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Abstract—With the spiraling pandemic of the Coronavirus
Disease 2019 (COVID-19), it has becoming inherently important
to disseminate accurate and timely information about the disease.
Due to the ubiquity of Internet connectivity and smart devices,
social sensing is emerging as a dynamic sensing paradigm to
collect real-time observations from online users. In this vision
paper we propose CovidSens, the concept of social-sensing-based
risk alerting systems to notify the general public about the
COVID-19 spread. The CovidSens concept is motivated by two
recent observations: 1) people have been actively sharing their
state of health and experience of the COVID-19 via online social
media, and 2) official warning channels and news agencies are
relatively slower than people reporting their observations and
experiences about COVID-19 on social media. We anticipate
an unprecedented opportunity to leverage the posts generated
by the social media users to build a real-time analytic system
for gathering and circulating vital information of the COVID-
19 propagation. Specifically, the vision of CovidSens attempts
to answer the questions of: how to track the spread of the
COVID-19? How to distill reliable information about the disease
with the coexistence of prevailing rumors and misinformation in
the social media? How to inform the general public about the
latest state of the spread timely and effectively and alert them
to remain prepared? In this vision paper, we discuss the roles of
CovidSens and identify the potential challenges in implementing
reliable social-sensing-based risk alerting systems. We envision
that approaches originating from multiple disciplines (e.g. esti-
mation theory, machine learning, constrained optimization) can
be effective in addressing the challenges. Finally, we outline a
few research directions for future work in CovidSens.

Index Terms—Social sensing, COVID-19, coronavirus, disease
tracking, real-time, information distillation.

I. INTRODUCTION

Due to the pervasion of Internet connectivity and smart de-
vices, social sensing is an gradually escalating to a new sensing
paradigm that utilizes observations by humans and devices on
their behalf to obtain information about the physical world [1].
In this vision paper we present CovidSens, the notion of a
real-time risk alerting system based on social sensing to guide
situational awareness and intervention motives for Coronavirus
Disease 2019 (COVID-19) spread. According to the most
recent statistics, there are more than 435,000 confirmed cases
of COVID-19 and above of 14,800 death spread across 50
states in US [2], [3]. Most of the above cases happened within
one week’s time (i.e., between March 26, 2020 and April 01,
2020) and the current trend seems to be ever increasing [3]. As
the outbreak of COVID-19 progresses, circulating information

about the spread in an accurate and timely manner has grown
ever important. However, with heightening uncertainty and
commotion among the general public, the communication of
timely and accurate information to intended recipients is a
challenging task. While official warning channels and news
agencies have served an active role in informing the public
about the spread, they often fall short in terms of pace.
It is apparent that the official warning channels and news
media take a while to confirm and disseminate the information
regarding the outbreak of a new disease [4]. By contrast,
information propagation across the social media and crowd-
sensing platforms is inherently faster than traditional news
media [4]. For example, during the 2013 Boston Marathon
Bombing, news about the first bomb explosion and the arrest
of the suspect were posted in Twitter several minutes before
news agencies made announcements [5], [6]. After the onset
of Cholera outbreak in Haiti in 2010, the knowledge regarding
the outbreak was first obtained through social media, which
occurred weeks before officials confirmed the case of the
outbreak [7]. Such cases exemplify the importance of social
media during emergency scenarios such as now during the
COVID-19 outbreak.

The CovidSens concept is thus motivated by two observa-
tions during this global crisis of COVID-19. Firstly, people
tend to actively convey their state of health and experience
of the virus via online social media since the onset of the
COVID-19. For instance, at one given day, 6.7M people talked
about coronavirus on social media [8]. Secondly, people report
their observations on social media relatively faster than official
warning channels and news agencies make formal announce-
ments. As such, knowledge contribution and discovery through
social sensing may offer more effective news transmission [4].
Given this premise, we perceive an unprecedented opportunity
to leverage the posts generated by the social media users
to build a complete analytics framework for gathering and
circulating vital information of the COVID-19 propagation.

Let us consider a few tweets posted during the course of
the COVID-19 spread across the US in Figure 1. These tweets
express the experiences and observations of individuals about
the COVID-19. If such tweets could be utilized to identify
regions affected by COVID-19 and the rate of spread of the
virus, it might potentially expedite the alleviation of the ad-
verse effects of the virus. In addition, by analyzing the location
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and movement data from smartphones and social media posts
to detect crowds or mass gatherings while respecting user
privacy, government agencies and the mass public could be
informed about the more risk-prone areas of a city during the
COVID-19 outbreak [9]. This could potentially help to divert
people away from more crowded locations and hence reduce
the spread of the disease.

Figure 1. Tweets posted during the COVID-19 outbreak

While the CovidSens vision promises opportunities for a
robust information distillation as well as risk alert service for
the COVID-19 spread, several technical challenges exist in
the way of building such a system that would spontaneously
gather and distribute real-time development of the disease to
the general public. In contrast to traditional disaster response
systems (e.g., for floods or forest fires), one unique goal of
CovidSens is to obtain knowledge of the dynamics of the
disease spread (e.g., inferring the stages of the disease among
people). The first challenge is, therefore, to build a social
sensing data collection platform that is able to spontaneously
obtain the relevant social signals about symptoms, cases, and
fatalities of COVID-19 from the online social media users.
The second challenge lies in developing reliable data analysis
models that can extract the credible information of the disease
spread from the noisy, sparse, and unstructured social data
contributed by unvetted human sources such as the three tweets
presented in Figure 1. The third challenge exists in handing the
huge volumes of social data about the COVID-19 outbreak that
varies widely (e.g., across text, image, video, and audio data).
The fourth challenge is to circulate the extracted information
about the disease spread to the general public in a timely and
efficient manner so that they can plan their actions accordingly.
The fifth challenge lies in designing an effective alert system
that considers the human aspect of the problem (i.e., handling
people’s reaction to alerts like fear, concern, or ignorance).
The sixth challenge is combating the misinformation spread
in the social media where people tend to report rumors or
falsified facts of the COVID-19 spread.

The CovidSens aims to overcome the above limitations by
providing a more reliable and timely COVID-19 monitoring
and alerting system for the mass population based on social
sensing. We envision an information retrieval and dispatching
system for the general public based on data derived from

multiple sources (e.g., social media, crowdsourced platforms,
Unmanned Aerial Vehicle (UAV)) to quickly and effectively
monitor the spread of the COVID-19 using combinations
of smartphone applications, UAVs, message boards, or other
modes of information dispersal. We expect this service to
be important and useful for people who live in or travel to
the affected areas, allowing them to take special precautions
and be well prepared. The successful development of such
systems can potentially help both authorities and general
public respond more quickly and efficiently to COVID-19 and
eventually help save more lives.

We acknowledge the potential to employ interdisciplinary
techniques from estimation theory, online social media anal-
ysis, machine learning, AI and mobile phone applications
to develop effective CovidSens systems. Research along the
realm of CovidSens is important because the COVID-19 is
spreading rapidly in many countries worldwide and a timely
alerting system that explores the rich real-time information
streaming on social media is yet to be developed. The results
of this research can pave the way for studying and tackling
COVID-19 around the world.

The rest of the paper is organized as follows. In Section
II, we discuss a few state-of-the-art works in the direction
of CovidSens. In Section III, we explore potential real-world
applications of CovidSens. We identify the a few likely
challenges in implementing a successful CovidSens system
in Section IV. Afterwards in Section V, we highlight a set of
research directions for future work aligning with CovidSens to
contain the COVID-19 spread. Finally, we conclude our vision
of CovidSens in Section VI.

II. RELATED WORK

A. Social Sensing

Social sensing is rapidly progressing as a pervasive sens-
ing paradigm where humans are used as sensors to attain
situational awareness about the physical world [4]. Examples
of social sensing applications include predicting poverty in
developing countries [10], studying human mobility in urban
areas [11], identifying traffic abnormalities [12], tracking so-
cial unrest [13] and disasters [14], classifying the urban land
usage [15], detecting wildfire [16], identifying the point of
interests in cities [17], and performing post-disaster damage
assessments [18]. A comprehensive survey of social sensing
schemes is provided in [19]. Zhang et al. developed a scalable
approach to obtain data veracity in social sensing [20]. Xu et
al. developed a framework for semantic and spatial analysis of
urban emergency events using social media data [21]. Zhang
et al. presented a constraint-aware truth discovery model
to detect dynamically evolving truth in social sensing [22].
More recently, there is an advent of social-media-driven drone
sensing (SDS) approaches that address the data reliability issue
of social sensing by integrating social signals with physical
UAVs [23]–[25]. While existing social sensing approaches aim
to provide pervasive sensing, they are not tailored specifically
to monitor the COVID-19 outbreak. Compared to traditional
social sensing applications, CovidSens not only requires an
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inference of the data veracity, but also how the COVID-19
outbreak can progress across regions based on indications from
social media posts (e.g., posts about crowded subways could
indicate high risk of COVID-19 risk spread). Thus, it remains
a critical task to develop a reliable social sensing model that
can accurately monitor the COVID-19 spread.

B. Disease Outbreak Investigation

In recent times, disease tracking based on epidemiological
data has been an important avenue of research. Several studies
have independently explored the feasibility of using social
media and crowdsensing for detection, tracking, and analytics
of contagious disease outbreaks [26], [27]. For example,
Google launched a real-time influenza surveillance system,
namely Google Flu Trends [28], to monitor influenza spread by
analyzing search terms related to illness symptoms. Kalogiros
et al. developed Allergymap, a crowdsensing-based disease
identification system for allergen season onsets and allergy pa-
tient stratification [29]. Krieck et al. studied the possibility of
analyzing Twitter data for infectious disease surveillance [30].
Chester et al. [31] carried out bacterial outbreak investigation
based on web forum posts about sick participants from a bike
race. Despite the advances in disease monitoring techniques,
current schemes have not been designed to handle the expo-
nential progression of the COVID-19 pandemic and provide
reliable risk alert in the context of CovidSens. Therefore, it
entails a more rapid information distillation and processing
system that can track the COVID-19 spread in real-time.

C. Automated Disease Warning and Alert Systems

While traditional health systems play an important role
in alerting the general public about infectious diseases, their
slow information progression have necessitated the adoption
of automated warning and alert systems [26]. Brownstein
et al. contributed a few early works in this domain by
developing: i) a series of interactive websites, HealthMap and
Flu Near You [26], [32], and ii) a smartphone application
called Outbreaks Near Me [33] to present vital information
about outbreaks of various illnesses around the world. Toda et
al. explored the effectiveness of a text-messaging system for
notification of disease outbreaks in Kenya [34]. Yu et al. de-
veloped ProMED-mail, an early warning system for emerging
diseases [35]. Carter studied the possibility of a tweet-based
information dispersal system to facilitate the containment of
Ebola in Nigeria [36]. The above approaches are known to
provide disease warning with reasonable effectiveness. How-
ever, it is an even more challenging task to develop a real-
time COVID-19 spread indicator for CovidSens that uses both
social-media and crowdsourced data, and also transmit the
news of the spread to the general public in real-time.

D. COVID-19 Spread Monitoring

With the emergence of the COVID-19 outbreak, several
streams of research have introduced methods to monitor the
COVID-19 propagation. Sun et al. [37] proposed the first study
that harnesses crowdsourced data from several social media

sources to monitor the COVID-19 spread. Schiffmann [38]
developed an informative web portal that aggregates news
from myriads of news sources to present latest information
on COVID-19 spread. The Johns Hopkins Center for Systems
Science and Engineering (JHU CSSE) developed an interactive
online dashboard to track and present worldwide reported
cases of COVID-19 in real-time [39]. An online community of
international students and professionals, called 1point3acres,
developed a web-based real-time COVID-19 news aggregator
to track the state of the spread in the US and Canada [40]. A
mobile app has been developed by the Singaporean govern-
ment to leverage crowdsourced information to locate commu-
nity transmission of COVID-19 [41]. A key drawback of the
above tools is that they possess partial autonomy, requiring
some degree of manual efforts to validate the information of
the COVID-19 spread before presenting them online [38], [40].
During this evolving COVID-19 outbreak, delays are unde-
sirable. Therefore, a significant limitation exists in existing
approaches to spontaneously track the COVID-19 propagation
and disseminate the information to the end users.

III. REAL-WORLD APPLICATIONS

In this section, we highlight a few probable applications in
real-world scenarios aligning with the CovidSens vision.

A. Social-media-driven Disease Spread Indicator

In a social-media-driven disease spread indicator (SDSI),
social media posts related to COVID-19 are analyzed to attain
the state of the spread [37]. An example of an SDSI architec-
ture is illustrated in Figure 2. Initially, a real-time Twitter data
crawler engine collects tweets indicating public opinions about
the disease. The tweets are subsequently filtered and labelled
into discrete categories based on the topics of discussions.
A few examples of these topics can be: i) what regions are
being frequently reported to be infected; ii) the time between
people first talking about COVID-19 symptoms to deciding
to be tested (i.e., how long the virus takes to show effect
in people) [37], iii) which age of people are expressing about
symptoms the most; iv) how rapidly authorities are responding
to the stimuli; and v) whether people are talking about other
people they know getting recovered [37], [42]. Afterwards
the labeled Twitter data are passed to a tweet analytics and
training engine on a backend server. Specifically, the backend
server will construct a clean and timely events summary
about the COVID-19 spread by distilling relevant and reliable
information from the massive amount of noisy, unstructured,
and unvetted data feeds. Lastly, a website or smartphone
app will interact with end users to provide them warnings
or alerts about the disease spread in their vicinity based on
their queries. The analytics engine jointly analyzes the data
veracity, source reliability, observation bias (e.g., under vs
over estimation), as well as the likelihood of large-scale havoc
launched by malicious users on social media using novel
estimation theoretic, machine learning and AI techniques.
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Figure 2. Overview of an SDSI system

B. Crowdsensing-based Disease Tracking

Crowdsensing-based disease tracking (CDT) involves sensor
networks and groups of people, with mobile devices capable of
sensing, collectively sharing disease related information (e.g.,
early symptoms, nearby infected persons, deciding to self-
quarantine) [37], [43]. CDT is fueled by the observation that
individuals tend to proactively volunteer in contributing data
about the COVID-19 spread using their smartphones, wear-
ables, or other devices with sensors and connectivity [37]. In
contrast to SDSI, CDT is relatively less pervasive and requires
active participation of people and physical sensors. However,
in return the data is less noisy and is hence more reliable.
Figure 3 shows an example of a representative CDT system.
A CDT may typically incorporate three main components. The
first component is a data collection platform consisting of a
network of users with a custom smartphone application to log
data and a set of internet-of-things (IoT) devices (e.g., smart
heart-rate monitors, activity trackers, thermal scanners). The
smartphone application interacts with users and allows them
to actively contribute their reports on the COVID-19 if they
are willing to. If the users choose to input data, the app lets
the users configure at what granularity (e.g., state, county,
street, or N/A) they feel comfortable to share their location
information. The second component is an analytics framework
that applies relevant statistical analysis and machine learning
techniques on the obtained data to infer probable regions of
infection and safe zones [33], [43]. The third component is
a smartphone application on the end users’ mobile phones
to visually represent the analyzed geospatial distribution of
the inferred regions [33]. The app can obtain the needed
information from the backend server based on the users’
queries (e.g., checking the risk level of a particular area of
interest). In most cases the data collection and representation
is carried out in the same smartphone application [33]. Sun et
al. proposed one of the earliest crowdsourcing based COVID-
19 outbreak detection system [37]. The Singaporean and South
Korean governments have launched mobile apps that utilize
crowdsourced data to trace community transmission of the
COVID-19 [41].

Figure 3. Overview of a CDT system

C. UAV-based Health Surveillance and Alerting

The urgency of the COVID-19 outbreak has necessitated
new dimensions for UAV-based health surveillance and alert-
ing (UHSA) systems [44]. With the help of onboard sensors
(e.g., cameras, microphones), UAVs are able to gather intel-
ligence remotely during a disease pandemic scenario where
human patrol teams and ground units cannot operate due to
risks of getting infected. For instance, UAVs can assist in
detecting unwanted crowds of people along locked down areas
of a city [44]. Figure 4 demonstrates a representative UHSA
model for mitigating the COVID-19 spread. The UHSA system
responds to emergency requests by individuals through social
media posts about unnecessary mass gatherings. Afterwards,
the data is gathered in a backend server and processed using
social sensing approaches based on statistics and machine
learning for analyzing the truthfulness of the data. The infor-
mation is then updated across nearby regions by raising verbal
alerts through speakers installed on the UAVs. UAVs are also
dispatched out to different areas of a city to spontaneously
scan and obtain situational awareness about the region. Using
the onboard sensors UHSA detects if people are breaking
the rules during the lock down situation (e.g., by roaming
outside, gathering in crowds). The framework may also locate
the availability of critical supplies using the UAVs’ cameras
(e.g., open pharmacy, grocery stores) based on the social media
posts. Using the onboard speakers, the people breaking the
rules are alerted to return home. One real-world example of
UHSA during the COVID-19 ordeal is in California, USA
where the law enforcement officials have resorted to utilizing
drones for patrolling the state of California during the on-
going lock-down situation [45]. During the COVID-19 crisis
in China, UAVs have served multiple roles including post-
epidemic aerial evaluation, alerting, and relief distribution to
affected regions [46].

IV. RESEARCH CHALLENGES AND OPPORTUNITIES

In this section, we present a set of prevalent research
challenges and opportunities in the development of an effective
CovidSens framework.
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Figure 4. Overview of an UHSA system

A. Data Collection Challenge

During the onset of rampant disease outbreaks like COVID-
19, the primary objective of a CovidSens system is to collect
information from the general public. However, several difficul-
ties prevail to locate and obtain the relevant posts related to
the COVID-19 spread. For instance, while conducting simple
keyword based searches on obtained social media data, the
desired keywords may indicate various other unwanted things
(e.g., while the term “sick” is generally used to indicate people
who are not doing well, it may also be used to express
sarcasm by certain people). Several recent studies focused on
mitigating this issue of data discovery by replacing simple
keyword based searches with singular value decomposition
(SVD) driven K-means clustering [47] and recurrent neural
network (RNN) based textual labeling process [48]. However,
such methods still lag behind human perception in terms of
accurately scanning for relevant input data. Thus, obtaining a
collection of relevant social media data that directs to the right
set of information remains an arduous task. Moreover, a great
portion of social media data may eventually turn out to be
redundant (e.g., retweets) or simply rephrased from a single
original post [49]. On top of that, a good amount of social
media data is observed to be transient and perishable. For
example, people may delete their previous posts and online
repositories (i.e., Twitter and Facebook servers) hosting the
posts may take them down for undisclosed reasons. In addition
to that, social media APIs such as Twitter often impose various
rate limitations which can heavily impede the data collection
during disease outbreaks [50]. The data collection process
for COVID-19 therefore necessitates a tool that can locate,
obtain, and store the relevant information from users in real-
time across social media channels.

B. Data Reliability Challenge

The concept of CovidSens is centered around the noisy
and unreliable data generated by the unknown human sources
on the social media [19], [51]. One important task while
harnessing social media for CovidSens is to extract trustworthy
information from unreliable human sources with unknown
source reliability [1], [25]. We define this as the data reliability

challenge in social sensing. Several truth discovery solutions
have been developed to mitigate the data reliability problem.
For instance, Wang et al. presented a framework to jointly es-
timate the reliability of data sources and the correctness of the
reported measurements in social media posts using approaches
from estimation theory [1], [52]. Zhang et al. built upon the
previous framework to address the scalability and physical
constraint challenges and employed the improved schemes to
real-world social sensing applications [20], [22], [53]. Yin et
al. developed Truth Finder, a probabilistic algorithm using
iterative weight updates to improve the quality of the data
in social sensing [54]. While great efforts have been made on
developing reliable social sensing solutions, certain limitations
hinder these solutions from being applied in CovidSens to
track COVID-19. One drawback of traditional social sensing
schemes is that they solely rely on the noisy social media data
and there no external means of validating the credibility of the
input data during the COVID-19 epidemic [22]. Existing meth-
ods are also not tailored towards disease outbreak detection,
which may lead to prediction of false cases of COVID-19.
For example, a person simply posting a symptom of breathing
difficulty may not necessarily suffer from COVID-19. It may
be required to analyze other traits of the patient based on
earlier posts. Hence, it remains an unresolved challenge in
CovidSens to develop reliable social sensing models that can
explore the uncertainty in the input data and extract reliable
signals.

C. Data Modality Challenge

While data collection is an intrinsic challenge in using
social sensing for tracking the COVID-19 spread, a greater
difficulty exists in processing the rapidly generated incoming
signals consisting of multitudes of features or dimensions [55].
This challenge is identified as data modality in social sensing
where large amounts of unfiltered and unstructured data with
multiple modalities need to be processed [56]. Specifically,
data modality refers to the different variety or types of data
prevalent in the social media such as text, image, location,
audio, and video [57]. Moreover, each type can further en-
compass different dimensionality as well which makes the data
modality challenge even harder. Examples of dimensionality in
CovidSens can range along reports of: i) proximity to infected
locations, ii) number of suspected cases, iii) number and types
of symptoms, iv) intensity of symptoms (i.e., mild, moderate,
or severe), v) recovery rate, vi) death rate, and vii) number of
self-quarantined cases. Recent social sensing tools primarily
focus on analyzing the text data in social media [58]. This
trend is advocated by the fact that image data processing
involves heavy computation requirement [59]. Consequently,
existing methods do not focus on fusing multiple types of data
which may potentially generate richer detection of COVID-19
propagation. For example, a person may tweet about having
COVID-19, but based on an image posted with the tweet
it may turn out that the person’s symptoms have actually
resulted from an allergic reaction instead [60]. Fusing text
with other data such as image and location data may po-
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tentially yield more accurate prediction of the COVID-19
spread. Therefore, given the sheer volumes of multi-modal
data generated by the social media users about the COVID-19
outbreak, solutions need to be developed to efficiently utilize
the different modality of data. Moreover, since multi-modal
data processing intrinsically demands greater compute power,
care must be given to strike efficient an trade-off between
detection accuracy and computational complexity. A set of
unsolved questions springing from the data modality challenge
in CovidSens are: i) how to efficiently fuse the different types
of social media data related to COVID-19 in to one unified
data stream? ii) How to design algorithms to process a wide
variety of social data in real-time for an accurate prediction
of the COVID-19 spread? iii) How to speed up the analysis
of multi-modal data for faster COVID-19 spread detection by
distributing the computation across multiple devices?

D. Location Data Scarcity Challenge

One recurring issue in social sensing is the user privacy
whereby the personal information of the online users remains
at risk of falling into the wrong hands [61]. Geo-location data
shared by users can also be used to expose other private
information as well (e.g., ethnicity, race, financial status)
which social media users do not typically consent to share and
are also not required by CovidSens applications. Thus, it has
been observed that due to the concern of one’s location and
private information being exposed, many social media users
tend to not share their location information while reporting
their observations in the social media [12]. For example, in
an independent study involving data collection for disaster
related tweets, it was found that less than 10% of the tweets
were actually geo-tagged (i.e., contained geographical location
of the users). As such, CovidSens applications that heavily
rely on the location metadata from the social media posts
to provide inference of the COVID-19 spread may under-
perform when the number of geo-tagged social media are
scarce. Recent literature has explored methods to work around
this issue by exploiting spatiotemporal social constraints for
location inference from social media posts [62]. However,
such uni-dimensional approaches that rely on solely on the
content of the social media posts may result in high estimation
errors for the inferred locations. In order to precisely track
the progress of the COVID-19 propagation, it is imperative
to obtain the exact locations of the surges. Consequently, it
is a challenge in CovidSens applications to design a solution
that can mitigate the data scarcity issue which may eventually
yield better sensing results for tracking the COVID-19 spread.

E. Timely Presentation Challenge

With the rapidly evolving circumstances during the COVID-
19 outbreak, it is critical to present the information of the
disease spread to the end users in a timely manner. This
necessitates an information presentation system that can both
process as well as present data of the disease propagation in
real-time and keep people alerted. In the recent past, several
methods have been implemented to present disease outbreak

updates to the mass through means of interactive websites [26],
[32]. However, such methods of information distribution and
collection solely rely on aggregating knowledge from different
news portals and information websites which can lead to
potential delays in alerting people about the most recent situa-
tion [4]. Due to their structured nature of information crawling
and collating, existing web-based techniques cannot be directly
applied to social sensing which encompasses unstructured
and noisy social data [55]. In addition to that, websites and
smartphone applications rely on the constant availability of
both the Internet and a smart device, either of which may
not be available in all circumstances. Thus, vital information
may not reach to all sectors of the population, especially with
the elderly and less tech savvy individuals without access
to computers and smart devices. Based on these grounds, it
remains an open question in CovidSens on how to develop
a reliable yet efficient mechanism that can rapidly deliver
important messages and information regarding the COVID-19
spread to all segments of the population.

F. Human Factor Challenge

One important aspect to consider while dealing with social
signals in CovidSens is the human component. Given the in-
tensifying concerns and panic among the general public during
the COVID-19, we acknowledge that people can be overly
emotional, sensational, or biased in expressing their opinions
in the social media or the crowdsensing applications [63]. Such
behaviour can potentially trigger misrepresented or misinter-
preted observations and thus yield erroneous disease tracking
results. Based on the above concerns, one critical challenge
stemming from the human aspect of social sensing can be
on deciding how to handle the mood of the population while
containing the public concern at desirable levels. Moreover,
it is imperative to study the human component closely and
model how people react to the information presented to them
through the warning and alert systems in CovidSens. Some
individuals may turn out to be excessively sensitive and thus
care must be taken so as not to develop the grounds for
unnecessary panic or civil unrest. For example, during the
Ebola epidemic in Liberia in 2014, riots broke out among the
residents when officials raised alarms of the outbreak [64].
On the other extreme of the spectrum, we also acknowledge
that a certain proportion of the population have a tendency
to be oblivious of the circumstances, neglect warnings, and
remain excessively calm during this outbreak situation. The
challenge of CovidSens is to strike a smooth balance between
raising attention and providing assurance: at one end we need
to calm people down while informing them of the situation
but at the same time we also need to send out the message to
remain well-prepared.

G. Misinformation Spread Challenge

With the heightening concern of the COVID-19 spread,
just as social media has served as a platform for attaining
information, it has also served as the venue for sprouting
misinformation. Due to the increased adoption of social
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sensing as a news source, misinformation spread on social
media has remained an inevitable issue [54]. This has caused
social media giants such as Facebook and Google to con-
duct worldwide campaigns to fight the propagation of fake
news [65]. Figure 5 illustrates a collection of tweets referring
to misinformation during the COVID-19 outbreak. The World
Health Organization (WHO) has been forced to reallocate con-
siderable resources to combat swathes of misinformation like
these, which may potentially hinder COVID-19 monitoring
efforts [66]. This phenomenon has been classified by WHO
as an ‘infodemic’ [66]. Social sensing tools, otherwise known
as truth discovery algorithms, are known to under-perform in
the presence of widespread misinformation, which is common
during disease outbreak scenarios. One obvious measure to
address this issue is to acquire ground truth for validating the
source reliability and event correctness. However, obtaining
such ground truth is delay prone since it requires a significant
amount of manual effort, but most importantly it is impractical
during the course of virus breakouts where people should
restrict locomotion and contact with other people. Therefore,
it remains a critical challenge in CovidSens to construct an
effective mechanism that can identify and isolate the misinfor-
mation spread to generate trustworthy social signals indicating
the COVID-19 spread.

Figure 5. Tweets indicating fake news

V. ROAD-MAP FOR FUTURE WORK

In this section, we discuss a few potential directions for
future work in the realm of CovidSens.

A. Uncertainty Quantification in CovidSens

We note that CovidSens relies on noisy and uncertain social-
sensing data generated by unvetted data sources to monitor
the COVID-19 spread. Thus, one domain for future work can
be to mitigate the data reliability challenge for CovidSens
applications. We observe that existing social-sensing tools
or truth discovery algorithms mainly prioritize on the data
veracity or source reliability from the social media data.
However, in a social-media-driven COVID-19 spread indicator
application, the estimation confidence of a reported event’s
veracity is also crucial [67]. Consequently, it is important
to determine the confidence level with which the COVID-
19 propagation is predicted. For example, an inferred age
demography with a low estimation confidence can easily lead
to an erroneous conclusion on which age of people are most

likely to be affected by COVID-19. In particular, further
research can focus on rigorously quantifying the uncertainty
of output results to evaluate and enhance the performance of
the truth discovery algorithms. While the uncertainty quan-
tification is well-studied in statistics and estimation theory,
it is mostly overlooked in existing social sensing solutions
since the performance of truth discovery algorithms are hard to
inspect and humans are more likely to generate the claims with
different degrees of uncertainty (e.g., affirmative assertions
versus pure guesses) [68], [69]. Based on this, one probable
research direction is to develop a method to determine the
confidence levels of detection by quantifying the uncertainty
of the results in CovidSens applications.

Current literature on statistical analysis discusses principled
approaches based on estimation theory. A set examples of tech-
niques to quantify the uncertainty of the estimation results of
the truth discovery algorithms are maximum likelihood estima-
tion (MLE) and Cramer-Rao lower bounds (CRLB) [53], [67].
While these methods have been tested to operate optimally to
provide the desired uncertainty quantification, it stills remain
a critical challenge to formulate the truth discovery problems
in CovidSens in a mathematically tractable way that would
allow the uncertainty estimation tools to be applied upon.
We envision that theories from multiple disciplines would be
leveraged to cater to the uncertainty quantification problem in
the CovidSens applications.

B. Rumor Suppression and Fake News Detection

One direction for future work for CovidSens is to combat
the misinformation propagation challenge. Therefore, rumor
suppression and fake news detection are indispensable for
COVID-19 related misinformation spread containment. We
acknowledge that rumors and misinformation in social media
originates from the behaviour of individuals sharing what
others share [70]. Thus, it is beyond the scope of machine
intelligence alone to contain the spread of rumors and misin-
formation entirely. Based on these premises, a few potential
research questions can be: i) how to develop techniques that in-
corporate human intelligence along with machine intelligence
to more accurately identify the rumors from true information
about the COVID-19 spread? ii) How to investigate and
identify the origin behind misinformation sharing from the
social media posts? iii) How different demography (e.g., age
groups, gender classes) react to misinformation about COVID-
19 spread and how to utilize this knowledge to combat the
misinformation propagation?

Several existing literature has proposed different fact deter-
mining techniques for analyzing and detecting falsified claims
and rumors on social media using: i) Bayesian-based heuristic
algorithms [54], ii) analyzing textual evidence with associated
images [71], and iii) considering physical constraints and
temporal dependencies of the evolving truth [72]. One new
domain of research focuses on unifying the collective strengths
of human intelligence (HI) and artificial intelligence (AI) to
screen out misinformation in the social media [73]. Such
approaches utilize HI-based crowdsourcing platforms such
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as Amazon Mechanical Turk (MTurk) in combination with
existing deep neural networks (DNNs) and machine learning
techniques, and can be used to classify social media posts
about COVID-19 as veracious or falsified [73].

C. Mesh Network for News Aggregation and Circulation

A stream of potential research can focus around mitigat-
ing the data collection and timely presentation challenges
in CovidSens applications. In order to obtain information,
traditional news media (e.g., CNN, BBC) rely on dedicated
news reporters while social news aggregators (e.g., Digg,
Reddit) rely on active voluntary participation of commit-
ted individuals. A key drawback of such news collection
approaches is that they entrust a central authority (i.e., a
news agency or web administrator) to analyze and verify
disease outbreaks like COVID-19, which may induce delays
in deriving the COVID-19 propagation [4]. In contrast, a
decentralized social-sensing based news aggregation and sub-
scription service can potentially accelerate the news collec-
tion as well as distribution of information during the global
pandemic of COVID-19 [74]. A survey shows that 37% of
Internet users promulgated news content through social media
posts on Facebook and Twitter [74]. With the proliferation
of smart devices and people’s tendency to post about nearby
cases of people showing symptoms of COVID-19 or feeling
ill [75]–[77], information about probable COVID-19 cases can
propagate very fast through the social media. However, as
identified earlier, a key hurdle is to develop a system that
can spontaneously locate, obtain, and store the data from
the social media platforms. Furthermore, after the COVID-
19 related information is assembled, a system needs to be
developed that can convey the processed information to the
mass public. A set of important research questions are: i)
how to efficiently filter and organize information contributed
by diversified and unreliable sources? ii) How to compile
the gathered information to an acceptable degree that each
subscriber feels complacent in reading and trusting? iii) How
to present the information to less tech savvy individuals with
limited knowledge on computers and smartphones? iv) How to
sustain the news aggregation and circulation during an Internet
downtime?

A possible approach of information collection is to de-
velop a real-time social media data collection and storage
engine, such as Apollo [78]. One other potentially effec-
tive technique for information aggregation is to develop a
dedicated crowdsensing-based smartphone application which
allows users to readily report about COVID-19 related ob-
servations [33]. Subsequently, a decentralized mesh network
based news subscription service can be constructed from
the collected data in the mobile app that is able to operate
autonomously without a central authority. The service can
be used to leverage the rich set of real-time observations
of COVID-19 contained in the social data to explore the
collective wisdom of common individuals without relying on
dedicated news reporters. The entire service may be imple-
mented within the aforementioned mobile app that can both

collect the information of the COVID-19 spread from the
online users and also present the prepared news to others [33].
This process can virtually eliminate the existence of a central
authority, hence reducing delays in information gathering and
distribution in a CovidSens application.

D. Privacy Aware Location Discovery Based on Contextual
Analysis

CovidSens applications are inherently location data driven
and hence a potential domain of research in CovidSens can be
to address the location data scarcity challenge from the social
media data. Specifically, studies can focus on determining the
location of the COVID-19 related report origination points
in the absence of the geo-location metadata in the posts.
We emphasize that during inferring the event report locations
from the social media data, care must be given to respect
individual privacy from the system perspective, which if done
improperly may lead to serious privacy breaches. For example,
while a user’s location information may be deduced from the
text data in social media, it may also be used to infer other
sensitive information such as job, ethnicity, race, financial
status. Leakage of these information may place users at risk
and lead to loss of confidence in the developed system [61].
Therefore, one important area of research in CovidSense can
focus on how to develop privacy-aware location inference tools
based on the contextual analysis of social media data that
protects the identity and privacy of the users.

Once the user privacy is ensured, a good amount of oppor-
tunity exists in designing techniques to leverage the contextual
information that is embedded within the text content of a
social media post (toponym resolution). Moreover, images
contained with posts can also be useful in extrapolating an
accurate estimate of the social media report’s origination
sites [79]. For example, an individual tweeting about COVID-
19 symptoms claiming to be from a particular location can be
given greater credibility if he or she posts with the image of
the place. Another way to obtain the geo-location information
of social media data can be to use image-based geocoding
where subjects in the background of a posted image are cross-
referenced with known landmarks or popular sites to find the
location of the image [80].

People who post about disease symptoms in social media
and “follow” other social media users with similar symptoms
may be co-located [81]. Intuitively, if one user’s location
can be determined, the location of the related users may
be discovered as well. However, individuals may also reside
very far from one another. For instance, two friends showing
COVID-19 related symptoms may be located in two different
cities. Thus, additional features from the social media data
may be analyzed to infer other evidence for being co-located.
Rich privacy-aware location inference schemes can be devel-
oped that fuse friend-follower networks with the contextual
information embedded within texts in tweets to determine the
whereabouts of COVID-19 spread [62], [81]. An ensemble of
solutions employing natural language processing (NLP) [82],
deep neural networks (DNNs), and social network analysis can
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be built to accurately infer the location information from the
social media data [73], [79].

E. Integration of Social Sensing with Physical Sensing

As identified earlier, one key goal for developing effective
CovidSens applications is to address the data reliability chal-
lenge stemming from the unreliable social media users. Beside
uncertainty quantification, a strand of research to combat the
data reliability challenge in CovidSens is to integrate social
sensing with physical sensing paradigms (e.g., unmanned
aerial vehicles (UAVs) and vehicular sensor networks (VSNs))
to verify the reports connected to COVID-19. Compared to
UAVs and VSNs, social sensing has a broader outreach, but
suffers from inconsistent reliability. On the other hand, UAVs
and VSNs are fitted with arrays of sensors (e.g., temperature,
humidity, and air quality sensors, cameras, microphones) [83]
that allow them to sense COVID-19 related events with
substantial fidelity [25]. However, they are limited in sensing
scope and possess partial autonomy [24]. Leveraging the
collective strengths of UAVs and VSNs with social sensing
can potentially accelerate the discovery of COVID-19 related
events. The reliable and high quality measurements provided
by physical sensors naturally complement the uncertain esti-
mation and broader sensing scope of social sensing. Driven
by the social signals, the mobility and agility of UAVs and
VSNs can allow them to be quickly sent to COVID-19 prone
areas or hot zones to collect real-time evidence (e.g., people
loitering on streets or gathering in larger groups) and ascertain
whether the reported cases actually exists before sending out
medical teams or law enforcement [83].

A few possible courses of work can focus on either inte-
grating social sensing with unmanned aerial vehicles (UAVs),
namely social drone [23], or with vehicular sensor networks
(VSNs), namely social car [84] to sense the neighbourhood of
COVID-19 affected areas for unwanted crowds, open phar-
macies or emergency supply stores, and so on. A set of
open research questions in these applications are: i) how to
leverage the noisy social signals to quickly guide drones and
cars to locations of interest? ii) How to accommodate various
constraints imposed by the physical world (e.g., deadlines of
urgent cases like dying patients, limited availability drones
and their limited flight times)? iii) How to leverage the
observations collected by the drones (e.g., unwanted crowds)
to improve the social sensing process? Probable solutions
that holistically solve the above challenges in the context of
CovidSens systems are yet to be developed.

VI. CONCLUSION

In this paper, we introduce CovidSens, a new vision of
reliable social sensing-based information distillation and risk
alerting systems to monitor the COVID-19 spread and study
the transmission dynamics of the contagious disease. We
highlight a few key challenges in CovidSens applications
including data collection, reliability, modality, presentation,
and misinformation spread. By harnessing interdisciplinary
techniques, CovidSens can combine the collective strengths

of social sensing with machine intelligence as well as human
intelligence to perform real-time analyses on the obtained
epidemiological data. CovidSense can yield more timely and
accurate prediction of the COVID-19 spread which may sub-
sequently be presented to end users through a collection of
rich mobile apps and UAVs. We hope this paper will uphold
CovidSens as an important avenue for guiding research to
tackle the current COVID-19 pandemic around the world.
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