence. A population with an age distribution as that of the region of Madrid (Spain) in 2019 
was used (INE Spain, 2020). 

 Default reference intervention parameters were selected arbitrarily for a situation assimilated to 
that previous to the outbreak and without any specific intervention (see values and rationale in 
Appendix Table A3). The dynamic simulation results of the default outbreak scenario with no 
intervention is shown in in the Appendix Figure A4. 

 All scenarios are simulated for 365 days and evaluated in terms of (i) final total number of 
fatalities at outbreak termination and (ii) final number of fatalities per age group. In addition, the 
scenarios are presented also in terms of dynamic profiles over time for (iii) number of active cases; 
(iv) reproduction number; (iv) number of critical cases; (v) number of fatalities. 

 

Scenario #1. Universal social isolation 

In this scenario, the impact of different imposed degrees of universal social isolation was evaluated. 
The parameter that describes this intervention is the average number of daily social interactions 
that healthy susceptible individuals have (nih). As indicated above, evidence suggests that during 
viral infections that behave such as COVID-19, the number of personal contacts increases the 
likelihood of infection linearly. In this scenario, the isolation measures are applied equally across all 
age groups and the same nih values applied to all. Figure 2 illustrates the model predictions for this 
scenario, in terms of the output variables indicated and in absence of any other interventions. 

 As it can be observed in Figure 2 (top left), the overall risk of dying from the virus increases as 
the average number of daily social interactions (nih) increases. However, it seems to plateau at 
around 4 interactions per day, suggesting that a specific a critical value may exist for nih for the 
intervention to succeed at lowering the final number of deaths. Once age is placed in the equation, 
mortality behaves similarly only for those at ages over 70 (Figure 2 (top right)).  

 Interestingly, the nih does not appear to significantly modify mortality beyond a single interaction 
per day. This suggests that for younger than 60, interactions, in order to decrease mortality should 
be lower to 0: complete social distancing and isolation and that based only on social interactions, 
most of the mortality decreased by partial social isolation will be in those older than 60 years of age. 
The number of fatalities appears clearly and directly related to social isolation as well as the speed 
at which the fatalities saturation will occur, Figure 2(bottom right). The model is capable to capture 
this due to its description of the saturation of the healthcare capacity and withdrawal of critical care 
over capacity.  
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Figure 2. Impact of universal social isolation on the final total number of fatalities (top left); the final total 
number of fatalities per age group (top right) as well as for the different time course profiles of the total 
active cases (middle left); reproduction number (R0) (middle right);  the number of critical cases (bottom 
left) and the number of fatalities (bottom right). Numbers are as percentage of total population of all ages. 

 The middle and bottom graphs in Figure 2 show the impact of nih on the time course of several 
variables. Figure 2(middle left) supports the “flatten the curve” concept, now globally popular. If 
interactions are not modified, the number of cases grows rapidly, exponentially and explosively. 
Figure 2(middle right) shows the estimate of R0 over time This illustrates how the levels of social 
isolation can define the infectability and the number of cases each infected individual will infect (R0) 
showing how factors such as interventions can impact R0. The number of critical cases increases 
throughout time as the social interaction increases Figure 2(bottom left). However, with very low 
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Scenario #2. Selective social isolation of the elderly 

The impact of imposed social isolation selective to those over 60 years old is evaluated in this 
scenario. The parameter that describes this intervention is the average number of daily social 
interactions with other people that healthy susceptible individuals within the age groups over 60 
years old have (nih). In this scenario, the isolation measures are applied selectively only to the 
elderly. Figure 3 illustrates the model predictions for this scenario, in terms of the output variables 
indicated, in absence of any other interventions. 

 
Figure 3. Impact of selective social isolation measures for the elderly only on the final total number of 
fatalities (top left); the final total number of fatalities per age group (top right) as well as for the different 
time course profiles of the total active cases (middle left); reproduction number (R0) (middle right);  the 
number of critical cases (bottom left) and the number of fatalities (bottom right). Numbers are in 
percentage of the total population of all ages. 

 As shown in Figure 3(top left) the selective social isolation of the elderly has a potentially very 
significant impact on final total fatalities at an almost comparable level than the previous scenario 
of universal isolation. This is a result with potentially significant consequences as it indicates that a 
sustained isolation selective only to the elderly and not to the other age groups could alleviate the 
economic damage at small numbers of increased total fatalities. The decrease in social interactions 
in schools and colleges by isolation of the young may however have an impact on the overall 
multiplier of infections from youngsters to adults. 
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Scenario #3. Selective social isolation of the young 

The impact of selective imposed social isolation of those under 20 years old is evaluated in this 
scenario. The parameter that describes this intervention is the average number of daily social 
interactions with other people that healthy susceptible individuals of the age groups under 20 years 
old have (nih). In this scenario, isolation measures are applied only to the youngsters. Figure 4 shows 
the results for this scenario, for the output variables indicated, in absence of other interventions. 

  
Figure 4. Impact of selective social isolation to the young on the final total number of fatalities (top left); 
the final number of fatalities per age group (top right) as well as for the different time course profiles of 
total active cases (middle left); reproduction number (R0) (middle right);  number of critical cases (bottom 
left) and the number of fatalities (bottom right). Numbers are in percentage of the total population. 

 The young population have been observed to be quite resistant to the disease. Theoretically at 
least, young, unaffected lungs tolerate and defend better from the viral load. The isolation of the 
young produces no effect in the overall final fatality rate but produces a moderate impact on the 
mortality of the elderly at low values of nih. As it can be seen in Figure 4, social isolation of the young 
has little impact producing almost identical curves for any levels of social isolation. It is thought 
however that the decrease in social interactions in schools and colleges by isolation of the young 
may have a large impact on the overall multiplier of infections from youngsters to adults. This 
emergent aspect of the disease spread behaviour and containment efforts is captured in our results, 
even though the present model does not incorporate geographical features and does not explicitly 
describe location-specific population interactions (such as those synthetic location-specific contact 
patterns in Prem et al., 2020). 
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Scenario #4. Selective social isolation of young and elderly combined 

The impact of selective imposed social isolation to both those under 20 and those over 60 years old 
is evaluated in this scenario. The parameter that describes this intervention is the average number 
of daily social interactions with other people that healthy susceptible individuals of the age groups 
under 20 and over 60 years old have (nih). In this scenario, the isolation measures are applied 
selectively only to the youngsters and the elderly. Figure 5 illustrates the model predictions for this 
scenario, in terms of the output variables indicated, in absence of any other interventions. 

 

 
Figure 5. Impact of selective social isolation measures applied to both for the young and the elderly only 
but not to the rest of the population on the final total number of fatalities (top left); the final total number 
of fatalities per age group (top right) as well as for the different time course profiles of the total active 
cases (middle left); reproduction number (R0) (middle right);  the number of critical cases (bottom left) 
and the number of fatalities (bottom right). Numbers are in percentage of the total population of all ages. 

Many of the early interventions during the COVID19 outbreak started by protecting the elderly and 
isolating the young (no schools, no colleges or universities for students), decreasing the number of 
interactions of the two subpopulations substantially. The isolation of these population groups 
together results similarly to that of the isolation of the elderly alone with no significant added value 
in isolating the young respect to that the elderly alone as shown in Figure 3. 
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Scenario #5. Increase on critical health care resources 

The impact of the availability of intensive care beds is evaluated in this scenario. The parameter that 
describes this intervention is the number of available intensive care beds per million population. 
Figure 6 illustrates the model predictions for this scenario, in terms of the output variables 
indicated, in absence of any other interventions. 

 
Figure 6. Impact of the availability of intensive care beds on the final total number of fatalities (top left); 
the final total number of fatalities per age group (top right) as well as for the different time course profiles 
of the total active cases (middle left); reproduction number (R0) (middle right);  the number of critical 
cases (bottom left) and the number of fatalities (bottom right). Numbers are in percentage of the total 
population of all ages. 

 Figure 6(top left) shows the enormous impact in decreasing total fatalities that the increase in 
critical care resources can have, the higher the availability of critical beds, the lesser the fatality rate. 
The trend applies until there is no shortage of IC beds and fatalities are the unavoidable ones. This 
intervention avoids those deaths that are preventable by the availability of ventilators (mainly) and 
critical care support. With the current parameter values in a million population it appears that 
around 8 lives could be saved per additional intensive care bed. 
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Scenario #6. Increase in personal protective measures 

The impact of increased use of PPE and behavioural awareness is evaluated in this scenario. The 
parameters that describe this intervention is a factor increasing the default values (see Table A3) of 
the lpa parameters of the healthy and infected population groups (laph, lapps and lpas). Increases in 
these parameters decrease the probability of infection per interaction (see Eqs. 1) and subsequently 
the rates of infection (Eqs. 2) . Figure 7 illustrates the model predictions for this scenario, in terms 
of the output variables indicated, in absence of any other interventions. 

  
Figure 7. Impact of an increase factor in the use of PPE by both infected and healthy groups respect to the 
default values (Table A3) on the final total number of fatalities (top left); the final total number of fatalities 
per age group (top right) as well as for the different time course profiles of the total active cases (middle 
left); reproduction number (R0) (middle right);  the number of critical cases (bottom left) and the number 
of fatalities (bottom right). Numbers are in percentage of the total population of all ages. 

 As it is shown in Figure 7 the extensive use of PPE appears as potentially having a major impact 
on total outbreak fatalities at the highest levels of protection. There is an inverse relationship 
between the level of protection and the overall fatality of the disease. The peak of number of cases 
is reached earlier and is higher if low levels of personal protection, the infectability and R0 follow 
the same pattern.  The peak number of critical cases is also decreased and slowed through time. 
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Scenario #7. Awareness of infection by extensive random testing 

The impact of increasing the number of tests to all population is evaluated in this scenario. 
Widespread testing will increase tests done also to both infected pre-symptomatic and symptomatic 
individuals. The parameter that describes this intervention is a reduction factor in social interactions 
due to knowledge of infection by PS and S individuals (rfips and rfis). Reduced values of rfips and rfis 
decrease the fraction among of interactions among total from both PS and S (see Eq. 2.a-b) and 
therefore the rates of infection by these two groups (Eq. 1.a-b). The impact of applying an isolation 
reduction factor to the default rfi values is evaluated. Figure 8 illustrates the model predictions for 
this scenario, in terms of the output variables indicated, in absence of any other interventions. 

 
Figure 8. Impact of extensive testing of population and infection awareness of infected pre-symptomatic 
and symptomatic groups that leads to modified social isolation factor respect to their default rfi values 
(Table A3), on the final total number of fatalities (top left); the final total number of fatalities per age 
group (top right) as well as for the different time course profiles of the total active cases (middle left); 
reproduction number (R0) (middle right);  the number of critical cases (bottom left) and the number of 
fatalities (bottom right). Numbers are in percentage of the total population of all ages. 

 The increased awareness of the infected by testing has a great impact and it is a great 
differentiator among subgroups (no awareness to high awareness) in the number of cases, critical 
cases and total number of fatalities throughout time. The peaks are significantly decreased by 
awareness. It is worth noting how the number of fatalities can be brought almost to zero by 
complete awareness of infection and isolation. Universal testing and isolation, if possible could be 
one of the great modifiers of the outcome of the outbreak.  
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Impact of dynamic interventions on a COVID19 outbreak case study 
The above static interventions were evaluated in terms of a sustained action over a parameter at 
different levels and its impact on the outbreak outputs. In outbreaks, aside from the immediate 
management of needs and resources, the time to return to normal becomes of great concern. In 
this second section, dynamic interventions are evaluated specifically in terms of the ending of social 
isolation measures once different threshold values for R0 (everchanging due to interventions to 
manage infectability) of the fatality rate are reached. The model dynamic calculation of R0 allows 
for the evaluation of the use of the this variable as a criterion for the relaxation (or application) of 
interventions. These dynamic scenarios are considered of potential interest as governments and 
local authorities must evaluate and decide on when to apply the social distancing and isolation 
mitigation measures; whether it can be done totally or gradually by subgroups; and the potential 
impact of ending social isolation will have in further behaviour of the disease spread. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2020. .https://doi.org/10.1101/2020.04.04.20053017doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.04.20053017
http://creativecommons.org/licenses/by-nc-nd/4.0/


Scenario #8. Complete end of social isolation once R0 threshold is reached 

The impact of ending social isolation upon reaching different threshold values of the R0 (as a 
function of all interventions to decrease infectibility) is evaluated in this scenario. This intervention 
is implemented by starting with initial social isolation in place and average number of daily social 
interactions (nih) with value of 1 and returning it back to its default “do nothing” value once the 
threshold R0 value is reached. Figure 9 shows the model predictions for this scenario, in terms of 
the output variables indicated. 

 

 
Figure 9. Impact of ending social isolation (nih from 1 back to 10) upon reaching different threshold values 
of the R0, on the final total number of fatalities (top left); the final total number of fatalities per age group 
(top right) as well as for the different time course profiles of the total active cases (middle left); 
reproduction number (R0) (middle right);  the number of critical cases (bottom left) and the number of 
fatalities (bottom right). Numbers are in percentage of the total population of all ages. 

 The results in Figure 9(top left) clearly indicate the a withdrawal of isoaltion measures when R0 
values remain above 1 will lead to little impact on the total fatalities. It is also observed that when 
isolation is ended even at low threshold R0 values, increases in the production of new crude number 
of fatalities and a peak in critical cases occurs after a period of time. These are always accompanied 
to sudden spike in R0 for a short period before its collapse. Complete end of isolation may prove to 
be not the best course of action until R0 has reached levels of much lower than 1. 
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Scenario #9. End of social isolation except for elderly once R0 threshold is reached 

The impact of ending social isolation for all, except for those over 60 years old, upon reaching  
different threshold values of the R0 is evaluated in this scenario. This intervention is implemented 
by starting at an initial social isolation in place with a value of 1 for the average number of daily 
social interactions (nih) and, once the given threshold R0 value is reached, returning it back to its 
default “do nothing” value for all age groups except the elderly. Figure 10 shows the model 
predictions for this scenario, in terms of the output variables indicated. 

 
Figure 10. Impact of ending social isolation (nih from 1 back to 10) for all except the elderly (over 60) upon 
reaching different threshold values of the R0, on the final total number of fatalities (top left); the final 
total number of fatalities per age group (top right) as well as for the different time course profiles of the 
total active cases (middle left); reproduction number (R0) (middle right);  the number of critical cases 
(bottom left) and the number of fatalities (bottom right). Numbers are in percentage of the total population 
of all ages. 

 The results in Figure 10(top left) show again that an impact in fatalities will occur if the isolation 
ends at values of R0 over 1. The impact of ending social isolation at any R0 value is in this case smaller 
as the elderly remain isolated, this is in line with the results obtained in Scenario 2 and shown Figure 
3. The decrease of total fatalities of those in the age over 80 observed when isolation ends at, higher 
than 1, increasing threshold R0 values, is somehow unexpected. 
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Scenario #10. End of social isolation once fatality rate threshold is reached 

The impact of ending social isolation upon reaching different threshold values of the daily fatality 
rate (after it has passed its maximum) is evaluated in this scenario. The daily fatality rate is selected 
instead of e.g. the number of cases because it can be much more exactly assessed (incontrovertible 
as opposed to the number of cases). The decrease in the fatality rate is usually reached after the 
decrease in number of cases (“over the peak”) as shown by most epidemiological curves for COVID-
19 published so far. This intervention is implemented by starting at al initial social isolation in place 
with a value of 1 for the average number of daily social interactions (nih) and returning it back to its 
default “do nothing” value when, after the rate passed its maximum, the given threshold value of 
the rate is reached. Figure 11 shows the results for this scenario for the output variables indicated. 

  
Figure 11. Impact of ending social isolation (nih from 1 back to 10) once the fatality rate, after surpassing 
its maximum, reaches different threshold values, on the final total number of fatalities (top left); the final 
total number of fatalities per age group (top right) as well as for the different time course profiles of the 
total active cases (middle left); reproduction number (R0) (middle right);  the number of critical cases 
(bottom left) and the number of fatalities (bottom right). Numbers are as percentage of total population. 

 In this scenario all social isolation are ended once the fatality rate reaches a threshold after it 
started declining. As shown in Figure 11 it appears to be a very narrow threshold from which the 
isolation measures can be withdrawn with low impact on total fatality. If measures are ended just 
before the threshold is reached the overall fatality rate and the fatality rate for elders rises sharply. 
For values below that threshold a still a decrease in total fatalities can be obtained if lower 
thresholds of fatality rate for isolation end are used. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2020. .https://doi.org/10.1101/2020.04.04.20053017doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.04.20053017
http://creativecommons.org/licenses/by-nc-nd/4.0/


Scenario #11. End of social isolation except for elderly once fatality rate threshold is reached 

The impact of ending social isolation for all, except for those under 60 years old, upon reaching  
different threshold values of the fatality rate, after it reaching its maximum, is evaluated in this 
scenario. This intervention is implemented by starting at al initial social isolation in place with a 
value of 1 for the average number of daily social interactions (nih) and returning it back to its default 
“do nothing” value, for all age groups except the elderly, once, after the fatality rate reached its 
maximum, the given threshold value of the rate is reached. Figure 12 shows the model predictions 
for this scenario, in terms of the output variables indicated. 

Figure 12. Impact of ending social isolation (nih from 1 back to 10) once the fatality rate, after surpassing 
its maximum, reaches different threshold values, on the final total number of fatalities (top left); the final 
total number of fatalities per age group (top right) as well as for the different time course profiles of the 
total active cases (middle left); reproduction number (R0) (middle right);  the number of critical cases 
(bottom left) and the number of fatalities (bottom right). Numbers are as percentage of total population. 

 In this scenario all social isolation, except of that for the elderly, ends once the fatality rate 
reaches a threshold after it is already declining.  As shown in Figure 12, and analogous to the 
previous scenario, it appears to be a very narrow threshold from which the isolation measures can 
be withdrawn with low impact on total fatality. Also, if measures are ended just before the threshold 
is reached, the overall fatality rate rises sharply similarly. For values below that threshold however 
here no decrease in total fatalities is predicted when using lower thresholds of the fatality rate to 
end isolation. These results are also consistent with the idea that isolation of the age groups more 
vulnerable to the disease should be maintained. 
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Conclusions on the impact of interventions 
The impact of specific interventions on the outbreak time course, number of cases and outcome of 
fatalities were evaluated. Data available from the COVID19 outbreak as of early April 2020 was used. 
Our preliminary results for scenarios above and parameter values used indicate that: 

1. Universal social isolation measures may be effective in reducing total fatalities only if they are 
strict and the average number of daily social interactions is reduced to very low numbers. 

2. Selective isolation of only the age groups most vulnerable to the disease (i.e. older than 60) 
appears almost as effective in reducing total fatalities but at a much lower economic damage. The 
comparison between impacts of social isolation interventions to all or selective by age on the final 
total number of fatalities (Figure 13 ) shows that the isolation of the elderly can achieve equivalent 
impact to that of all. 

3. An increase in the number of critical care beds could save up significant numbers of lives. Using 
our current parameters values, for a one million population, an estimate of 8 fatalities could be 
avoided per extra available critical care unit. 

4. The use of protective equipment (PPE) appears capable of very significantly reducing total 
fatalities if implemented extensively and to a high degree;  

5. Extensive random testing of the population leading to infection recognition and subsequent 
immediate (self) isolation of the infected individuals, can dramatically reduce the total fatalities but 
only if implemented to almost the entire population and sustained over time. 

6. Ending isolation measures with R0 above one (with a safety factor) appears to renders the 
previous isolation measures useless as fatality rate eventually reaches values close to if nothing was 
ever done;  

7. Ending isolation measures only for the population under 60 y/o with R0 values still above one 
increases total fatalities but only around half as much as if isolation is ended for everyone. 

8. A threshold value for daily fatality rate (equivalent to the R0 below one) appears to exist for the 
feasible end of isolation measures. Daily fatality rates are known very accurately unlike the R0 and 
could be used criteria for intervention. In Figure 14 the impacts on total final number of fatalities of 
the withdrawal of social isolation from threshold values for (R0) and of daily fatality rate per million 
people are shown. A comparison between the cases when withdrawal is done universally or 
restricted only to those under 60 years old is shown. 

 It is important to note that any interpretation of the above results for the COVID19 outbreak 
interventions must be considered only qualitatively at this stage due to the low confidence (lack of 
complete and valid data) on the parameter values available at the time of writing. Any quantitative 
interpretation of the results must be accompanied with a critical discussion in terms of the model 
limitations and its frame of application. Next immediate steps involve the sensitivity analysis of the 
parameters with the lowest confidence. A roadmap for model expansion and broader 
implementation is discussed below. 
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Figure 13. Comparison between impacts of social isolation interventions to all or selective by age on the 
final total number of fatalities. 

  
 

Figure 14. Impacts on total final number of fatalities of the withdrawal of social isolation from threshold 
values for (R0) (left) and of daily fatality rate per million people (right). Comparison between impacts when 
withdrawal is universal or only to those under 60 years old. 

Roadmap for model expansion and application 
The model requires parameter calibration against valid data from representative populated cities. 
Data from cities in which population is typically very interconnected socially in public areas and 
public transport is widely used, are particularly suited for calibration of this model. 

 The model in its current version would benefit from more detailed descriptions and sub models 
of some of the intervention relevant parameters such as the levels of social interaction and personal 
protection measures. 

 The model modularity and its fast computation allows for its easy scale up into multiple 
population nucleus that could be simulated in parallel with degrees of interconnectivity among 
them. Separate independent copies of the model can be run in parallel one for e.g. each city in a 
region or country and migration terms can be added between cities. Interventions can then be 
defined to include e.g. travel restrictions between those cities at different levels. 

 The mechanistic nature of the model makes it also very suitable for the evaluation of advanced 
optimisation and optimum control strategies. Its capacity of describing complex interactions makes 
it also of potentially great use to develop advanced artificial intelligence (AI) algorithms to aide and 
provide advice to authorities during decision making. AI algorithms could be trained by evaluation 
of very large numbers of scenarios combining static and dynamic interventions of different types 
against total fatalities and economic damage.  
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Supplementary Information and source code 
The for Matlab® source code and Excel file containing all parameter values used as well as a non-
age segregated version of the model are available at https://github.com/EnvBioProM/COVID_Model 
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Appendix  

Appendix  I. Epidemiological and clinical parameters per age group: COVID19 case study 

 
Table A1. Default epidemiological and clinical parameters per age group used in the COVID19 

outbreak case study simulations presented. 

Parameter 0s 10s 20s 30s 40s 50s 60s 70s 80+ 

fhn_t 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

fs_ps 0.692 0.692 0.692 0.692 0.692 0.692 0.692 0.692 0.692 

fsh_s 0.0185 0.0095 0.0082 0.0109 0.0157 0.0206 0.0304 0.0388 0.0345 

fsc_sh 0.05 0.05 0.05 0.05 0.063 0.122 0.274 0.432 0.709 

fd_sc 0.0000 0.2564 0.2154 0.2693 0.2443 0.2204 0.2102 0.3433 0.4979 

fr_ps 1- fs_ps 1- fs_ps 1- fs_ps 1- fs_ps 1- fs_ps 1- fs_ps 1- fs_ps 1- fs_ps 1- fs_ps 

fr_s 1- fsh_s 1- fsh_s 1- fsh_s 1- fsh_s 1- fsh_s 1- fsh_s 1- fsh_s 1- fsh_s 1- fsh_s 

fr_sh 1- fsc_sh 1- fsc_sh 1- fsc_sh 1- fsc_sh 1- fsc_sh 1- fsc_sh 1- fsc_sh 1- fsc_sh 1- fsc_sh 

fr_sc 1- fd_sc 1- fd_sc 1- fd_sc 1- fd_sc 1- fd_sc 1- fd_sc 1- fd_sc 1- fd_sc 1- fd_sc 

ts_ps 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 

tsh_s 7 7 7 7 7 7 7 7 7 

tsc_sh 5 5 5 5 5 5 5 5 5 

td_sc 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 

td_nc 1 1 1 1 1 1 1 1 1 

tr_ps 14 14 14 14 14 14 14 14 14 

tr_s 9 9 9 9 9 9 9 9 9 

tr_sh 14 14 14 14 14 14 14 14 14 

tr_sc 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 
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Appendix  II. Data sources for the epidemiological and clinical parameters: COVID19 case study 

Table A2. Data sources and level of confidence assigned to the epidemiological and clinical 
parameters from Table A1 for the COVID19 outbreak case study. 

Parameter Sources and details of estimation Confidence 
Level 

fhn_t Estimated (no basis) VL 

fs_ps Nishiura et al., 2020 L 

fsh_s Ministerio Sanidad de España:Act. 64 COVID19; Russell et al. (2020)  VL 

fsc_sh Ferguson et al. (2020) M 

fd_sc Ministerio Sanidad España: Act. 64 COVID19;  Ferguson et al. (2020) M 

fr_ps Calculated (1 – fs_ps) M 

fr_s Calculated (1 – fsh_s) M 

fr_sh Calculated (1 – fsc_sh) M 

fr_sc Calculated (1 – fd_sc) M 

ts_ps Lauer et al. 2019 M 

tsh_s Bendix A., 2020; Zhou et al., 2020 M 

tsc_sh Zhou et al., 2020 M 

td_sc Zhou et al., 2020 M 

td_nc Estimated as one day M 

tr_ps Estimated by analogy L 

tr_s Estimated by analogy L 

tr_sh Zhou et al., 2020 M 

tr_sc Zhou et al., 2020 M 
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Appendix  III. Behavioural and intervention parameters per age group: COVID19 case study 

Table A3. Behavioural and intervention parameter values per age as selected for the case study 

Parameter* 0s 10s 20s 30s 40s 50s 60s 70s 80+ 

nih 10 10 10 10 10 10 10 10 10 

rfips 0.1 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

rfis 0.1 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

lpah 0.1 0.5 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

lpaps 1 1 1 1 1 1 1 1 1 

lpas 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
*Rationale: No reduction factor (rfips = 1) of their social interactivity respect to healthy ones is applied for pre-
symptomatic infected individuals as they are ignorant of their condition; Symptomatic infected individuals 
are expected to reduce their social interactivity respect to healthy ones as they feel sick (rfips < 1) ; The default 
level of personal protection and awareness (lpa) in children and youngsters is taken as smaller than that of 
adults; Adult symptomatic individuals are expected to take higher level of personal protection and awareness 
(lpas) to not spread any general disease to others irrespective of the knowledge of their specific condition. 
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Appendix  IV. Default scenarios used for COVID19 outbreak under no interventions 

The model simulation of the outbreak time course under the default parameters and no 
intervention is presented in Figure A4. 

 

 
Figure A4. Model simulation of the COVID19 outbreak under no interventions using the default parameters 
in S1 and S3. The time course profiles of population in each stage is presented (top) as well as those for the 
total number active cases (middle left); reproduction number (R0) (middle right);  the number of critical cases 
(bottom left) and the number of fatalities (bottom right). Numbers are in percentage of the total population of 
all ages. 
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Appendix  V. Matrix of state transitions  

 

  
Figure A5. Matrix of state transitions as governed by the infection and transition rates defined. 

           Rates
Stages     

ri_ps
(#infPS/d)

ri_s
(#infS/d)

rs_ps
(#PS-S/d)

rsh_s
(#S-SH/d)

rsc_sh
(#SH-SC/d)

rd_sc
(#SC-D/d)

rr_ps
(#PS-R/d)

rr_s
(#S-R/d)

rr_sh
(#SH-R/d)

rr_sc
(#SC-R/d)

Nnh 0 0 0 0 0 0 0 0 0 0

Nh -1 -1 0 0 0 0 0 0 0 0

Nps 1 1 -1 0 0 0 -1 0 0 0

Ns 0 0 1 -1 0 0 0 -1 0 0

Nsh 0 0 0 1 -1 0 0 0 -1 0

Nsc 0 0 0 0 1 -1 0 0 0 -1

Nd 0 0 0 0 0 1 0 0 0 0

Nr 0 0 0 0 0 0 1 1 1 1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2020. .https://doi.org/10.1101/2020.04.04.20053017doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.04.20053017
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Model description
	Model constituents
	Modelling interventions
	Rates of infection
	Rates of transition between infection stages
	Stage transition equations
	Reproduction number (R0) and its calculation
	Model limitations

	Impact of static interventions on a COVID19 outbreak case study
	Scenario #1. Universal social isolation
	Scenario #2. Selective social isolation of the elderly
	Scenario #3. Selective social isolation of the young
	Scenario #4. Selective social isolation of young and elderly combined
	Scenario #5. Increase on critical health care resources
	Scenario #6. Increase in personal protective measures
	Scenario #7. Awareness of infection by extensive random testing

	Impact of dynamic interventions on a COVID19 outbreak case study
	Scenario #8. Complete end of social isolation once R0 threshold is reached
	Scenario #9. End of social isolation except for elderly once R0 threshold is reached
	Scenario #10. End of social isolation once fatality rate threshold is reached
	Scenario #11. End of social isolation except for elderly once fatality rate threshold is reached

	Conclusions on the impact of interventions
	Roadmap for model expansion and application
	Supplementary Information and source code
	Acknowledgements
	References
	Appendix
	Appendix  I. Epidemiological and clinical parameters per age group: COVID19 case study
	Appendix  II. Data sources for the epidemiological and clinical parameters: COVID19 case study
	Appendix  III. Behavioural and intervention parameters per age group: COVID19 case study
	Appendix  IV. Default scenarios used for COVID19 outbreak under no interventions
	Appendix  V. Matrix of state transitions


