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Abstract 

Objectives   COVID-19 has become a major public health problem. There is good evidence that ACE2 is a 

receptor for SARS-CoV-2, and high expression of ACE2 may increase susceptibility to infection. We aimed to 

explore risk factors affecting susceptibility to infection and prioritize drug repositioning candidates, based on 

Mendelian randomization(MR) studies on ACE2 lung expression.  

Methods   We conducted a phenome-wide MR study to prioritize diseases/traits and blood proteins causally 

linked to ACE2 lung expression in GTEx. We also explored drug candidates whose targets overlapped with 

the top-ranked proteins in MR, as these drugs may alter ACE2 expression and may be clinically relevant. 

Results    The most consistent finding was tentative evidence of an association between diabetes-related 

traits and increased ACE2 expression. Based on one of the largest GWAS on type 2 diabetes(T2DM) to 

date(N=898,130), T2DM was causally linked to raised ACE2 expression(p=2.91E-03;MR-IVW). Significant 

associations(at nominal level;p<0.05) with ACE2 expression was observed across multiple DM datasets and 

analytic methods, for type 1 and 2 diabetes and related traits including early start of insulin. Other 

diseases/traits having nominal significant associations with increased expression included inflammatory bowel 

disease, (ER+)breast and lung cancers, asthma, smoking and elevated ALT. We also identified drugs that may 

target the top-ranked proteins in MR, such as fostamatinib and zinc.  

Conclusions   Our analysis suggested that diabetes and related traits may increase ACE2 expression, which 

may influence susceptibility to infection(or more severe infection). However, none of these findings withstood 

rigorous multiple testing corrections(at FDR<0.05). Proteome-wide MR analyses might help uncover 
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mechanisms underlying ACE2 expression and guide drug repositioning. Further studies are required to verify 

our findings.  

 

Introduction 

Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, has resulted a pandemic affecting more 

than a hundred countries worldwide (1-3). More than 2 million confirmed cases have been reported worldwide 

as at 22 Apr 2020 (https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports), while 

many mild or asymptomatic cases may remain undetected. Considering the severity of the outbreak, it is urgent 

to seek solutions to control the spread of the disease to susceptible groups, and to identify effective treatments. 

A better understanding of its pathophysiology is also urgently needed.  

 

Notably, recent studies showed that over one quarter of confirmed cases had a history of comorbid conditions, 

such as hypertension, diabetes, cardiovascular disease and respiratory diseases (Table S1) (2-4). In addition, the 

severity of disease is likely be higher in patients with chronic conditions(2). However, it is unclear whether such 

comorbidities are causally related to increased susceptibility, and if so, what the underlying mechanisms may be. 

Confounding bias (e.g. by age, sex, comorbidities, medications received, smoking/drinking history etc.) may 

lead to spurious associations that preclude conclusions about causality. Establishing causality is important as 

this is closely related to the effectiveness of interventions. If a risk factor is causally related to an outcome, then 

interventions on the risk factor will lead to reduced risks of the outcome, which may not be true for associations 

per se. 

 

Based on analysis of potential receptor usage and the released sequences of SARS-CoV-2, Wan et al. 

proposed that the host receptor of SARS-CoV-2 is angiotensin-converting enzyme 2 (ACE2). Virus infectivity 

studies on HELA cell lines further confirmed that ACE2 is a cellular entry receptor for SARS-CoV-2 (8). 

Another line of evidence came from structural study of SARS-CoV-2. Wrapp et al. observed that the ACE2 

protein could bind to the SARS-CoV-2 spike ecto-domain with high affinity (9). Importantly, ACE2 has 

previously been established a receptor for SARS-CoV (6; 7). Taken together, the above provide strong evidence 

that ACE2 is a key receptor of the novel coronavirus.  

 

  A number of studies have looked into the relationship between ACE2 expression level and coronavirus 

infection. For example, it was found that overexpression of ACE2 protein lead to more efficient SARS-CoV 

replication, which was blocked by anti-ACE2 antibodies in a dose-dependent manner (6). Two further studies 

also showed that susceptibility to SARS-CoV infection was correlated with ACE2 expression in cell lines (10) 

(11). It is therefore reasonable to hypothesize that ACE expression also affects susceptibility to SARS-CoV-2 

infection. Revealing diseases/traits causally associated with altered ACE2 expression may shed light on why 

certain individuals are more susceptible to SARS-CoV-2 infection (or more severe infections) and the 

underlying mechanisms (whether the increased susceptibility is mediated via ACE2). 
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In this study, we wish to answer the following question: what conditions or traits may lead to increased 

ACE2 expression, which may in turn result in higher susceptibility to SARS-CoV-2 infection? Here we 

conducted a phenome-wide Mendelian randomization (MR) study to explore diseases/traits that may be 

causally linked to increased ACE2 lung expression. Our study is different from most existing MR studies: 

instead of considering a disease as outcome, the outcome measure is ACE2 expression, interpreted as a 

surrogate for susceptibility to infection, and the exposures tested are diseases/traits. While a number of tissues 

may also be affected by SARS-CoV-2(12), pneumonia is a common and major complication of the disease(3), 

hence we focused on lung expression in this study. Regarding our study approach, phenome-wide MR is a 

data-driven approach which has been performed in other contexts as a powerful way to uncover unknown causal 

risk factors for diseases (13-15). This approach allows multiple risk factors or outcomes to be studied 

simultaneously. MR makes use of genetic variants as “instruments” to represent the exposure of interest, and 

infers causal relationship between the exposure and outcome (16). In general, MR is not affected by reverse 

causality (17), as genetic variants are fixed at conception (which precedes the outcome). MR is also less 

susceptible to confounding bias compared to conventional case-control/cohort studies, as genetic instruments 

are usually less strongly associated with environmental exposures than ordinary risk factors(18) (please also 

refer to Supplementary Text for more detailed descriptions). 

 

In addition to diseases, as a secondary analysis, we also studied serum/plasma proteins as exposure, as they 

may point to potential molecular mechanisms underlying ACE2 expression and may serve as potential 

predictive or prognostic biomarkers. Such proteome-wide studies may help to reveal drug repositioning 

candidates (19), through the search for drugs that target the top-ranked proteins. For example, if a protein 

causally increases the risk of a disease, then by the definition of causality, blocking the protein will lead to 

reduced disease risks. By finding plasma/serum proteins causally linked to ACE2 expression, one may find 

drugs altering ACE2 expression, which in turn may be useful for treatment. 

Methods 

Genome-wide association study (GWAS) data 

All GWAS data are extracted from publicly available databases, which are detailed below.  

Exposure data  

Most GWAS data employed were based on predominantly European samples, and proper correction for 

population stratification has been performed. Please also refer to Table S2a/2b for details on the ethnic 

composition and methods to account for population stratification for GWAS included in this work.   

To perform the phenome-wide study, here we made use of the latest IEU (Integrative Epidemiology Unit of 

University of Bristol) GWAS database (https://gwas.mrcieu.ac.uk/), which contains up to 111,908,636,549 

genetic associations from 31,773 GWAS summary datasets (as at 26th Feb 2020). Details of each GWAS 
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study may be retrieved from https://gwas.mrcieu.ac.uk/datasets/. The database was retrieved via the R package 

“TwoSampleMR” (ver 0.5.1). MR analysis was conducted with the same package. Due to the extremely huge 

number of traits in the database, we performed some pre-selection to the list of traits/diseases before full 

analysis.  

Briefly, we selected the following categories of traits: (1) Traits listed as priority 1 (high priority) and 

labelled as “Disease” or “Risk factor” (81 and 71 items respectively); (2) traits labelled as “protein” [3371 

items originally studied in ref(20; 21)]; (3) (selected) traits from the UK Biobank (UKBB), as it is one of the 

largest source of GWAS data worldwide (N~500,000). We consider that a proportion of traits have 

presumably low prior probability of association with respiratory infections, and others are less directly 

clinically relevant. To reduce computational burden and for ease of interpretation, a proportion of UKBB traits 

were filtered. More specifically, we excluded GWAS data of diseases or traits related to the following: eye or 

hearing problems, orthopedic and trauma-related conditions (except autoimmune diseases), skin problems 

(except systemic or autoimmune diseases), perinatal and obstetric problems, operation history, medication 

history (as confounding by indication is common and may affect the validity of results (22)), diet/exercise 

habit (as accuracy of information cannot be fully guaranteed and recall bias may be present), other 

socioeconomic features (such as type of jobs). A total of 425 UKBB traits were retained for final analysis 

under the third category. GWAS of blood proteins and UKBB traits were restricted to European samples. 

GWAS of UKBB were based on analysis results from the Neale Lab 

(https://sites.google.com/broadinstitute.org/ukbbgwasresults/) and from MRC-IEU. GWAS analysis was 

performed using linear models with adjustment for population stratification; details of the analytic approach are 

given in: https://github.com/Nealelab/UK_Biobank_GWAS/tree/master/imputed-v2-gwas,  

http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas and 

https://doi.org/10.5523/bris.pnoat8cxo0u52p6ynfaekeigi. For binary outcomes, we converted the regression 

coefficients obtained from the linear model to those under a logistic model, based on methodology presented in 

(23). The SE under a logistic model was derived by the delta method (equation 37 in (23)).  

 

Outcome data  

The outcome was pulmonary expression of ACE2. While ideally one should study the protein expression in 

the lung, such data is scarce and corresponding genotype data (required for MR) is not available. Here we 

focus on the gene expression of ACE2 in the lung (N=515). We retrieved GWAS summary data from the 

Genotype-Tissue Expression (GTEx) database (with API); it is one of the largest databases to date with both 

genotype and expression data for a large variety of tissues. The majority of the GTEx samples are European in 

ancestry (~85%); other ancestries included African Americans, Asians and American Indians(Table S2a). 

Population stratification was controlled by inclusion of principal components in genetic association analysis. 

For further details of GTEx please refer to (24); the eQTL analysis procedure is described in 

https://gtexportal.org/home/documentationPage#staticTextAnalysisMethods.  
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Mendelian randomization (MR) analysis 

Here we performed two-sample MR, in which the instrument-exposure and instrument-outcome 

associations were estimated in different samples. 

  

Instrument SNP selection    

MR was performed on (approximately) independent SNPs with r2 threshold of 0.001, following default 

settings in the R package TwoSampleMR. SNPs passing genome-wide significance (p<5e-8) were included as 

instruments. Clinical traits or blood proteins were treated as exposures, and we used the ‘extract_instruments’ 

function in TwoSampleMR to retrieve SNPs for each trait from corresponding GWAS. The source GWAS for 

each exposure are listed in Table S2. Only SNPs with available SNP-exposure and SNP-outcome association 

data were retained.  

 

MR methods      

We conducted MR primarily with the ‘inverse-variance weighted’ (MR-IVW) (25) and Egger regression 

(MR-Egger) (26) approaches, which are among the most widely used MR methods. For exposure with only 

one instrument, the Wald ratio method was used. For analysis with <3 genetic instruments, we employed 

MR-IVW only since MR-Egger cannot be reliably performed. The intercept from MR-Egger was used to 

evaluate presence of significant directional (imbalanced) horizontal pleiotropy.  

For selected traits with at least nominally significant associations by MR-IVW or MR-Egger (p<0.05), we 

also performed further analysis by GSMR (Generalised Summary-data-based Mendelian Randomisation), 

weighted median (an ‘implicit’ outlier-removal method (30)) and MR-RAPS. GSMR also accounts for 

correlated SNPs and removes likely pleiotropic outliers(27).  

We tried several r2 thresholds (0.001, 0.05, 0.1, 0.15, 0.2) for GSMR analysis on diabetes based on 

Mahajan et al.(28) (see Results/Table 2). SNP correlations were derived from 1000-Genomes European 

samples. MR-RAPS(29) is another methodology which takes into account multiple weak instruments by a 

robust procedure; we employed a more relaxed p-value threshold for SNP selection (0.01) for this method. 

One of the major concerns of MR is horizontal pleiotropy, in which the genetic instruments have effects on 

the outcome other than through effects on the exposure. MR-Egger, GSMR, weighted median and MR-RAPS 

are able to provide valid MR estimates under pleiotropy subject to certain assumptions (see ref (30) and 

supplementary text).  

Heterogeneity among the MR estimates across individual SNPs may indicate problems related to violation 

of instrumental variable assumptions. One of the most notable problems is that one or more SNPs may be 

showing horizontal pleiotropy (30; 31). The Cochran’s Q statistic and the MR-PRESSO global test (32) were 

employed to test for heterogeneity for nominally significant MR findings.  

Interpretation of effect sizes from MR  

Regarding the effect sizes of causal associations, if the exposures were binary, the regression coefficients (beta) 

from MR may be roughly interpreted as average change in the outcome (per SD increase in normalized ACE2 
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expression levels) per 2.72-fold increase in the prevalence of the exposure (37). For continuous exposures, the 

MR estimates are average changes in outcome per unit increase of exposure (see Table S2a for the units).  

 

Plasma/serum proteins as exposure and further analysis 

  In addition to MR analysis on individual plasma/serum proteins, we also performed pathway analysis by 

ClueGO(33). Hypergeometric tests were conducted on the top-ranked proteins (with p<0.05). As an 

exploratory analysis, we also searched for drugs with targets overlapping with the top-ranked proteins. Drug 

targets were defined based on the DrugBank database. Our aim is to uncover drug candidates leading to 

alteration of ACE2 expression, which may be therapeutically relevant.  

 

Multiple testing correction  

We employed a false discovery rate (FDR) approach to multiple testing correction. It controls the expected 

proportion of false positives among the hypothesis declared significant. FDR is also valid under positive 

dependency of tests (34).  

  The FDR in fact depends on the overall fraction of truly null hypothesis, or π0. It can also be considered 

as the prior probability that a null hypothesis is true. In reality, π0 may vary for different subgroups of 

hypotheses. For instance, in our analyses, one may expect different π0 for diseases/exposures of different 

kinds. Previous studies (see Table S1) suggested that some chronic disease patients are more likely affected by 

the infection. To address the above problem, we adopted an FDR control procedure that accounts for varying 

prior probabilities of association (i.e. different π0) among different types of hypotheses. The procedure is 

‘objective’ in the sense that it estimates π0 based on the data automatically, without the need to specify π0 by 

the researcher. We employed the methodology ‘FDR regression’ proposed in (35), and the R program by the 

author[FDRreg(ver 0.2)]. In brief, we divided our hypothesis based on the type of exposure/disease (e.g. 

respiratory, cardiovascular diseases etc.). These categories served as predictors or covariates, which can be 

used as input by FDRreg in a regression to estimate the π0 of each hypothesis test. We also computed the 

significance of each predictor; it indicates which categories predicted non-null associations better than chance. 

For input into FDRreg, we took the results from MR-IVW unless the Egger intercept has p<0.05. 

 

Results  

Please note that all supplementary tables are available at  

https://drive.google.com/open?id=1XQUn7go8Ycz3V1MdeJbzO81erzkAGPib 

 

MR analysis for diseases and clinically relevant traits 

MR results are presented in Tables 1 and 2 (full results shown in Tables S3 and S4). Traits were shown in 

main tables if MR-IVW or MR-Egger showed nominally significant (p<0.05) results, and if the number of 

instrument SNPs>=3 (such that pleiotropy can be assessed and results are more informative).    
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Overall speaking, 25 traits showed associations with ACE2 expression at FDR<0.2 and 10 had FDR<0.1 

(Table S4). No MR results showed FDR<0.05. There were 68 nominally significant (p<0.05) associations based 

on MR-IVW and 9 based on MR-Egger. Many significant findings were concentrated on traits related to 

diabetes. 

 

Diabetes-related traits 

Remarkably, a number of top-ranked results were related to diabetes. We observed totally five 

diabetes-related traits that showed nominally significant MR results with FDR<0.1; they were all positively 

associated with ACE2 expression. Three are related to diagnosis of diabetes (including both type 1 and 2) in the 

UKBB. Both doctor-diagnosed diabetes and self-reported diabetes in the UKBB, which presumably composed 

of mainly type 2 diabetes mellitus (T2DM), were significantly associated with higher ACE2 expression 

(MR-IVW p=0.0152 and 0.0343; FDR=0.0547 and 0.0667 respectively). Another finding (id: ieu-a-23) was 

based on a trans-ethnic meta-analysis on T2DM in 2014 (38) (MR-IVW p=0.0421; FDR=0.0748), which had no 

overlap with the UKBB sample. The finding of a (nominally) significant result in this dataset can therefore be 

considered as an independent replication of the UKBB result.  

 

We also observed that starting insulin within one year of diagnosis, which was only assessed within diabetic 

patients, was causally associated with increased ACE2 expression (MR-IVW p=0.031; FDR=0.061). Early use 

of insulin may indicate type 1 diabetes (T1DM) as the underlying diagnosis or more severe/late-stage disease 

for T2DM patients (39). We also observed that as a whole, diabetes-related traits were significantly associated 

with higher probability of having non-null associations with ACE2 expression (p=0.026; Table S7), based on 

FDRreg. No evidence of significant directional pleiotropy was observed in the above results (Egger intercept 

p>0.05). We therefore primarily reported the results from MR-IVW, as generally the SE of causal estimates is 

larger with MR-Egger (36) (hence power is much weaker).  

 

In view of the consistent causal associations with diabetes or related traits, we further searched for GWAS 

summary statistics that have not been included in the IEU GWAS database. We found another publicly available 

dataset from the DIAGRAM Consortium, based on a recent meta-analysis of T2DM by Mahajan et al. (28) 

based on European samples (N=898,130). For a more in-depth analysis, we also employed GSMR at various r2 

thresholds and MR-RAPS in addition to IVW and Egger. The full results are presented in Table 2 (also see Supp. 

Figures). Reassuringly, with the exception of MR-Egger (which is less powerful (36)), all other methods 

showed (at least nominally) significant results. For GSMR which accounts for correlated SNPs, it showed 

significant results consistently across different r2 thresholds (lowest p=9.74E-18; r2 threshold=0.2). While this 

study(28) has partial overlap with the trans-ethnic analysis in 2014 (38), the consistent associations provide 

further support to a causal link between diabetes and expression of ACE2.  
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We note that the Egger intercept p-value was borderline (p=0.0545), which may raise some concern for 

pleiotropy. However, we have conducted multiple tests for directional pleiotropy, so false positive findings are 

possible. The corresponding FDR was 0.999 for this test, if multiple testing was taken into account (573 items).  

We did not find any evidence of heterogeneity based on Cochran’s Q (Heterogeneity PIVW=0.431/PEgger=0.486) 

or MR-PRESSO global test (p=0.418). To further compare MR-IVW and Egger models, we followed the 

‘Rucker framework’ proposed in (30; 40), and computed the improvement in model heterogeneity by using 

MR-Egger. The difference was small and non-significant (QIVW=197.77; QEgger=196.06; difference=1.71; 

p=0.191), indicating MR-IVW is a reasonably good fit for the data.  

 

 For T2DM or self-reported diabetes from UKBB (which presumably comprised mainly T2DM), the causal 

estimates ranged from ~0.162 to 0.210. The causal estimate from type 1 diabetes was slightly lower and 

estimated to be ~0.1006.  

 

Other diseases/traits  

As shown in Table 1, a number of other diseases/traits also showed (nominally) significant results. Several 

neoplasms, such as breast and lung cancer, may be associated with increased ACE2 expression. We also 

observed that several autoimmune disorders, especially inflammatory bowel diseases may be causally 

associated with ACE2 expression. Interestingly, asthma and tobacco use also showed nominal significant 

associations with higher ACE2 expression. As for other traits, high alanine aminotransferase (ALT), 

commonly associated with liver diseases, may be related to elevated ACE2 expression. Other commonly 

measured blood measures that may lead to altered ACE2 expression also included red cell distribution width 

(often associated with iron-deficiency, folate or B12 deficiency anemia), basophil percentage (inverse 

relationship), calcium level, urate level, HDL- and LDL-cholesterol (inverse relationship). Note that the FDR 

is dependent upon the category to which a trait belongs; for example, diabetes-related and autoimmune 

diseases showed lower FDR, likely because these types of diseases had more significant associations in 

general. As a tradeoff, other traits/diseases, although having nominally significant results, may have higher 

FDR. FDR provides an additional reference to guide prioritization of the findings; however, FDR estimation is 

subject to variability and should not be considered as an absolute guide. Other traits with at least nominal 

significance may still be worthy of further studies especially if supported by clinical observation or other 

evidence.  

 

  For traits showing nominally significant findings (Table 1), we have also performed other additional 

analyses. We do not observe significant heterogeneity in MR estimates across SNPs (by IVW/Egger) for most 

traits, except one related to lung cancer (ukb-d-C3). The MR-PRESSO global test was also non-significant for 

all traits, supporting a lack of heterogeneity. This lack of heterogeneity suggests that substantial horizontal 

pleiotropy is not very likely. The weighted median estimator supports associations for a subset of traits, 

including three diabetes-related traits (ukb-b-10694, ieu-a-23, ukb-b-8388). The GSMR method, which 
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removes pleiotropic outliers, is generally consistent with IVW findings (SNPs clumped at r2=0.001 for both 

GSMR/IVW).  

MR results with plasma/serum proteins as exposure 

Full results are shown in Table S3 and S4 and the enriched pathways are shown in Table 3 and Table S5. 

Since a large number of proteins are involved, we only highlight a few top pathways here. Some of top pathways 

include cytokine and cytokine receptor interaction, VEGFA-VEGF2 signaling pathway, JAS-STAT signaling 

pathway etc. Table 4 and S6 show the list of drugs whose targets overlap with the top-ranked proteins. Note that 

the tables do not explicitly discern the direction of effects of the drugs. A few drugs target more than one protein. 

If they are ranked by the number of proteins targeted, the top drugs are fostamatinib, copper, zinc and 

zonisamide, which target >=3 proteins. 

 

Discussions 

In this study we have employed Mendelian Randomization (MR) to uncover diseases/traits that may be causally 

linked to ACE2 expression in the lung, which in turn may influence susceptibility to the infection. MR is a 

relatively well-established technique in evaluating causal relationships, and the wide availability of GWAS data 

enables many different exposures to be studied in the same time.  

 

Diseases/traits causally linked to ACE2 expression 

  From our analysis, the most consistent finding was the tentative causal link between diabetes (and related 

traits) with ACE2 expression, which was supported by multiple datasets and different analytic approaches. 

Other results were more tentative, but may be worthy of further studies. For example, several neoplasms (e.g. 

breast and lung cancers) and autoimmune diseases, elevated ALT, asthma and smoking all showed nominally 

significant and positive associations with ACE2 expression.  

 

  Some of these findings were supported by previous studies. A number of COVID-19 cases (~5.4% from 

Table S1) were comorbid with diabetes mellitus (DM). This proportion is only a rough estimate since mild or 

asymptomatic cases may remain undetected. Notably, DM has been reported to be associated with poorer 

outcomes among infected patients (41).  Similarly, DM was also common in patients infected with MERS-CoV 

(42; 43). Kulcsar et al. built a mouse model susceptible to MERS-CoV infection and induced T2DM using a 

high-fat diet. They found that, if affected by the virus, these diabetic mice suffered from a prolonged phase of 

disease and delayed recovery, possibly due to a dysregulated immune response (44). Regarding comorbidity 

with cancers, Liang et al. recently carried out a nationwide analysis of 1,590 patients with confirmed COVID-19 

and suggested that cancer patients have higher infection and complication risks than those without (45). 

 

We highlight a few research directions of interest, if our findings are confirmed in future studies. For example, 

as far as treatment is concerned, if certain conditions (e.g. diabetes) increase susceptibility to infection or 

severe infections via ACE2, drugs targeting this gene/protein may be particularly useful for this patient 

subgroup. For example, human recombinant ACE2 has been proposed as a treatment and is under clinical trial 
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(46; 47). It will be interesting to see if the drug may be more beneficial for DM patients. More generally 

speaking, if DM is causally linked to elevated ACE2 and potentially increased susceptibility to infection, then 

anti-diabetic drugs or improved glycemic control may ameliorate the process. Interestingly, a recent work 

highlighted metformin as one of the top repositioning candidates for COVID-19, based on a different 

mechanism as an MRC1 inhibitor (48). From a public health perspective, identification of at-risk populations 

may guide prevention strategies, e.g. prioritization of groups to receive vaccination. Nevertheless, all the 

above require substantial additional research before clinical applications.  

 

On ACE2 expression and pulmonary complications 

As discussed above, increased expression of ACE2 appears to correlate with susceptibility to SARS-CoV 

and SARS-CoV-2 infection. Nevertheless, the consequences of altered ACE2 expression on pulmonary 

complications may be rather complex. Kuba et al. reported that SARS-CoV down-modulated ACE2 expression 

(7), which may lead to heightened risks of acute lung injury (ALI). Another study (49) suggested ACE2 may 

protect against ALI by blocking the renin-angiotensin pathway. However, whether the same applies to 

SARS-CoV-2 is unknown. If this is the case, one may hypothesize that for unaffected individuals or those 

without (or with minimal) lung involvement yet, lower ACE2 pulmonary expression may be beneficial in 

reducing susceptibility to more sustained infection by reducing viral entry. However, for patients with severe 

lung involvement or at risk of ALI, higher ACE2 expression may prevent acute respiratory failure. Therefore, it 

may be clinically relevant to identify both risk factors/drugs leading to increased and decreased ACE2 

expression. Further studies are warranted to clarify the role of ACE2 in COVID-19 and related complications.  

 

Another related controversy concerns the use of ACE inhibitors (ACEI) and angiotensin II receptor blockers 

(ARB) (50; 51), although the present study does not directly address this issue. There is some evidence that 

ACEI/ARB may upregulate ACE2 expression in the heart (52), kidney (53) and aorta (54) in animal models, 

however how these drugs affect pulmonary ACE2 levels in humans is still unclear (55). In addition, it is possible 

that patients’ other underlying conditions may affect ACE2 expression. It is worthy to further investigate how 

ACEI/ARB together with other chronic conditions affects the risks and severity of infection. 

 

Highlight of tentative repositioning candidates based on blood proteins potentially linked to ACE2 expression  

  The drugs we highlighted in this study may help researchers to prioritize repositioning candidates for further 

studies, given the huge cost and long time in developing a brand-new drug. Nevertheless, the overall direction 

and magnitude of effect of each drug could not be determined from our analysis alone, hence further studies are 

required. Here we briefly highlight a few top candidates. Fostamatinib targets the largest number (seven) of 

proteins potentially linked to ACE2 expression. According to DrugBank, it serves as an inhibitor for all these 

proteins, and all were linked to elevated ACE2 expression except one. Interestingly, a recent computational 

repositioning study (56; 57) identified baricitinib, a JAK 1/2 and AAK1 inhibitor approved for rheumatoid 

arthritis (RA) as a top candidate. Fostamatinib is a spleen tyrosine kinase inhibitor but also inhibits JAK 1/2 

and AAK1 (from DrugBank) (58) and can be used to treat RA (59). JAK-STAT signaling was also among the 
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top 10 pathways enriched for top proteins affecting ACE2 expression. Interestingly, fostamatinib was reported 

to be effective for type 1 diabetes (60). Another candidate highlighted in (56), sunitinib, was also top-listed by 

our analysis. Zinc is also a top-listed candidate, which was reported to reduce risks of lower respiratory tract 

infections (61), but the evidence is not firm. Interestingly, a study in rat tissues showed reduction of ACE2 

activity by zinc (62). Zinc and zinc-ionophores may inhibit SARS-CoV as shown in experimental studies (63). 

Zinc was recently suggested for clinical trials for COVID-19, although there is no clinical evidence yet 

(clinicalTrials.gov NCT04342728, NCT04326725, NCT04351490, ref(64)). As for the enriched pathways for 

top-ranked proteins affecting ACE2 expression, they are discussed in Supplementary Text.  

 

Limitations 

We wish to emphasize that we consider this work as largely an exploratory rather than confirmatory study. As 

such, the findings might not be immediately applicable clinically. Our main purpose is to prioritize diseases, 

traits or proteins with potential causal links with ACE2 expression. There are several limitations in our analysis. 

A major limitation is that the sample size for GTEx is relatively modest (N = 515), which limits the power of 

MR analysis. However, to our knowledge, GTEx is one of the largest databases with both genotype and 

expression data. We note that many associations were relatively modest, with no results showing FDR<0.05, 

although 25 had FDR<0.2. On the other hand, we examined the consistency of the observed associations across 

different datasets, and considered those supported by more than one set of data (e.g. diabetes-related traits) as 

relatively more robust, similar to the approach in (65). However, our findings will require further support by 

further studies. Besides, some results could be false negatives owing to limited power. Besides, while most 

GWAS were based on predominantly European samples, subjects of other ethnicities were included in some 

samples. It is possible for genetic associations to differ across ethnicities, which may affect the causal estimates 

of MR, for example if some SNP-exposure or SNP-outcome associations are stronger in one ethnic group than 

another. Apart from the above, this study does not address what factors may aggravate or ameliorate 

CoV-induced changes in ACE2 levels. Also, we studied ACE2 mRNA expression as the outcome; associations 

of the reported traits with protein expression levels remain to be investigated.  

   

Finally, from a methodological point of view, we have employed MR in a different manner from most other 

studies. Usually MR is used to identify causal risk factors with a disease as the outcome, for which GWAS data 

is available. Here we presented a novel analytic approach: we made use of existing knowledge of a key receptor 

of an infectious agent to uncover causal risk factors and repositioning candidates. This analytic framework may 

also be applied to other diseases, especially when a target can be identified but genomic data for the disease is 

limited, or if one is interested in the underlying disease mechanism of the risk factor.  

 

Conclusions 

  Notwithstanding the limitations, we have identified several diseases and traits which may be causally 

related to ACE2 expression the lung, which in turn may mediate susceptibility to SARS-CoV-2 infection. In 

addition, our proteome-wide MR analysis revealed proteins that could lead to changes in ACE2 expression. 
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Subsequent drug repositioning analysis highlighted several candidates that may warrant further investigations. 

We stress that most of the findings require validation in further studies, especially the part on repositioning. 

Nevertheless, we believe this work is of value in view of the urgency to address the outbreak of COVID-19.  
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Table 1. Overall MR analysis results achieving nominal significance (p<0.05), with diseases/traits as exposure and ACE2 lung expression as outcome.  

id trait nsnps b_ pval_ b_ pval_ Egger_ pval_ b_ pval_ b_ pval_ FDR pval_het_ pval_het_ P_global_ 

IVW IVW Egger Egger intercept intercept median median gsmr gsmr IVW Egger PRESSO 

Diseases as exposure                 
Diabetes-related                 
ukb-b-10753 Diabetes diagnosed by doctor 58 0.175  0.015  0.002  0.988  0.020  0.225  0.146  0.183  0.171  0.017  0.055  0.350  0.379  0.304  

ukb-b-12948 Non-cancer illness code, 

self-reported: diabetes 

49 0.162  0.034  0.203  0.255  -0.005  0.797  0.126  0.280  0.158  0.034  0.067  0.322  0.288  0.306  

ukb-b-10694 Diagnoses - secondary ICD10: 

E10.9 Type I Diabetes mellitus 

without complications 

3 0.101  0.042  0.184  0.428  -0.052  0.654  0.110  0.033  - - 0.071  0.851  0.659  - 

ieu-a-23 Type 2 diabetes 25 0.210  0.042  0.160  0.696  0.005  0.899  0.261  0.063  0.187  0.076  0.075  0.849  0.811  0.859  

ukb-b-8388 Started insulin within one year 

diagnosis of diabetes 

7 0.076  0.031  0.077  0.352  -0.001  0.991  0.084  0.041  - - 0.061  0.988  0.967  0.990  

                 

Neoplasms                 

ukb-d-D12 Diagnoses - main ICD10: D12 

Benign neoplasm of colon, 

rectum, anus and anal canal 

12 -0.286  0.015  -0.058  0.904  -0.031  0.621  -0.314  0.047  -0.331  0.007  0.930  0.865  0.815  0.873  

ukb-d-C3 Malignant neoplasm of 

respiratory system and 

intrathoracic organs 

3 0.514  0.009  0.711  0.511  -0.056  0.821  0.416  0.047  - - 0.509  0.066  0.022  - 

ieu-a-1134 ER+ Breast cancer (GWAS) 7 0.176  0.020  0.539  0.128  -0.094  0.259  0.122  0.224  - - 0.272  0.547  0.645  0.497  

ieu-a-1013 Glioma 3 0.200  0.037  0.438  0.659  -0.071  0.800  0.205  0.081  - - 0.502  0.942  0.910  - 

                 

Autoimmune disorders                

ukb-b-18194 Non-cancer illness code, 

self-reported: ankylosing 

spondylitis 

3 0.087  0.016  0.017  0.991  0.059  0.964  0.095  0.023  - - 0.112  0.944  0.735  - 
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ieu-a-32 Ulcerative colitis 29 0.026  0.667  0.586  0.003  -0.105  0.003  0.099  0.240  0.026  0.626  0.054  0.171  0.629  0.165  

ieu-a-292 Inflammatory bowel disease 107 0.003  0.938  0.246  0.019  -0.031  0.011  0.023  0.728  0.010  0.827  0.126  0.724  0.846  0.700  

ieu-a-30 Crohn's disease 41 0.011  0.786  0.196  0.035  -0.044  0.027  0.055  0.352  0.011  0.781  0.159  0.651  0.826  0.623  

ieu-a-31 Inflammatory bowel disease 49 -0.014  0.783  0.287  0.036  -0.051  0.019  0.024  0.742  -0.011  0.814  0.170  0.724  0.846  0.700  

                 

Other diseases                 

ukb-b-17219 Diagnoses - secondary ICD10: 

J45.9 Asthma, unspecified 

19 0.264  0.035  0.877  0.056  -0.064  0.152  0.295  0.092  0.269  0.035  0.500  0.769  0.826  0.770  

ukb-b-5115 Diagnoses - secondary ICD10: 

Z72.0 Tobacco use 

3 0.918  0.016  0.624  0.856  0.024  0.930  0.915  0.059  - - 0.510  0.415  0.187  - 

ukb-d-I9 Diseases of veins, lymphatic 

vessels and lymph nodes, not 

elsewhere classified 

14 -0.269  0.024  -0.138  0.656  -0.017  0.645  -0.174  0.265  -0.264  0.028  0.934  0.886  0.858  0.900  

               

Other risk factors or clinically relevant traits as exposure               

ukb-d-30620_raw Alanine aminotransferase (U/L) 91 0.047  0.007  0.081  0.041  -0.012  0.341  0.069  0.015  0.051  0.004  0.223  0.717  0.716  0.722  

ukb-d-30070_irnt Red blood cell (erythrocyte) 

distribution width (SD) 

225 0.243  0.020  0.349  0.066  -0.004  0.500  0.208  0.191  0.239  0.023  0.555  0.524  0.514  0.537  

ukb-d-30220_irnt Basophill percentage (SD) 77 -0.504  0.027  -0.584  0.169  0.003  0.821  -0.473  0.179  -0.468  0.045  0.935  0.535  0.504  0.558  

ukb-d-30780_raw LDL direct (mmol/L) 126 -0.272  0.105  -0.758  0.005  0.020  0.021  -0.469  0.076  -0.179  0.299  0.934  0.520  0.633  0.541  

ukb-d-30680_raw Calcium (mmol/L) 152 0.202  0.915  -10.380  0.011  0.031  0.003  -1.675  0.545  0.626  0.728  0.935  0.135  0.259  0.136  

ukb-d-30830_raw SHBG (mmol/L) 163 0.004  0.443  0.022  0.042  -0.016  0.055  0.012  0.166  0.004  0.441  0.934  0.219  0.267  0.209  

ieu-a-793 Urate (mg/dl) 4 0.026  0.027  0.026  0.167  -0.008  0.884  0.028  0.037  - - 0.608  0.792  0.603  0.382  

ieu-a-1034 Height (SD) 4 0.636  0.047  2.060  0.806  -0.118  0.865  0.599  0.124  - - 0.553  0.647  0.445  0.643  

ieu-a-299 HDL cholesterol (SD) 84 0.084  0.515  0.563  0.022  -0.026  0.020  0.065  0.758  0.086  0.508  0.581  0.575  0.714  0.592  
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Some items are missing as the number of SNPs is insufficient. Nsnps, number of SNPS. b, beta (causal estimate);  pval, p-value. IVW, inverse-variance weighted approach; median, weighted 

median approach; FDR, false discovery rate, derived from FDR regression; pval_het, heterogeneity p-value; P_global_PRESSO, p-value from the global test of MR-PRESSO (used to assess 

heterogeneity of MR estimates).  

FDR refers to the p-value from MR-IVW (if Egger intercept p>0.05) or MR-Egger. Values of FDR below 0.1 are in bold.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. .https://doi.org/10.1101/2020.03.04.20031237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.04.20031237
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

Table 2. Further MR analysis results for type 2 diabetes based on 2018 Mahajan et al.  

 

Method  beta se pval  
Egger 

Intercept 

Intercept 
n_pleio nsnps 

pval 

MR-IVW 0.177  0.060  2.91E-03 - - - 196 

MR-Egger  -0.039  0.126  0.758  0.0159 0.0545 - 196 

GSMR 1 
       

r2=0.001 0.170  0.060  4.46E-03 - - 0 194 

r2=0.05 0.140  0.035  7.12E-05 
  

0 289 

r2 =0.1 0.177  0.054  9.62E-04 - - 0 332 

r2=0.15 0.146  0.027  5.93E-08 
  

0 392 

r2=0.2 0.197  0.023  9.74E-18 
  

0 448 

MR-RAPS 2 0.064  0.030  3.43E-02 - - - 3737 

We did not find any evidence of heterogeneity based on Cochran’s Q (Heterogeneity PIVW=0.431/PEgger=0.486) or MR-PRESSO global test (p=0.418). We also computed the 

improvement in model heterogeneity by using MR-Egger over IVW following Rucker’s framework. The difference was small and non-significant (QIVW=197.77; QEgger=196.06; 

difference=1.71; p=0.191). 

The exposure GWAS dataset on type 2 diabetes was based on Mahajan et al. (2018). Nature genetics, 50(11), 1505-1513. Instrument SNPs were only selected if they passed genome-wide 

significance (p<5e-8) (except for MR-RAPS). If not otherwise specified, SNPs were clumped at r2 = 0.001.  

1 GSMR can account for correlation among SNPs. We performed GSMR based on SNPs clumped at different r2 clumping thresholds. We consider the association to be more robust if significant 

results are observed across multiple r2 thresholds 

2 MR-RAPS is an MR methodology designed for the inclusion of multiple weak instruments. A more relaxed p-value threshold (0.01) was used for SNP instrument selection. 
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Table 3. Top 10 enriched pathways for (nominally) significant proteins in MR analysis.  

GOID GOTerm Ontology Source 
Term 

PVal 

Term Pval  

(Bonf corrected) 
Associated Genes 

KEGG:04060 Cytokine-cytokine receptor 

interaction 

KEGG_27.02.2019 1.82E-06 7.29E-05 [CCL25, CTF1, CX3CL1, CXCL12, IL15RA, 

IL22, IL34, IL37, LTA, LTBR, OSM, TNFSF4, 

TNFSF8] 

WP:3888 VEGFA-VEGFR2 Signaling Pathway WikiPathways_27.02.2019 7.79E-06 3.11E-04 [ACACB, BCL2L1, CFL1, EEA1, F3, IGFBP7, 

JAG1, KDR, PIK3CA, PTPN1, TXNIP] 

WP:254 Apoptosis WikiPathways_27.02.2019 1.07E-04 4.29E-03 [BCL2L1, BIRC5, DIABLO, IGF1, LTA, MCL1] 

WP:3614 Photodynamic therapy-induced HIF-1 

survival signaling 

WikiPathways_27.02.2019 2.99E-04 1.19E-02 [BCL2L1, BIRC5, HK1, MCL1] 

R-HSA:399954 Sema3A PAK dependent Axon 

repulsion 

REACTOME_Pathways_27.02.2019 3.40E-04 1.36E-02 [CFL1, PAK3, PLXNA1] 

R-HSA:2173782 Binding and Uptake of Ligands by 

Scavenger Receptors 

REACTOME_Pathways_27.02.2019 4.89E-04 1.96E-02 [FTH1, HP, STAB1, STAB2] 

KEGG:04630 JAK-STAT signaling pathway KEGG_27.02.2019 5.61E-04 2.24E-02 [BCL2L1, CTF1, IL15RA, IL22, MCL1, OSM, 

PIK3CA] 

KEGG:04672 Intestinal immune network for IgA 

production 

KEGG_27.02.2019 8.84E-04 3.53E-02 [CCL25, CXCL12, IL15RA, LTBR] 

WP:3657 Hematopoietic Stem Cell Gene 

Regulation by GABP alpha/beta 

Complex 

WikiPathways_27.02.2019 9.00E-04 3.60E-02 [BCL2L1, FLT3, MCL1] 

WP:3872 Regulation of Apoptosis by 

Parathyroid Hormone-related Protein 

WikiPathways_27.02.2019 0.00090  0.03602  [BCL2L1, MCL1, PIK3CG] 

Pval, p-vlaue; Bonf, Bonferroni correction.  
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Table 4. Drugs with targets overlapping with (nominally) significant proteins from MR analysis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direction and magnitude of the drugs’ effects on ACE2 expression cannot be determined from our analysis alone, hence are not indicated here.   

 

 

 

 

 

 

 

  

 

Drug No. of proteins targeted Targets (that overlap with proteins with at least significance in MR analysis) 

Fostamatinib 7 ZAP70 FLT3 HIPK3 KDR MST1R PAK3 PIK3CG 

Copper 6 CFL1 S100A2 PARK7 AHSG APOD CBX5 
 

Zinc 4 S100A2 AHSG C8A APLP2 
   

Zonisamide 3 CA4 CA9 CA10 
    

Benzthiazide 2 CA4 CA9 
     

Hyaluronic acid 2 LAYN STAB2 
    

Hydroflumethiazide 2 CA4 CA9 
     

Isosorbide 2 BCL2L1 MCL1 
     

Midostaurin 2 KDR FLT3 
     

Nintedanib 2 KDR FLT3 
     

Ponatinib 2 FLT3 KDR 
     

Sodium carbonate 2 CA4 CA9 
     

Sorafenib 2 KDR FLT3 
     

Sunitinib 2 KDR FLT3           

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. .https://doi.org/10.1101/2020.03.04.20031237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.04.20031237
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

References 

1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, 

Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Li M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu 

H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JTK, Gao 

GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early Transmission Dynamics in Wuhan, China, of Novel 

Coronavirus-Infected Pneumonia. The New England journal of medicine 2020; 

2. Novel-Coronavirus-Pneumonia-Emergency-Response-Epidemiology-Team. [The epidemiological 

characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua liu xing 

bing xue za zhi = Zhonghua liuxingbingxue zazhi 2020;41:145-151 

3. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, Liu L, Shan H, Lei C-l, Hui DSC, Du B, Li L-j, Zeng G, 

Yuen K-Y, Chen R-c, Tang C-l, Wang T, Chen P-y, Xiang J, Li S-y, Wang J-l, Liang Z-j, Peng Y-x, Wei L, Liu 

Y, Hu Y-h, Peng P, Wang J-m, Liu J-y, Chen Z, Li G, Zheng Z-j, Qiu S-q, Luo J, Ye C-j, Zhu S-y, Zhong N-s. 

Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine 2020; 

4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, 

Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao 

B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 

2020;395:497-506 

5. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: An 

analysis based on decade-long structural studies of SARS. Journal of virology 2020; 

6. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, 

Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS 

coronavirus. Nature 2003;426:450-454 

7. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, 

Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger 

JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. 

Nature medicine 2005;11:875-879 

8. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L, Chen H-D, Chen 

J, Luo Y, Guo H, Jiang R-D, Liu M-Q, Chen Y, Shen X-R, Wang X, Zheng X-S, Zhao K, Chen Q-J, Deng F, Liu 

L-L, Yan B, Zhan F-X, Wang Y-Y, Xiao G-F, Shi Z-L. Discovery of a novel coronavirus associated with the 

recent pneumonia outbreak in humans and its potential bat origin. bioRxiv 2020:2020.2001.2022.914952 

9. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, McLellan JS. Cryo-EM 

Structure of the 2019-nCoV Spike in the Prefusion Conformation. bioRxiv 2020:2020.2002.2011.944462 

10. Hofmann H, Geier M, Marzi A, Krumbiegel M, Peipp M, Fey GH, Gramberg T, Pöhlmann S. Susceptibility 

to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 

and infection can be blocked by soluble receptor. Biochemical and Biophysical Research Communications 

2004;319:1216-1221 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. .https://doi.org/10.1101/2020.03.04.20031237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.04.20031237
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

11. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray 

PB, Jr. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on 

differentiation of human airway epithelia. Journal of virology 2005;79:14614-14621 

12. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 

expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of 

medicine 2020; 

13. Langdon RJ, Richmond RC, Hemani G, Zheng J, Wade KH, Carreras-Torres R, Johansson M, Brennan P, 

Wootton RE, Munafo MR, Smith GD, Relton CL, Vincent EE, Martin RM, Haycock P. A Phenome-Wide 

Mendelian Randomization Study of Pancreatic Cancer Using Summary Genetic Data. Cancer Epidemiology 

Biomarkers &amp; Prevention 2019;28:2070-2078 

14. Li X, Meng X, He Y, Spiliopoulou A, Timofeeva M, Wei W-Q, Gifford A, Yang T, Varley T, Tzoulaki I, 

Joshi P, Denny JC, McKeigue P, Campbell H, Theodoratou E. Genetically determined serum urate levels and 

cardiovascular and other diseases in UK Biobank cohort: A phenome-wide mendelian randomization study. 

PLOS Medicine 2019;16:e1002937 

15. Meng X, Li X, Timofeeva MN, He Y, Spiliopoulou A, Wei WQ, Gifford A, Wu H, Varley T, Joshi P, Denny 

JC, Farrington SM, Zgaga L, Dunlop MG, McKeigue P, Campbell H, Theodoratou E. Phenome-wide 

Mendelian-randomization study of genetically determined vitamin D on multiple health outcomes using the UK 

Biobank study. International journal of epidemiology 2019;48:1425-1434 

16. Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding 

environmental determinants of disease? International journal of epidemiology 2003;32:1-22 

17. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in 

epidemiological studies. Hum Mol Genet 2014;23:R89-98 

18. Smith GD, Lawlor DA, Harbord R, Timpson N, Day I, Ebrahim S. Clustered environments and randomized 

genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med 2007;4:e352 

19. Schmidt AF, Finan C, Gordillo-Maranon M, Asselbergs FW, Freitag D, Patel RS, Tyl B, Chopade S, 

Faraway R, Zwierzyna M. Genetic drug target validation using Mendelian randomization. bioRxiv 

2019:781039 

20. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran 

P, Oliver-Williams C, Kamat MA, Prins BP, Wilcox SK, Zimmerman ES, Chi A, Bansal N, Spain SL, Wood 

AM, Morrell NW, Bradley JR, Janjic N, Roberts DJ, Ouwehand WH, Todd JA, Soranzo N, Suhre K, Paul DS, 

Fox CS, Plenge RM, Danesh J, Runz H, Butterworth AS. Genomic atlas of the human plasma proteome. Nature 

2018;558:73-79 

21. Folkersen L, Fauman E, Sabater-Lleal M, Strawbridge RJ, Franberg M, Sennblad B, Baldassarre D, Veglia 

F, Humphries SE, Rauramaa R, de Faire U, Smit AJ, Giral P, Kurl S, Mannarino E, Enroth S, Johansson A, 

Enroth SB, Gustafsson S, Lind L, Lindgren C, Morris AP, Giedraitis V, Silveira A, Franco-Cereceda A, Tremoli 

E, group Is, Gyllensten U, Ingelsson E, Brunak S, Eriksson P, Ziemek D, Hamsten A, Malarstig A. Mapping of 

79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS genetics 2017;13:e1006706 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. .https://doi.org/10.1101/2020.03.04.20031237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.04.20031237
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

22. Bellera C, Proust-Lima C, Joseph L, Richaud P, Taylor J, Sandler H, Hanley J, Mathoulin-Pelissier S. A 

two-stage model in a Bayesian framework to estimate a survival endpoint in the presence of confounding by 

indication. Statistical methods in medical research 2018;27:1271-1281 

23. Lloyd-Jones LR, Robinson MR, Yang J, Visscher PM. Transformation of Summary Statistics from Linear 

Mixed Model Association on All-or-None Traits to Odds Ratio. Genetics 2018;208:1397-1408 

24. Gamazon ER, Segrè AV, van de Bunt M, Wen X, Xi HS, Hormozdiari F, Ongen H, Konkashbaev A, Derks 

EM, Aguet F, Quan J, Nicolae DL, Eskin E, Kellis M, Getz G, McCarthy MI, Dermitzakis ET, Cox NJ, Ardlie 

KG, Consortium GT. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and 

trait-associated variation. Nature genetics 2018;50:956-967 

25. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants 

using summarized data. Genetic epidemiology 2013;37:658-665 

26. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation 

and bias detection through Egger regression. International journal of epidemiology 2015;44:512-525 

27. Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R, Robinson MR, McGrath JJ, Visscher PM, Wray 

NR, Yang J. Causal associations between risk factors and common diseases inferred from GWAS summary data. 

Nature communications 2018;9:224 

28. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, Payne AJ, Steinthorsdottir V, 

Scott RA, Grarup N, Cook JP, Schmidt EM, Wuttke M, Sarnowski C, Magi R, Nano J, Gieger C, Trompet S, 

Lecoeur C, Preuss MH, Prins BP, Guo X, Bielak LF, Below JE, Bowden DW, Chambers JC, Kim YJ, Ng MCY, 

Petty LE, Sim X, Zhang W, Bennett AJ, Bork-Jensen J, Brummett CM, Canouil M, Ec Kardt KU, Fischer K, 

Kardia SLR, Kronenberg F, Lall K, Liu CT, Locke AE, Luan J, Ntalla I, Nylander V, Schonherr S, Schurmann 

C, Yengo L, Bottinger EP, Brandslund I, Christensen C, Dedoussis G, Florez JC, Ford I, Franco OH, Frayling 

TM, Giedraitis V, Hackinger S, Hattersley AT, Herder C, Ikram MA, Ingelsson M, Jorgensen ME, Jorgensen T, 

Kriebel J, Kuusisto J, Ligthart S, Lindgren CM, Linneberg A, Lyssenko V, Mamakou V, Meitinger T, Mohlke 

KL, Morris AD, Nadkarni G, Pankow JS, Peters A, Sattar N, Stancakova A, Strauch K, Taylor KD, Thorand B, 

Thorleifsson G, Thorsteinsdottir U, Tuomilehto J, Witte DR, Dupuis J, Peyser PA, Zeggini E, Loos RJF, 

Froguel P, Ingelsson E, Lind L, Groop L, Laakso M, Collins FS, Jukema JW, Palmer CNA, Grallert H, Metspalu 

A, Dehghan A, Kottgen A, Abecasis GR, Meigs JB, Rotter JI, Marchini J, Pedersen O, Hansen T, Langenberg C, 

Wareham NJ, Stefansson K, Gloyn AL, Morris AP, Boehnke M, McCarthy MI. Fine-mapping type 2 diabetes 

loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature 

genetics 2018;50:1505-1513 

29. Zhao Q, Wang J, Hemani G, Bowden J, Small DS. Statistical inference in two-sample summary-data 

Mendelian randomization using robust adjusted profile score. arXiv preprint arXiv:180109652 2018; 

30. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian 

randomization studies. Hum Mol Genet 2018;27:R195-R208 

31. Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: A review. Research Synthesis 

Methods 2019;10:486-496 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. .https://doi.org/10.1101/2020.03.04.20031237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.04.20031237
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

32. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal 

relationships inferred from Mendelian randomization between complex traits and diseases. Nature genetics 

2018;50 

33. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W-H, Pagès F, 

Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and 

pathway annotation networks. Bioinformatics 2009;25:1091-1093 

34. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann 

Stat 2001;29:1165-1188 

35. Scott JG, Kelly RC, Smith MA, Zhou PC, Kass RE. False Discovery Rate Regression: An Application to 

Neural Synchrony Detection in Primary Visual Cortex. J Am Stat Assoc 2015;110:459-471 

36. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger 

method. European journal of epidemiology 2017;32:377-389 

37. Burgess S, Labrecque JA. Mendelian randomization with a binary exposure variable: interpretation and 

presentation of causal estimates. European journal of epidemiology 2018;33:947-952 

38. Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, Horikoshi M, Johnson AD, Ng MC, 

Prokopenko I, Saleheen D, Wang X, Zeggini E, Abecasis GR, Adair LS, Almgren P, Atalay M, Aung T, 

Baldassarre D, Balkau B, Bao Y, Barnett AH, Barroso I, Basit A, Been LF, Beilby J, Bell GI, Benediktsson R, 

Bergman RN, Boehm BO, Boerwinkle E, Bonnycastle LL, Burtt N, Cai Q, Campbell H, Carey J, Cauchi S, 

Caulfield M, Chan JC, Chang LC, Chang TJ, Chang YC, Charpentier G, Chen CH, Chen H, Chen YT, Chia KS, 

Chidambaram M, Chines PS, Cho NH, Cho YM, Chuang LM, Collins FS, Cornelis MC, Couper DJ, Crenshaw 

AT, van Dam RM, Danesh J, Das D, de Faire U, Dedoussis G, Deloukas P, Dimas AS, Dina C, Doney AS, 

Donnelly PJ, Dorkhan M, van Duijn C, Dupuis J, Edkins S, Elliott P, Emilsson V, Erbel R, Eriksson JG, 

Escobedo J, Esko T, Eury E, Florez JC, Fontanillas P, Forouhi NG, Forsen T, Fox C, Fraser RM, Frayling TM, 

Froguel P, Frossard P, Gao Y, Gertow K, Gieger C, Gigante B, Grallert H, Grant GB, Grrop LC, Groves CJ, 

Grundberg E, Guiducci C, Hamsten A, Han BG, Hara K, Hassanali N, Hattersley AT, Hayward C, Hedman AK, 

Herder C, Hofman A, Holmen OL, Hovingh K, Hreidarsson AB, Hu C, Hu FB, Hui J, Humphries SE, Hunt SE, 

Hunter DJ, Hveem K, Hydrie ZI, Ikegami H, Illig T, Ingelsson E, Islam M, Isomaa B, Jackson AU, Jafar T, 

James A, Jia W, Jockel KH, Jonsson A, Jowett JB, Kadowaki T, Kang HM, Kanoni S, Kao WH, Kathiresan S, 

Kato N, Katulanda P, Keinanen-Kiukaanniemi KM, Kelly AM, Khan H, Khaw KT, Khor CC, Kim HL, Kim S, 

Kim YJ, Kinnunen L, Klopp N, Kong A, Korpi-Hyovalti E, Kowlessur S, Kraft P, Kravic J, Kristensen MM, 

Krithika S, Kumar A, Kumate J, Kuusisto J, Kwak SH, Laakso M, Lagou V, Lakka TA, Langenberg C, 

Langford C, Lawrence R, Leander K, Lee JM, Lee NR, Li M, Li X, Li Y, Liang J, Liju S, Lim WY, Lind L, 

Lindgren CM, Lindholm E, Liu CT, Liu JJ, Lobbens S, Long J, Loos RJ, Lu W, Luan J, Lyssenko V, Ma RC, 

Maeda S, Magi R, Mannisto S, Matthews DR, Meigs JB, Melander O, Metspalu A, Meyer J, Mirza G, Mihailov 

E, Moebus S, Mohan V, Mohlke KL, Morris AD, Muhleisen TW, Muller-Nurasyid M, Musk B, Nakamura J, 

Nakashima E, Navarro P, Ng PK, Nica AC, Nilsson PM, Njolstad I, Nothen MM, Ohnaka K, Ong TH, Owen 

KR, Palmer CN, Pankow JS, Park KS, Parkin M, Pechlivanis S, Pedersen NL, Peltonen L, Perry JR, Peters A, 

Pinidiyapathirage JM, Platou CG, Potter S, Price JF, Qi L, Radha V, Rallidis L, Rasheed A, Rathman W, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. .https://doi.org/10.1101/2020.03.04.20031237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.04.20031237
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Rauramaa R, Raychaudhuri S, Rayner NW, Rees SD, Rehnberg E, Ripatti S, Robertson N, Roden M, Rossin EJ, 

Rudan I, Rybin D, Saaristo TE, Salomaa V, Saltevo J, Samuel M, Sanghera DK, Saramies J, Scott J, Scott LJ, 

Scott RA, Segre AV, Sehmi J, Sennblad B, Shah N, Shah S, Shera AS, Shu XO, Shuldiner AR, Sigurdsson G, 

Sijbrands E, Silveira A, Sim X, Sivapalaratnam S, Small KS, So WY, Stancakova A, Stefansson K, Steinbach G, 

Steinthorsdottir V, Stirrups K, Strawbridge RJ, Stringham HM, Sun Q, Suo C, Syvanen AC, Takayanagi R, 

Takeuchi F, Tay WT, Teslovich TM, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tikkanen E, Trakalo J, 

Tremoli E, Trip MD, Tsai FJ, Tuomi T, Tuomilehto J, Uitterlinden AG, Valladares-Salgado A, Vedantam S, 

Veglia F, Voight BF, Wang C, Wareham NJ, Wennauer R, Wickremasinghe AR, Wilsgaard T, Wilson JF, 

Wiltshire S, Winckler W, Wong TY, Wood AR, Wu JY, Wu Y, Yamamoto K, Yamauchi T, Yang M, Yengo L, 

Yokota M, Young R, Zabaneh D, Zhang F, Zhang R, Zheng W, Zimmet PZ, Altshuler D, Bowden DW, Cho YS, 

Cox NJ, Cruz M, Hanis CL, Kooner J, Lee JY, Seielstad M, Teo YY, Boehnke M, Parra EJ, Chambers JC, Tai 

ES, McCarthy MI, Morris AP. Genome-wide trans-ancestry meta-analysis provides insight into the genetic 

architecture of type 2 diabetes susceptibility. Nature genetics 2014;46:234-244 

39. Thomas NJ, Jones SE, Weedon MN, Shields BM, Oram RA, Hattersley AT. Frequency and phenotype of 

type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK 

Biobank. Lancet Diabetes Endocrinol 2018;6:122-129 

40. Bowden J, Del Greco M F, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the 

investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med 

2017;36:1783-1802 

41. Guan W-J, Liang W-H, Zhao Y, Liang H-R, Chen Z-S, Li Y-M, Liu X-Q, Chen R-C, Tang C-L, Wang T, Ou 

C-Q, Li L, Chen P-Y, Sang L, Wang W, Li J-F, Li C-C, Ou L-M, Cheng B, Xiong S, Ni Z-Y, Xiang J, Hu Y, Liu 

L, Shan H, Lei C-L, Peng Y-X, Wei L, Liu Y, Hu Y-H, Peng P, Wang J-M, Liu J-Y, Chen Z, Li G, Zheng Z-J, 

Qiu S-Q, Luo J, Ye C-J, Zhu S-Y, Cheng L-L, Ye F, Li S-Y, Zheng J-P, Zhang N-F, Zhong N-S, He J-X, China 

Medical Treatment Expert Group for C. Comorbidity and its impact on 1590 patients with Covid-19 in China: A 

Nationwide Analysis. Eur Respir J 2020:2000547 

42. Banik GR, Alqahtani AS, Booy R, Rashid H. Risk factors for severity and mortality in patients with 

MERS-CoV: Analysis of publicly available data from Saudi Arabia. Virologica Sinica 2016;31:81-84 

43. Alqahtani FY, Aleanizy FS, Ali El Hadi Mohamed R, Alanazi MS, Mohamed N, Alrasheed MM, Abanmy N, 

Alhawassi T. Prevalence of comorbidities in cases of Middle East respiratory syndrome coronavirus: a 

retrospective study. Epidemiology and infection 2018:1-5 

44. Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and 

enhanced disease severity following MERS-CoV infection. JCI Insight 2019;4:e131774 

45. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, Li C, Ai Q, Lu W, Liang H, Li S, He J. Cancer patients in 

SARS-CoV-2 infection: a nationwide analysis in China. The Lancet Oncology 2020; 

46. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, del Pozo CH, 

Prosper F. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble 

human ACE2. Cell 2020; 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. .https://doi.org/10.1101/2020.03.04.20031237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.04.20031237
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

47. Recombinant Human Angiotensin-converting Enzyme 2 (rhACE2) as a Treatment for Patients With 

COVID-19. Available at https://ClinicalTrials.gov/show/NCT04335136., 2020 

48. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O’Meara MJ, Guo JZ, Swaney DL, Tummino TA, 

Huettenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas 

P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, 

Naing ZZC, Zhou Y, Peng S, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Shen W, Shi Y, Zhang Z, 

Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg 

DJ, Ramachandran R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Wankowicz 

SA, Bohn M, Sharp PP, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, 

Noack J, Hubert M, Roesch F, Vallet T, Meyer B, White KM, Miorin L, Rosenberg OS, Verba KA, Agard D, 

Ott M, Emerman M, Ruggero D, García-Sastre A, Jura N, von Zastrow M, Taunton J, Ashworth A, Schwartz O, 

Vignuzzi M, d’Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor S, Fraser 

JS, Gross J, Sali A, Kortemme T, Beltrao P, Shokat K, Shoichet BK, Krogan NJ. A SARS-CoV-2-Human 

Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. bioRxiv 

2020:2020.2003.2022.002386 

49. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, 

Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM. Angiotensin-converting enzyme 2 

protects from severe acute lung failure. Nature 2005;436:112-116 

50. Li G, Hu R, Zhang X. Antihypertensive treatment with ACEI/ARB of patients with COVID-19 complicated 

by hypertension. Hypertension Research 2020; 

51. Sommerstein R, Kochen MM, Messerli FH, Gräni C. Coronavirus Disease 2019 (COVID&#x2010;19): Do 

Angiotensin&#x2010;Converting Enzyme Inhibitors/Angiotensin Receptor Blockers Have a Biphasic Effect? 

Journal of the American Heart Association 2020;9:e016509 

52. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI, Gallagher PE. Effect 

of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac 

angiotensin-converting enzyme 2. Circulation 2005;111:2605-2610 

53. Ferrario CM, Varagic J. The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function. American 

journal of physiology Renal physiology 2010;298:F1297-1305 

54. Igase M, Strawn WB, Gallagher PE, Geary RL, Ferrario CM. Angiotensin II AT1 receptors regulate ACE2 

and angiotensin-(1–7) expression in the aorta of spontaneously hypertensive rats. American Journal of 

Physiology-Heart and Circulatory Physiology 2005;289:H1013-H1019 

55. Vuille-dit-Bille RN, Camargo SM, Emmenegger L, Sasse T, Kummer E, Jando J, Hamie QM, Meier CF, 

Hunziker S, Forras-Kaufmann Z, Kuyumcu S, Fox M, Schwizer W, Fried M, Lindenmeyer M, Gotze O, Verrey 

F. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino 

acids 2015;47:693-705 

56. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Stebbing J. Baricitinib as potential 

treatment for 2019-nCoV acute respiratory disease. Lancet 2020;395:E30-E31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. .https://doi.org/10.1101/2020.03.04.20031237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.04.20031237
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

57. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P. COVID-19: combining 

antiviral and anti-inflammatory treatments. The Lancet Infectious Diseases 2020; 

58. Rolf MG, Curwen JO, Veldman-Jones M, Eberlein C, Wang J, Harmer A, Hellawell CJ, Braddock M. In 

vitro pharmacological profiling of R406 identifies molecular targets underlying the clinical effects of 

fostamatinib. Pharmacology research & perspectives 2015;3:e00175 

59. Kang Y, Jiang X, Qin D, Wang L, Yang J, Wu A, Huang F, Ye Y, Wu J. Efficacy and Safety of Multiple 

Dosages of Fostamatinib in Adult Patients With Rheumatoid Arthritis: A Systematic Review and 

Meta-Analysis. Front Pharmacol 2019;10:897 

60. Colonna L, Catalano G, Chew C, D'Agati V, Thomas JW, Wong FS, Schmitz J, Masuda ES, Reizis B, 

Tarakhovsky A, Clynes R. Therapeutic targeting of Syk in autoimmune diabetes. Journal of immunology 

(Baltimore, Md : 1950) 2010;185:1532-1543 

61. Roth DE, Richard SA, Black RE. Zinc supplementation for the prevention of acute lower respiratory 

infection in children in developing countries: meta-analysis and meta-regression of randomized trials. 

International journal of epidemiology 2010;39:795-808 

62. Speth R, Carrera E, Jean-Baptiste M, Joachim A, Linares A. Concentration-dependent effects of zinc on 

angiotensin-converting enzyme-2 activity (1067.4). The FASEB Journal 2014;28:1067.1064 

63. te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits 

coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these 

viruses in cell culture. PLoS pathogens 2010;6:e1001176 

64. Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, 

Spandidos DA, Aaseth J. Zinc and respiratory tract infections: Perspectives for COVID‑19. International 

Journal of Molecular Medicine 2020;In press. 

65. Pendergrass SA, Brown-Gentry K, Dudek SM, Torstenson ES, Ambite JL, Avery CL, Buyske S, Cai C, 

Fesinmeyer MD, Haiman C, Heiss G, Hindorff LA, Hsu CN, Jackson RD, Kooperberg C, Le Marchand L, Lin 

Y, Matise TC, Moreland L, Monroe K, Reiner AP, Wallace R, Wilkens LR, Crawford DC, Ritchie MD. The use 

of phenome-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and 

pleiotropy discovery. Genetic epidemiology 2011;35:410-422 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. .https://doi.org/10.1101/2020.03.04.20031237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.04.20031237
http://creativecommons.org/licenses/by-nc-nd/4.0/

