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Abstract  

Given the high need and the absence of specific antivirals for treatment of COVID-19 (the 

disease caused by severe acute respiratory syndrome-associated coronavirus-2 [SARS-CoV-

2]), human immunodeficiency virus (HIV) protease inhibitors are being considered as 

therapeutic alternatives. Prezcobix/Rezolsta is a fixed-dose combination of 800 mg of the HIV 

protease inhibitor darunavir (DRV) and 150 mg cobicistat, a CYP3A4 inhibitor, which is 

indicated in combination with other antiretroviral agents for the treatment of HIV infection. There 

are currently no definitive data on the safety and efficacy of DRV/cobicistat for treatment of 

COVID-19. The in vitro antiviral activity of darunavir against a clinical isolate from a patient 

infected with SARS-CoV-2 was assessed. DRV showed no activity against SARS-CoV-2 at 

clinically relevant concentrations (EC50 >100 μM). Remdesivir, used as a positive control, 

showed potent antiviral activity (EC50 = 0.38 μM). Overall, the data do not support the use of 

DRV for treatment of COVID-19. 
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Introduction 

 
In December 2019, the severe acute respiratory syndrome-associated coronavirus disease-2 

2019 (SARS-CoV-2; COVID-19) emerged in Wuhan, Hubei Province, China (1). The virus was 

subsequently identified as a coronavirus (CoV), in addition to SARS-CoV-1 and Middle East 

respiratory syndrome CoV (MERS-CoV) that passed from animals to humans where it can 

cause severe respiratory illness (2). As of March 2020, COVID-19 has spread around the world 

with the WHO declaring a global pandemic (3). Given the extent of the COVID-19 pandemic, 

there is an urgent need to identify potential treatments for the disease as well as to develop a 

vaccine.  

As no specific antivirals for treatment of COVID-19 are available, one avenue of clinical interest 

is the use of human immunodeficiency virus (HIV) protease inhibitors (PIs) as a therapeutic 

intervention. The potential for HIV PIs as a treatment for COVID-19 is mainly based on limited 

virologic and clinical data on the HIV protease inhibitor lopinavir with low-dose ritonavir (as a 

pharmacoenhancer; LPV/r) in patients infected with severe acute respiratory syndrome related 

to a coronavirus (SARS-CoV) (4). After demonstrating the in vitro antiviral activity of LPV 

against SARS-CoV-1, the clinical response of patients with SARS to a combination of LPV/r and 

ribavirin was examined. Patients treated with LPV/r had lower rates of adverse clinical outcomes 

at day 21 following the onset of symptoms compared with historical controls (4). However, 

recent data in hospitalized adults with severe confirmed COVID-19 treated with LPV/r in addition 

to a standard care of ventilation, oxygen, vasopressor support, antibiotics and renal-

replacement therapy showed that there was no significant improvement in time to clinical 

improvement or mortality at day 28 compared with the standard care (5).  

The HIV PI darunavir with cobicistat as a pharmacoenhancer (DRV/c, 800/150 mg given orally 

once daily with food) in combination with other antiretroviral agents is approved for both 

treatment-naïve and -experienced patients with HIV-1 infection (6-7). The efficacy and safety 
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profile of boosted-DRV combination therapy is well-established in the HIV setting, based on 

phase III clinical studies as well as real-world evidence (8–11).  

To date, no clear clinical evidence supports the use of DRV (boosted with either ritonavir or 

cobicistat) in viral diseases other than HIV.  

In this paper, the antiviral activity of DRV against SARS-CoV-2 was investigated in an in vitro 

model at clinically relevant concentrations. When DRV/c is taken at the indicated once-daily 

dose, the median trough plasma concentration of DRV was 3.4 µM (1875 ng/mL). (6). This cell 

culture assay was shown to be suitable for antiviral assays. Productive viral infection takes 

place in this model with the number of SARS-CoV RNA molecules increasing continuously after 

infection, indicating that the virus undergoes full replicatory cycles (12). Remdesivir (GS-5734), 

a nucleotide analog initially developed for Ebola virus disease, has shown to inhibit SARS-CoV-

2 replication in vitro with an EC50 equal to 0,770 µM (13) and was therefore used as a positive 

control. 

  

All rights reserved. No reuse allowed without permission. 
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (whichthis version posted April 8, 2020. .https://doi.org/10.1101/2020.04.03.20052548doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.03.20052548


Methods 

 

Cell Culture and Virus Preparation 

Human colon carcinoma cell line (Caco-2) cells (obtained from the Deutsche Sammlung von 

Mikroorganismen und Zellkulturen, Braunschweig, Germany) were cultured in Minimal Essential 

Medium (MEM) supplemented with 10% fetal bovine serum (FBS) and containing penicillin (100 

IU/mL) and streptomycin (100 μg/mL) in a 5% CO2 atmosphere at 37°C. All culture reagents 

were purchased from Sigma (Hamburg, Germany). 

 

SARS-CoV-2 was isolated from human samples and cultured in Caco-2 cells, as previously 

described (3). After one passage in Caco-2 cells, viral stocks were stored at –80°C prior to use.   

 

Assessment of Antiviral Activity by Inhibition of Virus-Induced Cytopathogenic Effect  

Confluent layers of Caco-2 cells were cultured at 37°C in a 5% CO2 atmosphere for 72 hours on 

96 multi-well plates (50,000 cells/well). Cells were challenged with SARS-CoV-2 at a multiplicity 

of infection (MOI) of 0.01. Virus was added together with the compounds under investigation 

and incubated in MEM supplemented with 1% FBS.  

DRV and remdesivir were synthesized at Johnson & Johnson. To assess in vitro antiviral 

activity, DRV and remdesivir, diluted in MEM without FBS, were added in 4-fold dilutions to a 

concentration range of 0.02 μM to 100 μM. Cells were then incubated for 48 hours before the 

cytopathogenic effect (CPE) was visually scored by two independent laboratory technicians. 

Evaluation of CPE was also done using an 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio (MTT; 

Sigma-Aldrich) method according to the manufacturer’s instructions. Optic densities were 

measured at 560/620 nm in a Multiskan Reader MCC/340 Labsystems. Three independent 

experiments with triplicate measurements were performed. Evaluation of inhibition of CPE using 
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the MTT method was done for two of the three experiments.  Data were analyzed by a four-

parameter curve-fitting from a dose-response curve using GraphPad Prism (version 7.00) to 

calculate the EC50 (concentration of the compound that inhibited 50% of the infection) based on 

visual CPE scoring or based on the MTT method.  

 

Assessment of Cell Viability 

To assess the effects of the compounds on Caco–2 cell viability, cell viability was measured in 

confluent cell layers treated with a range of compound concentrations in absence of virus using 

the Rotitest Vital (Roth) according to manufacturer’s instructions, as previously described (12).  

All assays were performed three times independently in triplicate. From this the CC50 (cytotoxic 

concentration of the compound that reduced cell viability to 50%) was calculated from a dose-

response curve in GraphPad Prism (version 7.00) using four-parameter curve-fitting. 

 

Selectivity Index 

The selectivity index for each of the compounds was determined as the ratio of the CC50 to the 

EC50. 

 

Modelling 

In general, in silico docking can be a useful approach for identifying subsets of molecules for in 

vitro studies and can be used to explain in vitro observations on a structural level. The 

coordinates of the crystal structure of the main SARS-CoV-2 protease were retrieved from the 

PDB database (https://www.rcsb.org/structure/6lu7). 

Preparing DRV and the protein for in silico molecular docking was performed with the software 

package MOE (Molecular Operating Environment 2019.01; Chemical Computing Group ULC, 

Montreal, QC, Canada, H3A 2R7, 2019). The force field used was AMBER ETH:10 with default 
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‘quickprep’ settings to prepare the protein complex. The original ligand was then removed. 

General docking settings were then altered to have 50 initial placements.  
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Results 

Assessment of In Vitro Antiviral Activity, Cytotoxicity and Selectivity  

Remdesivir showed strong antiviral activity against SARS-CoV-2 with an EC50 of 0.11 µM 

based on visual scoring of inhibition of CPE (Figure 1a). In the same experiments, DRV did not 

show any inhibition of SARS-CoV-2 induced CPE (Figure 1b; EC50 >100 μM). Similar results 

were obtained using the MTT method. Remdesivir showed potent antiviral activity with an EC50  

value of 0.38 μM (Figure 1a), while DRV showed no effect (EC50 >100 μM, Figure 1b). No 

cytotoxicity of remdesivir or DRV was observed on Caco-2 cells with CC50 values >100 μM. The 

selectivity index (CC50 / EC50) for DRV could not be calculated (>100 µM / >100 µM for SARS-

CoV-2) due to the lack of antiviral activity. In contrast, remdesivir had a selectivity index of >900 

by visual CPE scoring and >260 by the MTT method, confirming a strong in vitro antiviral effect 

against SARS-CoV-2. 

 

Modelling  

In silico docking of DRV in the crystal structure of the SARS-CoV-2 main protease (3CL 

protease) identified five docking poses. The docking scores ranged from S= -8.6 to -8.2, 

showing that DRV can fit into the pocket, but these values are indicative of suboptimal binding 

to this protein. Visual inspection of each of these poses showed very few interactions of DRV 

with the active site of the protease, and the catalytic cysteine residue was not directly targeted, 

unlike the many strong interactions observed for DRV bound to the HIV protease (14).  
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Discussion 

Current efforts to manage the COVID-19 pandemic have largely focused on improved hygiene, 

quarantine of infected individuals, social distancing to limit transmission and development of a 

vaccine (15). Despite the expedited efforts to develop a vaccine and collaborative efforts to 

screen compounds in discovery and development across the broader pharmaceutical industry 

for activity against COVID-19, patients are in immediate need of therapeutic interventions (12, 

16).  

 

Current data on the therapeutic effect of HIV protease inhibitors in patients with COVID-19 are 

far from comprehensive. This study demonstrated that DRV showed no in vitro antiviral activity 

against SARS-CoV-2 at clinically relevant concentrations. Furthermore, structural analyses 

using protease structures are consistent with these data. DRV binds to the active site of the HIV 

virus’ dimeric aspartic protease (14). The crystal structure of this protease is well-elucidated and 

has been shown to have an extensive hydrogen-bonding network with DRV, allowing for the 

potent in vitro activity (EC50 values = 1.2 to 8.5 nM) of this protease inhibitor against HIV (6-7). 

By contrast, the SARS-CoV-2 main protease is a cysteine protease (Protein Data Bank-code 

6LU7) and while several docking poses have been found for DRV in in silico models, unlike in 

HIV, these poses showed little interaction with the SARS-CoV-2 main protease active site. 

Several publications describe in silico docking experiments on the main coronavirus protease 

that specifically focus on or include DRV (17–21). Although these studies suggest DRV as a 

candidate for further investigation, such promising docking results could not be reproduced in 

our in silico docking studies. Such discrepancies can often result from in silico docking, which is 

primarily a useful approach for identifying subsets of molecules for in vitro activity testing. No in 

vitro antiviral activity of DRV against SARS-CoV-2 was found in the experiments reported here. 
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In this study, remdesivir demonstrated activity against SARS-CoV-2 with an EC50 of 0.38 μM, 

which is in line with the earlier reported remdesivir EC50 of 0.77 µM, indicating that the in vitro 

antiviral assay used is appropriate to assess antiviral activity against SARS-CoV-2 (12).  

 

In conclusion, the lack of in vitro antiviral activity of DRV against SARS-CoV-2 does not support 

the use of DRV for treatment of COVID-19. Hence, the use of DRV (boosted with either ritonavir 

or cobicistat) should remain solely for treatment of patients with HIV infection.  
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Figure 1. Inhibition of SARS-CoV-2 in Caco-2 cells by cytopathogenic effect assay using a 1 

visual read-out (visual CPE read-out) and MTT assay (MTT) following addition of a) remdesivir, 2 

or b) darunavir (DRV). Cytotoxicity data (measured by MTT on uninfected cells) are also shown. 3 

Mean percent inhibition for each readout across three independent experiments with triplicate 4 

measurements are plotted (2 independent experiments for the MTT assay). The error bars 5 

represent the standard deviation. 6 

a)  7 

 8 

 9 

 10 

Visual CPE-read out EC50 = 0.11 μM;  MTT EC50 = 0.38 μM; CC50 >100 μM;  11 

Selectivity index = >900 (Visual CPE read-out); >260 (MTT) 12 
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 17 
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b)  19 

 20 

 21 

22 

23 

24 

25 

Visual CPE read-out EC50 > 100 μM; MTT EC50 > 100 μM; CC50 >100 μM 26 
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