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Abstract:
A compounded method – exploiting the searching capabilities of an
operation research algorithm and the power of bootstrap techniques
– is presented. The resulting algorithm has been successfully tested to
predict the turning point reached by the epidemic curve followed by
the CoViD–19 virus in Italy. Futures lines of research, which include
the generalization of the method to a broad set of distribution, will
be finally given.
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1. Introduction

In general, predicting the time of a peak conditional to a set of time dependent data is
a non trivial task. Often carried out in a multi-tasking fashion, requiring the availability
of time and resources, the correct estimation of future turning points can be important
in many instances but becomes crucial in the case of epidemic events. These are the
typical circumstances when the forecasting exercise is conducted on-line and on a time
series exhibiting a small sample size. However, under these conditions, the problem
might become particularly complicated since statistical methods usually employed for
this purposes – for example of the type hidden Markov (see, e.g. Hamilton (1989) and
Koskinen and Öller (2004)) or non parametric (see, e.g., Delgado and Hidalgo (2000))
models – not only are very demanding in terms of building and tuning procedures, but
typically require the availability of a “long” stretch of data. In addition to that, the
time series related to epidemics usually show highly non-linear dynamics, which, if
not pre-processed, make them not suitable for standard linear models. On the other
hand, attempting to fit non-linear models – e.g. of the type Self Exciting Threshold
Autoregressive (see, for example Clements et al. (2003)) or artificial neural network
(Hassoun et al. (1995)) – it is not a viable options, due to the above mentioned sample
size issues. In any case, when an ill-tuned model is fitted on a time series, reliable
outcomes should not be reasonably expected. Therefore, an approach able to perform
under the above outlined conditions, is proposed. In essence, the problem is solved by
building a unified framework in which two powerful techniques – belonging to two
different branches of computational statistics – are sequentially employed to lower the
amount of uncertainty embedded in the observed data and to find a (possibly global)
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optimum through which the “best” statistical distribution for the data set at hand is
found.

2. The unified framework

As above stated, the approach studied in this paper, is rooted in a unified framework
in which two powerful paradigms are exploited. The first one, which belongs to the so
called computer intensive statistical methods, is the bootstrap, which will be detailed
in 4. By using this technique, an high number of “bona fide” replications of the original
data are generated. In essence, each of the bootstrap series obtained “mimics” the
observations recorded, so that the number of series observed – which in real life is
typically equal to one – becomes (very) high. Repeating a mathematical operation
(e.g. the computation of an estimator) B times makes possible i) the assessment of
the degree of uncertainty associated with the obtained estimations and ii) less biased
estimators. The latter goal is achievable by design of the bootstrap method, as through
its replications the use of central tendency functions, such as mean or median, are
possible. The second tool employed, is an optimization method for the selection of
the “best” parametrization of a class of statistical distribution commonly used in the
literature. In practice, this step is performed in the so called bootstrap world, meaning
that it is sequentially repeated for each bootstrap sample. By doing so, the degree of
uncertainty associated with the selected distribution is lower than the one obtainable
by processing just one set of data (the real observations).

3. Data and contagion indicator

This paper uses the official data diffused daily by the National Institute of Health –
an agency of the Italian Ministry of health – and the Department of Civil Protection.
The data set includes 38 daily data points collected at national level during the period
starting from January 19th to March 27th. The used indicator – which will refer to as
the variable of interest – is obtained by subtracting, for each day, from the total number
of people tested positive of Corona virus the number of the deaths and of the recovery.

4. The Resampling Method

The choice of the most appropriate resampling method is far from being an easy task,
especially when the identical and independent distribution iid assumption (Efron’s ini-
tial bootstrap method) is violated. Under dependence structures embedded in the data,
simple sampling with replacement has been proved – see, for example Carlstein et al.
(1986) – to yield suboptimal results. As a matter of fact, iid–based bootstrap schemes
are not designed to capture, and therefore replicate, dependence structures. This is es-
pecially true under the actual conditions (small sample sizes and strong non-linearity).
In such cases, selecting the “right” resampling scheme becomes a particularly challeng-
ing task as many resamplig schemes are not designed to capture the dynamics typically
found in epidemiology. As an example, the well known resampling method called sieve
bootstrap – introduced by Bühlmann et al. (1997) – cannot be employed due to the
quadratic shape almost always found in this type of time series.

In more details, while in the classic bootstrap an ensemble Ω represents the
population of reference the observed time series is drawn from, in MEB a large number
of ensembles (subsets), say {ω1, . . . ,ωN} becomes the elements belonging to Ω, each
of them containing a large number of replicates {x1, . . . , xJ}. Perhaps, the most im-
portant characteristic of the MEB algorithm is that its design guarantees the inference
process to satisfy the ergodic theorem. Formally, denoting by the symbol | · | the car-
dinality function (counting function) of a given ensemble of time series {xt ∈ ωi; i =
1, . . . , N}, the MEB procedure generates a set of disjoint subsets ΩN ≡ ω1∩ω1 · · ·∩ωN
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s.t. EΩN ≈ µ(xt), being µ(·) the sample mean. Furthermore, basic shape and proba-
bilistic structure (dependency) is guaranteed to be retained ∀x∗t,j ⊂ ωi ⊂ Ω.

MEB resampling scheme has not negligible advantages over many of the avail-
able bootstrap methods: it does not require complicated tune up procedures (unavoid-
able, for example, in the case of resampling methods of the type Block Bootstrap) and it
is effective under non-stationarity. MEB method relies on the entropy theory and the re-
lated concept of (un)informativeness of a system. In particular, the Maximum Entropy
of a given density δ(x), is chosen so that the expectation of the Shannon Information
H = E(− log δ(x)), is maximized, i.e.

max
(δ)

H = E(− log δ(x)).

Under mass and mean preserving constraints, this resampling scheme gener-
ates an ensemble of time series from a density function satisfying (4). Technically, MEB
algorithm can be broken down in the 8 steps below detailed.

1. A sorting matrix of dimension T × 2, say S1, accommodates in its first column the time series of interest xt
and an Index Set – i.e. Iind = {2, 3, . . . , T} – in the other one;

2. S1 is sorted according to the numbers placed in the first column. As a result, the order statistics x(t) and the
vector Iord of sorted Iind are generated and respectively placed in the first and second column;

3. compute “intermediate points”, averaging over successive order statistics, i.e. ct =
x(t)+x(t+1)

2 , t = 1, . . . T−1
and define intervals It constructed on ct and rt, using ad hoc weights obtained by solving the following set
of equations:

i)

f(x) =
1

r1
exp(

[x− c1]

r1
); x ∈ I1; r1 =

3x(1)

4
+
x(2)

4

ii)

f(x) =
1

ck − ck−1
; x ∈ (ck; ck+1)],

rk =
x(k−1)

4
+
x(k)

2
+
x(k+1)

4
; k = 1, . . . , T − 1;

iii)

f(x) =
1

rT
exp

(
[cT−1 − x]

)
rT

;x ∈ IT ; rT =
xT−1

4
+

3xT
4

;

4. from a uniform distribution in [0, 1], generate T pseudorandom numbers and define the interval Rt =
(t/T ; t+ 1/T ] for t = 0, 1, . . . , T − 1, in which each pj falls;

5. create a matching between Rt and It according to the following equations:

xj,t,me = cT−1 − |θ| ln(1− pj) if pj ∈ R0,

xj,t,me = c1 − |θ||ln(1− pj)| if pj ∈ RT−1,

so that a set of T values {xj,t}, as the jth resample is obtained. Here θ is the mean of the standard exponential
distribution;
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6. a new T × 2 sorting matrix S2 is defined and the T members of the set {xj,t} for the jth resample obtained
in Step 5 is reordered in an increasing order of magnitude and placed in column 1. The sorted Iord values
(Step 2) are placed in column 2 of S2;

7. matrix S2 is sorted according to the second column so that the order {1, 2, . . . , T} is there restored. The
jointly sorted elements of column 1 is denoted by {xS,j,t}, where S recalls the sorting step;

8. Repeat Steps 1 to 7 a large number of times.

5. Bootstrap driven forecast optimization

This section aims to define an alternative method to forecast our variable of interest
using an optimization approach to fit a set of distribution functions on bootstrap repli-
cations.

The variable of interest is assumed to approximately describe a logistic func-
tion, scaled by a normalizing parameter h (representing the asymptotic number of
cases)

Fig. 1. COVID19 Active cases

Total cases

Days

h1 * CumulativeNormal(m,s) h2 * CumulativeNormal(m,s) h3 * CumulativeNormal(m,s) h4 * CumulativeNormal(m,s)

h4

h3

h2

h1

and its derivative is a Gaussian function re-scaled by the parameter h.

f(t | h, µ, σ) = h
1

σ
√

2π
e−

1
2 ( t−µσ )

2

where t = days since pandemic has started in Italy
h = magnitude scale
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µ = peak of daily cases (scale)
σ = standard deviation (shape)

So, given

• the parameter vector θ = (h, µ, σ), where θ ∈ Θ

• the total active cases xt since the infection spread

• a generic bootstrap distribution x∗t,i ∈ ω ⊂ Ω where i ∈ {1..N} is the i-th boot-
strap within N replicates

• x̂∗t,i = f(t | h, µ, σ) where x̂∗t,i is the theoretical value

the objective is

∀i ∈ {1..N} min
θi∈Θ

MSEi(x
∗
t,i, x̂

∗
t,i) = min

θi∈Θ
AV Gi(x

∗
t,i − x̂∗t,i)2

This is a non-linear unconstrained optimization problem which cannot be ad-
dressed using standard global optimization methods (Simplex, Branch and Bound or
Branch and Cut algorithm), which are designed for Linear Programming LP (Murty
(1983)) and Mixed-Integer Linear Programming MILP (Bénichou et al. (1971)), within
the field of discrete combinatorial problems (Papadimitriou and Steiglitz (1998)).

Local search Simulated Annealing meta-heuristic to approximate global opti-
mization can be used to solve unconstrained non-linear problems in a large space.

6. Simulated Annealing Optimization

Simulated annealing (SA), following Van Laarhoven and Aarts (1987), is a probabilistic
technique for approximating the global optimum of a given function. Specifically, it is
a metaheuristic used to approximate global optimization in a large search space for an
optimization problem.

The name and inspiration come from annealing in metallurgy, a technique in-
volving heating and controlled cooling of a material to increase the size of its crystals
and reduce their defects. Both are attributes of the material that depend on its ther-
modynamic free energy. Heating and cooling the material affects both the temperature
and the thermodynamic free energy. Simulated annealing can be used to approximate
the global minimum for a function with many variables. In 1983, this approach was
used by Kirkpatrick et al. (1983) for a solution of the traveling salesman problem. They
also proposed its current name, simulated annealing.

This notion of slow cooling implemented in the simulated annealing algorithm
is interpreted as a slow decrease in the probability of accepting worse solutions as
the solution space is explored. Accepting worse solutions is a fundamental property of
meta-heuristics because it allows for a more extensive search for the global optimal
solution.

In general, simulated annealing algorithms work as below explained. The tem-
perature progressively decreases from an initial positive value to zero. At each time
step, the algorithm randomly selects some neighbor state s∗ of the current state s,
measures its energy (in this case the MSEi(x

∗
t,i) on the bootstrap distribution) and

decides between moving the system to the state s∗ or staying in state s according to
the temperature-dependent probabilities of selecting better or worse solutions, which
during the search respectively remain at 1 (or positive) and decrease towards zero.
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6.1. Simulated annealing on bootstrap pseudocode
The following pseudocode presents the simulated annealing heuristic applied to boot-
strap replicates. For each bootstrap it starts from a state s0 and continues searching
solutions until temperature decay reaches a low temperature. In the process, the call
Neighbour(s, φ) should generate a randomly chosen neighbour of a given state s; the
call Random U(0, 1) should pick and return a value in the range [0, 1], uniformly at
random. The annealing schedule is defined by the temperature decay based on the
fixed cooling rate ρ.

• Let current temperature T = t0

• Set Cooling rate ρ

• For each bootstrap series i in {1, . . . , N}

– Let current solution s = s0

– Loop while temperature T > 1

* Pick a random neighbor, snew ← Neighbor(s, φ), where φ is the radius
around s

* if Prob(E(s), E(snew) | T, kB) ≥ Random U(0, 1):
s← snew

* T ← T ∗ (1− ρ)

– Output the final state s on i-th bootstrap

where Prob(E(s), E(snew) | T, kB) is the acceptance probability at each iteration given
temperature T and Boltzmann constant (see Aarts and Korst (1988)) kB

Prob(E(s), E(snew) | T, kB) =

{
1 if E(s) > E(snew)

exp(E(s)−E(snew)
kBT

) otherwise.

7. Empirical evidences

In order to improve local search speed the parameter space Θ can be bounded to
Θ′ ⊂ Θ removing useless tails. No information is lost if parameters space is reduced to

h ∈ [100000, 180000], µ ∈ [35, 50], σ ∈ [7, 13]

SA parameters has been recursively tuned and the procedure improved using an initial
temperature T0 = 10000, a cooling rate ρ = 0.0006, Boltzmann constant kB = 100 and
radius φ = 0.3(θmax − θmin).

Optimization procedure applied to 500 Bootstraps, derived from active case in
Italy from February 19th to March 27th, shows

Page 6 of 10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2020. .https://doi.org/10.1101/2020.04.02.20050153doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.02.20050153
http://creativecommons.org/licenses/by-nc-nd/4.0/


L. Fenga, C. Del Castello COVID-19 Estimation

Fig. 2. COVID19 bootstrap [AsymptoteClass,Peekday] frequency

AsymptoteClass(±2500)
median point 34 35 36 37 38 39 40 41 42 43 44 45 Total

100000 13 19 3 8 3 1 47
102500 22 27 6 5 3 63
105000 18 13 12 6 3 1 2 55
107500 16 5 6 4 31
110000 31 10 6 1 1 2 1 52
112500 10 3 7 2 1 1 24
115000 23 7 4 1 1 1 37
117500 11 1 2 3 1 18
120000 6 2 4 1 3 16
122500 3 3 2 8
125000 3 2 3 3 2 1 14
127500 1 1 2
130000 1 1 1 1 4
132500 1 1 3 1 1 7
135000 2 2 1 1 1 7
137500 1 3 1 1 6
140000 1 1 1 2 1 1 7
142500 1 1
145000 2 2
147500 1 1
150000 1 6 1 8
155000 1 1 2
157500 1 1 1 1 4
160000 2 1 1 4
162500 1 2 3 2 1 9
165000 2 4 3 1 10
167500 1 3 3 4 11
170000 4 6 3 3 2 18
172500 6 9 2 2 19
175000 1 1 9 1 1 13
Total 158 87 50 41 25 24 30 44 24 7 8 2 500
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with Avg(h) = 122178, Avg(µ) = 36.7, Avg(σ) = 10.8.

As an approximation, confidence bounds from normal distibution are derived
for each of the parameters, such that with 0.01 significance level

Pr(119401 ≤ h ≤ 124955) = 0.99

Pr(36.41 ≤ µ ≤ 37.07) = 0.99

Pr(10.6 ≤ σ ≤ 10.9) = 0.99

µ confidence interval points out a peak day of daily cases between March 25th and 26th,
while h magnitude parameter shows an asymptote of totale active cases curve between
120000 and 125000. The new cases curve has an asymptotic behavior, so cutting tail
beyond a 0.1 cut-off for new infections, the pandemic time window is hypothetically
over after May 16th.

This behavior is clearly described in the below charts built considering Gaus-
sian and Cumulated Gaussian around 99% confidence lower and upper bound for each
parameter.
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Fig. 3. COVID19 Active cases fitting with Cumulated Gaussian
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Fig. 4. COVID19 New active cases fitting with Gaussian
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8. Further developments

The SA optimization for fitting bootstraps derived from real data is applicable to any
kind of distribution known in literature and empirical distributions as well.

This kind of research highlights a great potential if the aforementioned pro-
cedure is enhanced with the automatic choice of known distributions ξr or empirical
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ones ξe where (ξr, ξe) are in a predefined distribution space Ξ. More in detail, the al-
gorithm could include a pre-processing light SA optimization (with an higher cooling
rate ρ to cut down the number of SA iterations) to reduce the distribution space Ξ and
the parameter space Θξ for each distribution ξ ∈ Ξ and boost the optimization search
performed by the main SA process.
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9. Disclaimer

The views and opinions expressed in this article are those of the authors and do not nec-
essarily reflect the official policy or position of the Italian National Institute of Statistics
or any other Entity.
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