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ABSTRACT 

This paper deals with the mathematical modeling and numerical simulations related to the 

coronavirus dynamics. A description is developed based on the framework of susceptible-

exposed-infectious-recovered model. Initially, a model verification is carried out calibrating 

system parameters with data from China, Italy, Iran and Brazil. Afterward, numerical 

simulations are performed to analyzed different scenarios of COVID-19 in Brazil. Results 

show the importance of governmental and individual actions to control the number and the 

period of the critical situations related to the pandemic. 

 

Keywords: COVID-19, coronavirus, nCoV, nonlinear dynamics, mathematical model, 

population dynamics. 

 

1. INTRODUCTION 

 

Coronaviruses is related to illness that vary from a common cold to more severe diseases 

related to respiratory syndromes. Coronavirus disease 2019 (COVID-19) was discovered in 

2019, the first time identified in humans. It is zoonotic, which means that it is transmitted 

among animals and humans. In January 21, 2019, World Health Organization (WHO) 

published the first Situation Report about the novel coronavirus (2019-nCoV). It announces to 

the world the origin of the COVID-19, reporting cases of pneumonia of unknown etiology 

detected in Wuhan City, Hubei Province of China. Afterward, the situation evolves to a huge 

global crisis with severe effects in Italy, Iran, Spain, South Korea and all over the world. In 11 

March 2020, WHO declared that COVID-19 can be characterized as pandemic. 
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This dramatic situation points that all tools can be useful to define the best strategies for 

the public health system. In this regard, mathematical modeling is an interesting approach that 

can allow the evaluation of different scenarios, furnishing information for a proper support for 

health system decisions. In general, nonlinear dynamics of biological and biomedical systems 

is the objective of several researches that can be based on mathematical modeling or time series 

analysis (Savi, 2005). In particular, coronavirus propagation can be described by a 

mathematical model that allows the nonlinear dynamics analysis, representing different 

populations related to the phenomenon. 

Literature presents some examples related to the dynamics of infectious diseases. 

Different kinds of models can be employed, essentially considering nonlinear governing 

equations. Rihan et al. (2018) described the dynamics of coronavirus infection in human, 

establishing interaction among human cells and the virus.  

Chen et al. (2020) developed a mathematical model for calculating the transmissibility 

of the virus considering a simplified version of the bats-hosts-reservoir-people transmission 

model, defined as a reservoir-people model. Results follow the general trend of the initial 

propagation. Li et al. (2020) estimated characteristics of the epidemiologic time distribution, 

exploiting some pattern trends of transmission propagation. Riou & Althaus (2020) exploited 

the pattern of human-to-human transmission of novel coronavirus in Wuhan, China. Two key 

parameters are considered: basic reproduction number that defines the infectious propagation; 

and the individual variation in the number of secondary cases. Uncertainty quantification tools 

were employed to define the transmission patterns. 

Susceptible-exposed-infectious-recovered (SEIR) models are an interesting approach to 

deal with the mathematical modeling of coronavirus transmission. Wu et al. (2020) 

investigated Wuhan – China case, evaluating nowcasting and forecasting domestic and 

international spread outbreak. Lin et al. (2020) proposed a model considering individual 

reaction, governmental action and emigration. The model is based on the original work of He 

et al. (2013) that proposed a model to describe the 1918 influenza.  

This mathematical model proposed by Lin et al. (2020) seems to be capable to capture 

the general propagation of the novel coronavirus, being employed in this work to evaluate 

different scenarios of the propagation of coronavirus in Brazil. Initially, a model verification is 

carried out considering infected population evolution of China, Italy, Iran and Brazil. 

Afterward, Brazilian COVID-19 evolution is investigated, simulating different scenarios 

defined based on governmental and individual reactions.  
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2. MATHEMATICAL MODEL 

 

A frame-by-frame description of the reality can be represented by a set of differential 

equations. By assuming only time evolution of state variables, 𝑥 ∈ ℜ!, spatial aspects are not 

of concern, allowing to establish a governing equation of the form: �̇� = 𝑓(𝑥), 𝑥 ∈ ℜ!. The 

description of coronavirus disease 2019 dynamics defines its propagation considering animals 

and humans transmission. Different kinds of populations need to be defined in order to have a 

proper scenario of the disease propagation.  

Lin et al. (2020) proposes a susceptible-exposed-infectious-removed (SEIR) 

framework model to describe the coronavirus disease 2019 (COVID-19). This model was 

inspired on the original model of He et al. (2013) for influenza. Essentially, the description 

considers a total population of size N that contains two classes: D is a public perception of risk 

regarding severe cases and deaths; and C represents the number of reported and non-reported 

cases. In addition, S is the susceptible population, E is the exposed population, I is the infectious 

population and R is the removed population that includes both recovered and deaths. A  

simplified version of the model considers only person-to-person transmission, and therefore, 

zoonotic effect is neglected. This scenario assumes the second stage of the Wuhan – China 

case, after the close of the Huanan Seafood Wholesale Market. Another simplification of the 

original model considers that emigration effect is also neglected. Therefore, the simplified 

version of the governing equations considers the interaction among all these populations, being 

expressed by the following set of differential equations 

�̇� = −𝛽
𝑆𝐼
𝑁  (1) 

�̇� = 𝛽
𝑆𝐼
𝑁 − 𝜎𝐸 (2) 

𝐼̇ = 𝜎𝐸 − 𝛾𝐼 (3) 

�̇� = 𝛾"𝐼 (4) 

�̇� = 𝑑𝛾𝐼 − 𝜆𝐷 (5) 

�̇� = 𝜎𝐸 (6) 

 

where the following parameters are defined: 𝛾 is the mean infectious period; 𝛾" is the delayed 

removed period, defining the relation between removed population and the infected one; 𝜎 is 

the mean latent period; 𝑑	is the proportion of severe cases; 𝜆 is the mean duration of public 

reaction.  
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The function 𝛽 = 𝛽(𝑡) represents the transmission rate that considers governmental 

action, represented by (1 − 𝛼); and the individual action, represented by the function 

;1 − #
$
<
%
. Therefore, the transmission rate is modeled as follows, 

𝛽 = 𝛽(𝑡) = 𝛽=&		(1 − 𝛼>)𝛿 (7) 

 

where 𝛽=& = 𝛽&
(()𝐻 ;𝑡 − 𝑇*!

(()< represents the nominal transmission rate and 𝐻 ;𝑡 − 𝑇*!
(()< is a 

step function with the form illustrated in Figure 1. Its use is convenient in order to contemplate 

variations of the transmission rate through time, being defined as follows. 

 

𝐻 ;𝑡 − 𝑇*!
(()< =

⎩
⎪
⎨

⎪
⎧𝛽&

(+),			if	𝑡 ≤ 𝑇*!
(+)

𝛽&
(,),			if	𝑡 ≤ 𝑇*!

(,)

𝛽&
(-),			if	𝑡 ≤ 𝑇*!

(-)

 (8) 

 

 
Figure 1: Step function employed to consider parameter variations through time. 

 

Note that, it is assumed that if 𝑇*!
(!) does not exist, the term 𝛽&

(!.+) does not exist as 

well, considering that index n is bigger than 1. Based on that, this general function can 

represent constant values, or different step functions.  

 Using the same strategy, it is defined the governmental action as follows:  

𝛼> = 	𝛼( 	𝐻(𝑡 − 𝑇/01
(() ) (9) 
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where two different steps are considered defined by time instants 𝑇/01
(+)  and 𝑇/01

(,) . 

In addition, individual action is represented by  

𝛿 = 	 I1 −
𝐷
𝑁J

%

 (10) 

 

which the intensity of responses is defined by parameter 𝜅. These parameters need to be 

adjusted for each place, being essential for the COVID-19 description. 

 In general, the parameter definitions depend on several issues, being a difficult task. In 

this regard, it should be pointed out that real data has spatial aspects that are not treated by this 

set of governing equations. Hence, this analysis is a kind of average behavior that needs a 

proper adjustment to match real data. Besides, R Li et al. (2020) evaluated Wuhan situation 

concluding that undocumented novel coronavirus infections are critical for understanding the 

overall prevalence and pandemic potential of this disease. The authors estimated that 86% of 

all infections were undocumented and that the transmission rate per person of undocumented 

infections was 55% of documented infections. This aspect makes the description even more 

complex. 

The use of step functions to define some parameters allows a proper representation of 

different scenarios, especially the transmission rate. It is also important to observe that either 

governmental or individual actions have a delayed effect on system dynamics. Virus mutations 

are another relevant aspect related to the description of coronavirus dynamics that can 

dramatically alter the system response, but are not treated here.  

 Numerical simulations are performed considering the fourth-order Runge-Kutta 

method. The next sections treat the COVID-19 dynamics considering two different objectives. 

Initially, the next section performed a model verification using information from China, Italy, 

Iran and Brazil. Afterward, the subsequent section evaluates different scenarios for the 

Brazilian case, using the parameters adjusted for the verification cases.   

 

3. MODEL VERIFICATION 

 

As an initial step of the developed analysis, a model verification is carried out using 

information available on Worldometer (https://www.worldometers.info/coronavirus/), 

considering different countries (Last updates: China – March 26, Italy – Mar 21; Iran – Mar 

26; Brazil – Mar 24). The fundamental hypothesis of the analysis is that average populations 
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of the country is of concern. Therefore, it is assumed that each country has a homogeneous 

distribution, without spatial patterns. 

Basically, information from China, Italy, Iran and Brazil are employed. This information 

is useful to calibrate the model parameters, evaluating its correspondence with real data. Table 

1 presents parameters employed for all simulations. They are based on the information of the 

Lin et al. (2020) that, in turn, is based on other references as He et al. (2010) and Breto et al. 

(2009). For more details, see other citations referenced therein. 

Table 1: Model parameters. 

Parameter Description Value 

𝜎2+ Mean latent period 3 days 

𝛾2+ Mean infectious period 5 days 

𝛾"2+ Delayed removed period 22 days 

d Proportion of severe cases 0.2 

𝜆2+ Mean duration of public reaction 11.2 days 

 

In addition, susceptible population initial condition is assumed to be 𝑆& = 0.9𝑁. Another 

information needed for the model is the number exposed persons for each infected person. It is 

assumed that each infected person has the potential to expose 20 persons, 𝐸& = 20𝐼&. 

Transmission rate considers specific parameters for each case. Nevertheless, the 

reference values are presented in Table 2. 

 

Table 2: Reference parameters for transmission rate. 

Parameter Value 

𝛼( [0, 0.4239,  0.8478] 

𝜅 1117.3 

 

Other parameters are adjusted depending on the case. In the sequence, the dynamics of 

four different countries is analyzed in order to promote a model verification.  

 

3.1  Verification Simulations 

 

The first scenario for the model verification is based on China results. It should be pointed 

out that this analysis considers all cases in China, not restricted to Wuhan. Parameters presented 
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in Table 3 are employed for simulations with a population of N = 1.43´109 and an initial state 

with 554 infected persons (𝐼& = 554). It should be highlighted again that these parameters are 

average ones since they are valid for the whole country. Of course, reaction time is different 

from the distinct parts of the country, which makes necessary to estimate this parameter based 

on the real data in an average way. Figure 2 presents infected population evolution showing a 

good agreement between simulation and real data. 

 

Table 3: Model parameters for the transmission rate of China. 

Parameter Value 

𝛽& 0.514 

𝑇/01
(()  [13, 29] days  

 

 
Figure 2: China - infected population through time. 

 

Due to chronological issues, Chinese case is the one with a large number of real data, 

which makes it useful to establish a comparison of the model prediction error. Figure 3 presents 

daily errors from china, highlighting the average and maximum errors. Note that the maximum 

error is less than 28%, with an average error of 13.58%. 
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Figure 3: China – prediction errors between the simulated and real data of the infected 

population. 

 
For the following three cases, Italy, Iran and Brazil, it is assumed that the second stage 

of governmental action has not been reached yet. Therefore, it is represented by a step function 

𝛼( =	 [0, 0.4239], which means that 𝑇/01
(,)  is neglected and 𝛼- does not exist. 

Italian case is now in focus considering parameters presented in Table 4 with a population 

of N = 60.48´106 and an initial state with 20 infected persons (𝐼& = 20). A step function is 

considered to define the nominal transmission rate, 𝛽&, due to extreme governmental actions 

that have not been effective until present days. Figure 4 presents the infected population 

simulation compared with real data, showing a good agreement. Figure 5 presents daily errors 

from Italy, highlighting the average and maximum errors. For this case, the maximum error is 

less than 19%, with an average error of 10.60%. 

 

Table 4: Model parameters for the transmission rate of Italy. 

 

Parameter Value 

𝛽&
(() [0.594  1.1] 

𝑇*!
(+) 22 days 

𝑇/01
(+)  22 days 
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Figure 4: Italy - infected population through time. 

 

 
Figure 5: Italy – prediction errors between the simulated and real data of the infected 

population. 

 

Iran case is now treated considering the parameters presented in Table 5 with a 

population of N = 81.16´106 and an initial state with 20 infected persons (𝐼& = 20). Results are 

presented in Figure 6 showing a good agreement with real data. Figure 7 presents daily errors, 

highlighting the average and maximum errors. Although the average error is 15.46%, the 

maximum error is around 42%, which is a large value. Nevertheless, it should be observed that 

the big values are related to the beginning of the predictions, probably due to problems with 

the original data. 
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Table 5: Model parameters for the transmission rate of Iran. 

Parameter Value 

𝛽&
(+) 0.594 

𝑇/01
(+)  24 days 

 

 
Figure 6: Iran - infected population through time. 

 

 
Figure 7: Iran – prediction errors between the simulated and real data of the infected 

population. 

 

Brazilian case is now of concern considering parameters presented in Table 6 with a 

population of N = 209.3´106 and an initial state with 10 infected person (𝐼& = 10). Figure 8 

presents the infected population evolution showing that the same trend of the other cases is 
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followed, being enough to have a general scenario. It should be highlighted that Brazilian 

outbreak is in the beginning, with information that is not enough for a better calibration.  

 

Table 6: Model parameters for the transmission rate of Brazil. 

Parameter Value 

𝛽&
(+) 0.675 

𝑇/01
(+)    17 days 

 

 
Figure 8: Brazil - infected population through time. 

 

4. BRAZILIAN SCENARIOS 

 

This section has the objective to investigate different scenarios related to COVID-19 

dynamics in Brazil. Parameters adjusted on the previous section are employed to evaluate 

different scenarios varying governmental and individual reactions. It should be pointed out that 

this adjustment does not have enough information, but it is possible to perform, at least a 

qualitative analysis of the COVID-19 dynamics in Brazil.  

Initially, two different transmission rates are defined: naive scenario, without 

intervention (𝛼 = 𝜅 = 0); and with governmental and individual actions (𝛼 ≠ 0; 𝜅 ≠ 0). 

Figure 9 presents numerical simulations together with the real data that is presented just for the 

first days. The same parameters presented in Table 6 are employed assuming 	

𝑇/01
(,) = 37	days. A logarithm scale is adopted since the naive scenario has a dramatic increase 

of the infected cases. Besides the big difference between both cases, it is clear the huge impact 
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of variations on the transmission rate function that represents governmental and individual 

actions. It is noticeable that the effective actions tend to reduce the infected population, 

reducing the final crisis period as well. 

 

 
Figure 9: Transmission evolution considering two different scenarios for different 

transmission rates: naive scenario, without intervention (𝛼 = 𝜅 = 0); and with governmental 

intervention and individual action with the values adjusted in the previous section. 

 

 

A more detailed analysis of the COVID-19 dynamics is treated considering the other 

populations for the case with intervention treated in Figure 9 (parameters of Table 6 with 	

𝑇/01
(,) = 37	days). Figure 10 presents all system state variables, showing the susceptible, S, 

exposed, E, infected, I, removed, R, public perception, D, and cumulative cases, C. The 

interaction among all the populations defines a kind of equilibrium established by the 

governing equations.  
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Figure 10: Population interactions considering a scenario with intervention: susceptible, S, 

exposed, E, infected, I, removed, R, public perception, D, and cumulative cases, C. 

 

 

 Nowadays, one of the most relevant issue to be discussed in terms of propagation is the 

governmental and individual actions. A parametric analysis is of concern considering distinct 

scenarios related to intervention. Scenarios defined by the variation of the intervention 

moments is initially treated. The moment of the governmental action start, represented by 

parameter 𝑇/01
(+)  (day), is analyzed in Figure 11, considering the following values: 17, 22, 27 

and 32 and 𝑇/01
(,)  is assumed to be 20 days after 𝑇/01

(+) . Note that the delay to the start of the 

governmental action dramatically alters the response, increasing the number infected 

population and its duration. The same conclusion can be established considering the second 

governmental action, represented by 𝑇/01
(,)  (day), presented in Figure 12 that shows the same 

trend considering a different set of start instants: 37, 42, 47 and 52. 
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Figure 11: Infected population evolution considering different first governmental action start, 

represented by parameter 𝑇/01
(+)  (day): 17, 22, 27 and 32. 

 

 
 

Figure 12: Infected population evolution considering different second governmental action 

start, represented by parameter 𝑇/01
(,)  (day): 37, 42, 47 and 52. 

 

A scenario with a governmental action that starts, finishes and then restarts again is 

now evaluated, considering the following parameters: 𝑇/01
(() = [17, 37, 52] and 𝛼( =

[0, 0.4239, 0	, 0.8478].  This scenario is compared with the usual one where the intervention 

starts in a level and then evolve to a more severe situation, considering: 𝑇/01
(() = [17, 52] and 

𝛼( = [0, 0.4239, 0.8478]. Figure 13 shows both situations represented by the transmission 
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function and the evolution of infected populations. It is clear that the interruption of the 

governmental action causes a dramatic worst scenario.  

 

 

 

 
Figure 13: Infected population evolution considering different scenarios related to the 

governmental action, 𝛼>. 
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5. CONCLUSIONS 

 

A mathematical model based on the susceptible-exposed-infectious-recovered 

framework is employed to describe the COVID-19 evolution. A verification procedure is 

performed based on the available data from China, Italy, Iran and Brazil. Afterward, different 

scenarios from Brazil is analyzed. Results clearly show that governmental and individual 

actions are essential to reduce the infected populations and also the total period of the crisis. 

The mathematical model can be improved in order to include more phenomenological 

information that can increase its capability to describe different scenarios. Nevertheless, it 

should be pointed out that the mathematical model and its numerical simulations are important 

tools that can be useful for public health planning.  
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