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Abstract 
 
During a pandemic, robust estimation of case fatality rates (CFRs) is essential to plan and control 
suppression and mitigation strategies. At present, estimates for the CFR of COVID-19 caused by SARS-
CoV-2 infection vary considerably. Expert consensus of 0.1–1% covers in practical terms a range from 
normal seasonable Influenza to Spanish Influenza. In the following, I deduce a formula for an adjusted 
Infection Fatality Rate (IFR) to assess mortality in a period following a positive test adjusted for 
selection bias.  
Official datasets on cases and deaths were combined with data sets on number of tests. After data 
curation and quality control, a total of IFR (n=819) was calculated for 21 countries for periods of up to 
26 days between registration of a case and death.  
Estimates for IRFs increased with length of period, but levelled off at >9days with a median for all 21 
countries of 0.11 (95%-CI: 0.073–0.15). An epidemiologically derived IFR of 0.040 % (95%-CI: 0.029%–
0.055%) was determined for Iceland and was very close to the calculated IFR of 0.057% (95%-CI: 0.042–
0.078), but 2.7–6-fold lower than CFRs. IFRs, but not CFRs, were positively  associated with increased 

proportions of elderly in age-cohorts (n=21, spearman’s =.73, p =.02).  
Real-time data on molecular and serological testing may further displace classical diagnosis of disease 
and its related death. I will critically discuss, why, how and under which conditions the IFR, provides a 
more solid early estimate of the global burden of a pandemic than the CFR.  
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Introduction 
 
In the early phase of a pandemic caused by a novel pathogen, it is difficult to estimate the final burden 
of disease. In the case of the ongoing pandemic caused by SARS-CoV-2, it has been proposed, on the 
one hand, that it will be the most serious seen for a respiratory virus since the 1918-1919 H1N1 
Influenza pandemic1. This pandemic contributed to the premature death of 1 percent of the world 
population at the time being2. On the other hand, despite all non-refutable morbidity, COVID-19 may 
fall short of provoking a comparable impact on mortality as the seasonal Influenza, which is estimated 
to contribute to 389,000 deaths per year on average3. Experts conclude that there is still a range for 
CFR of 0.1 up to 1.0, which practically spoken is reflecting the margin from normal seasonal Influenza 
to the lower boundary CFR estimate of 1918-1919 H1N1 Influenza4. 
Case Fatality Rates (CFR) can be helpful to critically control and reflect the outcome of robust modelling 
to estimate the global burden by mortality1. During the phase of an outbreak CFRs are preliminary and 
should be communicated and used with caution5. Even in the case of the well-known and frequently 
studied seasonal Influenza A, it is a matter of debate on how to estimate a CFR during the phase of the 
pandemic, which could be calculated by the total number of “deaths” divided by the number of 
“cases”.  There are ongoing discussions, what can and should be regarded as a “case” and a reasonably 
causal-related death6. A “case” could ideally be a confirmed case of the infectious disease according 
to strict diagnostic guidelines, requiring symptoms and confirmatory testing. Moreover, the death 
would ideally be a causally related death and not a death caused by superinfection over the course of 
hospitalization, for instance.  
Whether we impose less or more strict guidelines to define a suitable “case” and its causally related 
death, either way will inevitably introduce selection bias. This may lead to both, either substantially 
higher, or substantially lower estimation of CFRs6,7. On the one hand, it can be argued that a strict 
procedure for confirmation of official cases and deaths may underestimate the effect of disease on 
mortality, since we will miss out both, deaths and cases, for a significant proportion of the population 
7. On the other hand, an infection with a pathogen of mild up to medium virulence, like SARS-CoV-2, 
can be completely asymptomatic, or may cause only minor symptoms to a majority of infected 
persons8,9. At present the size of the denominator of total community infections is unknown4, but at 
least there is increasing evidence that a major part of the younger population, rarely become 
symptomatic10 and even more rarely could die of the disease, if diagnosed with COVID-199. 
At the beginning of a pandemic with a novel pathogen central aspects of previously acquired immunity 
or genetic resistance against viruses11, or other pathogens are often unknown or only vaguely 
explored. If they existed, but were not taken into account, the estimated CFR would not reflect the 
burden of an infectious disease on a macro perspective. In such a setting looking preferentially at 
those, who have the full-symptomatic disease or are subjected to the surveillance system, can severely 
overestimate the burden of disease. Therefore, in the early phase of an outbreak, infectious disease 
epidemiologists will rather base their estimates of the potential burden of a pandemic rather models 
requiring basic assumptions on the basic reproduction number R0, the latent period of the infectious 
period, and the interval of half-maximum infectiousness and many other factors. These all need to be 
derived from early field studies that often need to be conducted under sub-optimal conditions, in the 
heat of a pandemic10. These basic assumptions of epidemiological key figures are then used for 
modelling the almost uncharted1,11,4. From a stochastic point of view, such modelling is prone to an 
exponential propagation of imputation error, which can principally be controlled for and reported with 
these models12. However, as in the present case such error propagation will finally arrive at conclusions 
via modelling, that are indeed based on assuming merely all or nothing4 and thus indeed would need 
to be communicated with uttermost caution to the public and foremost health politicians5.  
 
Under these circumstances, it could be helpful to look at alternative ways to asses a robust figure for 
CFR as a typical, hard to predict estimate for global burden of a pandemic. Alternative ways may allow 
interdisciplinary abductive reasoning to arrive at an estimate for the global burden of a disease. 
Particularly under non well-defined and dynamic circumstances, abductive reasoning can be more 
helpful than the best medical evidence employing inductive statistical inference, alone13. 
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There has just recently been a promising approach to arrive at a more robust measure of mortality14. 
This involved calculating an Infection Fatality Rate (IFR), which takes not only the asymptomatic 
population and their relevance for mortality into account, but also adjusted for censoring and 
ascertainment bias. However, this approach required again an immense workload on retrieving and 
curating valid data retrieved, from cohorts studied under specific conditions, and making pre-
assumptions, which is again an approach prone to error propagation. 
 
Here I will deduce that an IFR adjusted for selection bias in favour of more morbid persons, can be 
determined with the help of available official data in conjunction with the testing figures. I will show 
that the IFR adjusts the CFR for some essential sorts of bias. In order to cross validate the computed 
figures, I will estimate infection fatality from an ongoing large-scale testing pool of citizens 
representative for the general population in Iceland. At the time of finishing the dataset (4th of April) 
3.7 % of the general population in the representative cohort and 2.9% of the typically symptomatic 
part of the population had been tested15. Finally, I will compare how CFRs and the calculated IFRs are 
suited to reflect essential epidemiological aspects already known to be associated with COVID-19.  
 
 
 
 

Methods 
 
The estimation of an IFR is based on two different and - regarding the influence of selection bias -
divergent procedures to calculate a CFR from infection-related population data. The first formula (1) is 
a variation of the non-adjusted CFR in the following termed “classic CFR”, which divides the sum of 
deaths by the sum of cases on a given day. Formula (1) takes into account the persons that passed 

away or recovered, and days from reported positive testing (d0) to death (dn) as period (d0-n) into 
account.  
For a given time interval of n days from (d0-n) at d0 sums of test positives (TP0), deceased persons (DP0) 
and recovered persons (RP0) are given and at dn sum of deceased persons (DPn) are known. Then a case 
fatality ratio CFR for the interval d0-n as CFRn-0  can be calculated: 

 

(1)  CFR𝑛−0 =
DPn−DP0

TP0−RP0
 

 
For the data provided by Johns Hopkins University (JU) the recovered persons (RP0) can be included, 
while for the data provided by the European Center of Disease Control (ECDC) a more simplified version 
can be calculated substituting TP0 − RP0 with TP0. Therefore, data of the ECDC were mostly used for 
quality control aspects. They served to critically revising some negative case and death numbers in the 
data set of JU for numbers that had been officially reported at one day to the WHO, and the ECDC, but 
then were then corrected later on by national health authorities. This was for instance the case for the 
data of Iceland.   
As I mentioned in the introduction the denominator of total community infections is unknown, but a 
rather critical factor of uncertainty under the given ongoing pandemic. Here I will put this into a 
likewise simple mathematical term by calculating the CFR as a CFR’, taking this unknown denominator 
into account.  For the beginning of a pandemic RP0  is often low or zero. If the total number of tests (Nt) 
conducted at d0 is known (Nt) an CFR’ can be calculated, by taking the total population Np of the country 
or region into account, in which testing had been conducted. Noteworthy, this is not a typical formula 
to calculate a CFR, since it may tend to underestimate the true fatality until the infectious disease has 
stopped spreading in the population. However, just like formula 1, at the end it depends only on 
registered death of persons and number of cases and it is subject to the same factors that add bias on 
the estimation of a mortality figure, but only in the opposite direction. Moreover, since the size of the 
denominator of total community infections is unknown but appears to be highly relevant, this equation 
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now puts the CFR into a context with the general population. The prevalence (p) for non-recovered 
infected persons in a total population (Np) can be calculated: 

 

(2) p = 
TP0−RP0

Np
 

 
Based on the prevalence of infected persons in a population a CFR’ for the case fatality for the interval 
d0-n (CFR’n-0) can be calculated: 

 

(3) CFR′𝑛−0 =
DPn−DP0

p∗𝑁𝑝
 

Both formulas (1) and (3) will have their shortcomings. It will be briefly discussed why (1) will most 
likely overestimate and (3) underestimate an IFR under the unavoidable premise that official testing 
will tend to test more morbid persons. In the equations (1) and (3) the pool of newly infected persons 
is subject to selection bias. Formula (3) typically underestimates IFR, because the prevalence p of active 
cases is typically determined too high to be generalized to the total population. During an outbreak, 
this is unavoidable for testing strategies solely based on the health care systems, since guidelines for 
testing require - or at least favour - preferential testing of persons with an accumulation of risk factors, 
like specific disease-related symptoms, or stay or visit at an endemic region. Accordingly, active cases 
are overrepresented in a relatively too small pool Nt to be representative for the p in the general 
population Np. Furthermore, some countries or regions may have limited resources when a pandemic 
proceeds and will adjust their testing guidelines to detect positive cases with as few Nt as possible. To 
control for this distortion by selection bias aiming at enriching for positive cases in the test pool Nt we 
need to adjust the overestimated prevalence p with the unknown factor f to turn the CFR′𝑛−0 into the 
IFR𝑛−0. 

(4) IFR𝑛−0 =  
DPn−DP0

TP0−RP0

f∗Nt
∗𝑁𝑝

  =  
f(DPn−DP0)

p∗𝑁𝑝
 

In (1) the calculated CFR is determined rather too high and does not represent an IFR, because of just 
the same distortion factor f as in (3). Since testers selectively address the pool of diseased persons, 
into the pool of persons tested Nt, they will therefore also increase the risk of death that would be 
representative for the population of all infected persons, which should be reflected by our IFR. 

Likewise, we will need to correct CFRn-0 by the same factor f as in (3). In this case, IFR𝑛−0 can be 
calculated as: 

(5) IFR𝑛−0 =
1

𝑓
∗
DPn−DP0

TP0−RP0
 

At this point, I suggest the reader to jump to Table 1 in the results section, to understand better, why 
CFR is divided by f and CFR’ multiplied with f. Typical potential distortion factors, like the gross 
domestic product of a country, but first and foremost the age composition of the population, are 
inversely correlated with CFR or CFR’. To adjust these two equations for all the factors that act in 
divergent ways on the figures calculated by (1) or (3), we can now solve the equation below for the 
common distortion factor f to adjust the CFRs calculated in (1) and (3) and estimate an IFR𝑛−0. Solving 
for f: 

 

(6) 
f(DPn−DP0)

p∗𝑁𝑝
=

1

𝑓
∗
DPn−DP0

TP0−RP0
 

 

𝑓 = √
Np

Nt

2
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Accordingly, CFR adjusted with the factor 𝑓 = √
Np

Nt

2
, resembles an IFR, which can be calculated by 

equations 5 or 4, with both equations delivering the same outcome. To compare estimates of the IFR 
I analysed the data on cases, deaths and recoveries published in real time16 and once daily after 
correction by JH17. Data between the 5th and 22nd of March were combined and validated with the 
respective data from the ECDC18. For the numbers of death I used the data for the training data set in 
its final corrected version from JH for the end of the 29th of March, for the enlarged final dataset the 
31st of March, and for the data set for the validation with the epidemiolocal project in Iceland the 
version 4th of April17.  
For the calculation of the epidemiologically derived IFRdeCode we did not need to apply the correction 
factor f, because the prevalence p in the population for revealing a positive test has been determined 
experimentally as pdeCode which was used to determine the IFR for the general population of Iceland 
with the formula: 
 

(7) IFR_deCode𝑛−0 =
DPn−DP0

p𝑑𝑒𝐶𝑜𝑑𝑒∗𝑁𝑝
 

 
This formula is not relying anymore on cases reported in the official databases of JH or ECDC and it 
served as a cross-validation figure for the IFR and the CFRs, which are solely based on these data and 
the population data of Iceland in the validation part of the results section. 
For the final analysis in the training and the final dataset only countries were included which reported 
at least one death by the 22nd of March in the ECDC and the JH database. To avoid undue variance by 
too few case numbers only data points from countries were included with more than a sum of 50 cases, 
and at least two official reports of the numbers of tests performed in the period 5th of March till 22nd 
of March. Data on test frequencies were originally obtained from the open-source “Our World in 
Data”19. Population data of nations were imported from World Bank20 and data on gross domestic 
products and age cohort compositions from the UN21 in their version for 2018 to be comparable with 
the population data from 2018 or as age cohort estimates for 2020. For 14 countries, sufficient data 
were controlled, corrected and updated with information from the official data source pages of the 
national health agencies as listed in Supplemental Table 1.  
Two more datasets were obtained for a validation study. First, data from a testing cohort of the normal 
population of Iceland led by the genetic company deCODE15. The project is planned as a clinical project 
with ethical permit and so far, there is to the best of my knowledge no other data available on 
representative study cohorts from populations without being pre-selected for pathological symptoms. 
Second, data mining for a final enlarged dataset was done on the pages of the official national health 
agencies, Wikipedia, and within the data mining community on GitHub using archived webpages if 
necessary in order to enable a large-scale cross-country assessment and comparison of IFR-values. In 
subset-analysis on multiple entries for the log-normalized cumulative testing data, there was a 
Pearson’s correlation coefficient between data entries across the three different data sources > 0.99 
(data not shown).  
Most of the data nested into groups showed signs of unequal variance by Barlett and Levene testing. 
Therefore, they were log-normalized and in case data included 0 an offset of 0.01 was added before 
log-normalization, taking care that this did not distort the distribution of data, as analysed by Shapiro-
Wilk-testing. Normal distributed data with equal variance across groups were then compared using 
one-way ANOVA F-testing. Global significance was followed up by all-pairs Tukey-Kramer Testing as 
post-hoc test. For reporting, data were de-normalized adding the offset where necessary and reported 
as means with 95-% CIs, if not specified otherwise. If signs of non-normal distribution or unequal 
variance prevailed, a Wilcoxon-Test on rank sums for group comparisons, or a Spearman’s rank 

correlation coefficient was reported. For the testing data set descriptive median values and their 
interquartile – ranges were reported. 
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Results 
 
Implications from the Training Dataset 
The combined datasets from ECDC and JH contained information on deaths, cases, and in the JH 
dataset information on recoveries. For ECDC 4,500 data entries from 179 countries starting on the 31st 
of December 12.2020 and for JH 3,159 entries from the same countries starting on 21st of January 2019 
were combined. Cumulative cases and deaths were significantly correlated between both data sets 
(Pearson’s r > 0.99, p < 0.0001, for both, data not shown). No data on test frequencies were reported 
in the official international data repositories. From the platform “Our World in Data“ 77 different data 
entries for 49 countries were retrieved. After combination with the official data on test figures, 
fourteen countries fulfilled inclusion criteria. Testing data for these countries were controlled by 
visiting the official test report pages of the fourteen countries (supplemental Table 1), which enabled 
adding another 77 data points. 
The calculation of the classic CFR by dividing deaths by cases revealed a large range for the respective 
medians of the 14 countries and CFR calculated for the period from the 22nd to the 29th of March 
surpassed 100% for 9 countries (Fig. 1). Excess mortality was present throughout most points in time 
for Italy, UK, France, the Philippines, and Canada, except for one data point, which was related to a 
period from case to death of only one week. Excess mortality or mortality too close to the point, or 
even with the point of death is a bias, which will not be corrected by the factor f and will inevitably 
lead to an overestimation of CFR with both formulas (1) and (3). 
CFR values above 100% are theoretically impossible, while CFR values over 10% are at least highly 
unrealistic. Therefore, I excluded these data points with a CFR > 10 from further analysis. Noteworthy, 
this led to the removal of all data points from Italy (classic CFR = 6.99,) France (2.02), UK (1.79) and 
Philippines (7.51). Noteworthy, selection did not exclude Japan with a classic CFR of 3.14 (Table 2). 
 
Figure 1 

 
Fig.1: Upper left graph shows CFR values for 14 countries for a time-span of 7 – 24 days. Colour merges from blue 
(5th) over grey 13th to red (22nd of March) for the day of the cases (TP0) indicating increase in period (days) up to 
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a maximum of 14 days with the 29th of March as end point for death (DPn). Values > 10% were excluded from 
further analysis as explained in the results section. Upper right shows the classic CFR calculated as total deaths 
at one day divided by active cases at same day for the remaining 10 countries. The classic CFR is the higher, the 
more recent data were assessed (legend for all upper parts). IFR was calculated for the 10 remaining countries 
and is shown at lower left to vary also depending on period. While the IFR increases with period, this increase 
declines significantly with increasing period as shown in the lower right. In comparison with the CFR (blues curve) 

with 95% CI on splined data with moderate , the classic CFR red curve, the IFR green curve shows higher values 
in countries that have the WHO status (25.03.2020) “in local transmission”. Values reached those of the countries 
either the status “outbreak” after the occurrence of the first reported death.  

 
Though it is plausible that conducting more tests per day, can contribute to artificially increasing both 
types of CFRs, countries may also respond with increasing their test numbers, once they notice 
increases in the test positive ratio as a sign for focusing testing too much on the more morbid part of 
the population (Table 1, last line).  
In Table 1 the data points with CFRs > 10 % had been excluded, already. Compared with CFR < 10%, 
the excluded CFRs > 10% showed with a median of 10.9% a 3.3-fold higher test positive ratio (chi2 = 
17.6, df = 1, p< .0001) and with a median of 0.007% on average 4.0-fold fewer tests per inhabitant (chi2 
= 30.7, df = 1, p = .0001).   
Spearman’s ρ and p-Values for the correlation of CFR and CFR’ with age cohorts and gross domestic 
product (GDP) and test growth ratios are shown in Table 1. The test growth ratio reflects the increase 
in tests - not cases - per day and was positively associated with CFR (Spearman’s ρ = 0.27; p = .0001) 
and CFR’ (Spearman’s ρ = 0.54; p = .0001). All other values were inversely associated with both CFR- 
Types in line with the hypothesis (see Methods).  
 
 

Type against ρ p-Value Type against ρ p-Value 

CFR Male (25+) 0.153 0.1025 CFR' Male (25+) -0.3489 0.0008* 

CFR Male (50+) 0.3409 0.0002* CFR' Male (50+) -0.4986 <.0001* 

CFR Male (75+) 0.4121 <.0001* CFR' Male (75+) -0.2874 0.0063* 

CFR Male (80+) 0.4121 <.0001* CFR' Male (80+) -0.2874 0.0063* 

CFR Female (25+) 0.0723 0.4427 CFR' Female (25+) -0.7506 <.0001* 

CFR Female (50+) 0.2116 0.0232* CFR' Female (50+) -0.6238 <.0001* 

CFR Female (75+) 0.4274 <.0001* CFR' Female (75+) -0.4607 <.0001* 

CFR Female (80+) 0.4442 <.0001* CFR' Female (80+) -0.4549 <.0001* 

CFR GDP 0.1466 0.1181 CFR' GDP -0.6194 <.0001* 

CFR GDP/Person -0.1673 0.0739 CFR' GDP/Person 0.1337 0.2116 

CFR Test no. growth 0.2652 0.0077* CFR' Test no. growth 0.5358 <.0001* 

CFR Tests positive % 0.2277 0.0319* CFR' Tests positive % 0.0112 0.9279 

Table 1: Spearman’s ρ (n=89 days for 10 countries) and p-Values for associations of  CFR and CFR’ with age cohort 
distribution, gross domestic product (GDP), test number growth and test positive ratio. 
 

In the following we will use f as an adjustment factor for determining the IFR𝑛−0 of SARS-Cov-2 and 
comparing the obtained values with the three different CFRs (Tab. 2). The median IFR values of the 
nine remaining countries lie in a close margin between 0.07 for South Korea and 0.20 for Denmark, 
while classic CFR and CFR values still show high variance for the remaining countries. Especially for 
South Korea and Japan as two comparable countries that are in a phase of stagnation the CFR values 
calculated are roughly 3-5 times higher and still rising and they are without correction by f not in the 
margin of the current expert consensus for a CFR for COVID-19 (Table 2). 
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Country 
Classic CFR (%) 
median and 
quartiles 

CFR (%) median and 
quartiles 

CFR' (%) median and 
quartiles 

IFR  (%) median and 
quartiles 

Austria 0.27 0.23 0.30 4.50 2.93 7.71 0.01 0.01 0.01 0.18 0.14 0.27 

Bahrain 0.00 0.00 0.37 2.50 1.76 4.94 0.02 0.01 0.02 0.19 0.18 0.19 

Denmark 0.37 0.20 0.72 6.37 4.58 8.13 0.01 0.01 0.01 0.23 0.20 0.24 

Germany 0.27 0.23 0.37 3.67 2.12 6.76 0.01 0.01 0.01 0.25 0.14 0.36 

Iceland 0.00 0.00 0.24 1.23 0.33 2.76 0.01 0.01 0.01 0.10 0.05 0.13 

Japan 3.14 2.56 3.36 3.96 2.98 6.65 0.00 0.00 0.00 0.04 0.04 0.07 

Norway 0.25 0.00 0.35 1.65 0.99 3.04 0.01 0.01 0.01 0.09 0.08 0.10 

Poland 1.29 1.06 2.02 4.41 2.98 7.25 0.01 0.00 0.01 0.16 0.12 0.23 

S. Korea 0.86 0.70 1.01 1.11 0.96 1.37 0.01 0.01 0.01 0.08 0.07 0.09 
Table 2 shows the medians and quartiles of the three different CFR values and the IFR  

 
 
In contrast to the classic CFR, CFR and CFR’ the IFR values, including Japan, were in the lower range of 
expert consensus. As the classic CFRs the IFR can depend on the length of the period from cases 
included to the deaths they are related to Figure 1 (lower part). A correlation of the percent increases 
from day to day with increasing periods in days for all IFRs computed for the 9 countries shown in Table 
2, showed a significant negative trend (Pearson’s r = 0.69; n = 31; p = .0001). Therefore, dependence 
on the period between cases and deaths seemed to become more moderate over time and was rather 
related to the state of the pandemic categorized as “in local transmission” or “outbreak” (Fig.1, lower 
right). As can be observed from the curve of the classic CFR (cCFR), data, which rely on cases assessed 
before the first death related to the outbreak was registered, tended to be either far too low (cCFR), 
or to high CFR and IFR. Therefore, for the following validation of data from Iceland and the evaluation 
of the final validation dataset, care was taken to include data after the first death reported which 
ideally also reflected at least a period of 9 days for calculation of the IFRs. 
 

Validation of the IFR with testing data retrieved from the general population in Iceland 
For validation of my procedure, I analyzed data from two different testing cohorts in Iceland14. Up to 
the last data entry for the 4th of April, 3.7 % of the general population in the representative cohort had 
been tested for SARS-CoV-2 by the genetics company deCODE (deCODE). Additionally, a second, rather 
typical test cohort of persons with increased risk of infection, representing 2.9% of the total 
population, had been tested by the Directorate of Health in Iceland via the laboratory of the National 
University Hospital Iceland (NUHI). Only data were included following the first death on the 17th of 
March and allowing for at least a 9 day period of the IFR. 
Prevalence of SARS-CoV-2 positive tested persons was 13.0 fold-lower (CI: 12.0-14.0) in the deCODE 
collective, which was highly significantly different from the correction factor f at 6.07 (CI: 5.63 - 6.56, 
F = 222, df = 1, p = .00001; Figure 2).  
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Figure 2: 
The upper panel shows four different 
estimates for mortality of the population of 
Iceland fitted by a spline function with 

moderate and 95%-CIs shaded. The IFRdeCode 
is the figure derived from testing the general 
population of Iceland and served to cross 
validate the mortality figures CFR and classic 
CFR that have been calculated from the data 
repositories of JH and the IFR that used this 
repository in conjunction with the test data 
published by Iceland’s Department of Public 
Health. 
 
 
The lower left shows 5 different mortality 
figures calculated compared to the data 
IFRdeCode that is epidemiologically derived and 
calculated by formula (7) the data still seemed 
to rise with an increase in the period of the IFR 
as indicated by the change in colour with 
increasing period from red to blue. The lower 
left shows the comparison of the distortion 
factor f compared with the p-Quotient, which 
is the quotient for the prevalence of a positive 
test results in the test pool of the health 
officials of Iceland compared with the general 
population. 

 
 

 
For the deCODE collective an epidemiologically derived prevalence of being tested positive can be 
calculated according to formula (2) for general population, which served to calculate an IFRdeCODE 
according to formula (7) representative for the general population and independent from the cases 
reported by NUHI or in the JU database. The group comparison for IFRdeCODE with 5 other calculated 
fatality rates showed a significant global group difference (n = 9, df = 5, F = 46.9, p = .0001), which was 
followed by all-pairs Tukey Kramer post hoc testing (Fig. 2). The IFRdeCODE with 0.088 (CI 0.067 – 0.115) 
did neither differ from the IFR calculated from JU data (IFRJU) 0.089 (CI: 0.068 – 0.117), nor the one 
calculated from NUHI data IFRNUHI  = 0.089 (CI: 0.068 – 0.117). While the classic CFR (cCFR) 0.249 (0.190 
– 0.326; p = .0001), the CFRJU 0.542 (CI 0.414 – 0.709, p = .0001), and the CFRNUHI 0.592 (CI: 0.452 – 
0.774, p = .0001) tended to overestimate fatality of infection roughly 2.7- fold up to 6-fold.  
This margin of overestimation is relatively low, when compared to other observed fold-differences 
between the CFR and the IFR in the training dataset described in Table 1.  
 

Composing a more comprehensive data set for testing data 
In order to validate the concept of the IFR on a larger and more heterogenous collection of countries, 
from more continents than Europe and Asia, and in order to compare the estimates with expert 
consensus and conventional CFRs, a more comprehensive data set was composed. This was achieved 
by connecting the data from JH and ECDC up to the 31st of March with the data on test numbers 
conducted as retrieved from the following internet sources (suppl. Table 1): data found on Wikipedia, 
in the COVID-19 tracking project on GitHub, the cross validated data on “Our World in Data” (OWID), 
and non-validated data from OWID relying on press releases for instance, but reporting its sources 
rigorously18. Double entries in different data sources were cross validated. While cross-validation 
indicated a high data reliability (r > .99, p = .0001), highly significantly more data that did not pass 
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quality control of staying below a cut-off for the CFR of 10% had been retrieved from unofficial data 
sources (data not shown). This cannot be taken as a sign of higher inaccuracy of unofficial data per se, 
since the following difficulties were encountered by controlling the data on testing frequencies.  
Though referenced correctly, the data in unofficial sources for one country were sometimes referring 
to different starting points of cumulative assessment. After finding, visiting and translating the original 
reports page from Japanese authorities (Supplemental Table 1) data point entries could be increased 
from two to 17, but it became also evident that there were data reporting cumulative test figures 
starting 6th of March and data starting from the very beginning of case and death reporting. There is 
the question whether to exclude or include the cases from an international cruise ship that was under 
quarantine in a Japanese harbor, since most of the ship passengers were not Japanese. This is relevant 
for the early reporting in Japan, while, fortunately, the testing figure done on those individuals is rather 
negatable for later points with higher cumulative total test figures, which analyzed in the following.   
Some other countries were not reporting cumulative, but solely daily, or weekly reports of their testing 
figures and only in their national language, which could sometimes unintendedly be misinterpreted as 
cumulative total, when figures were high and rapidly increasing, as for instance in Germany. Semi-
official resources started to report first estimates on testing figures more than a week before official 
sources in Germany. These figures were too low and had been corrected by official resources, but the 
up to now official data are still incomplete, which can only be revealed, it one translates, reads and 
understands the complete report in German language (Suppemental Table 1). Moreover, reporting by 
unofficial sources can be sometimes more precise than official data, but points towards a new field of 
uncertainty. For the US, the unofficial data-tracking project on GitHub published the data 
differentiating in reported positive, negative and tests pending. The “test pending” category could be 
very relevant.  
A set of 21 countries emerged (Table 3).  
 
Comparison of the IFRs with the CFRs of 21 countries with minimal essential information on testing 
By data mining, I was able to retrieve the following data on cumulative test numbers. 129 data points 
came from the national official reporting organ of the countries, 14 data points were originally 
retrieved via OWID, but controlled, and then updated with official national data, 34 data points came 
from OWID, 19 for the USA from the tracking project, where I relied on the confirmed test numbers, 
excluding the pending ones, to avoid  partial doubling of data.  Finally, 104 data points were retrieved 
from Wikipedia on the COVID-19 pandemic information pages, where also pdfs and links to the 
national sources of data are published. These data points belonged originally to 53 countries, but only 
21 fulfilled inclusion criteria. 
These countries are listed with their IFRs in Table 3, which also provides means and 95%-CIs for the 
means of Japan and Korea are both at the end of a consolidation phase and did neither show values 
for the classic CFR nor for CFR in line with expert estimates, but their IFR estimates are again in line 
with that  of all other countries (Fig. 3). The IFR is with 0.05-0.3 a bit lower than the current expert 
consensus, but the margin reflected (Fig.3 and Table 2) is the narrowest for all countries. 
The median for all 21 countries for the IFRs was 0.11 (95%-CI: 0.073–0.15) and significantly different 
from CFR with 3.59 (95%-CI: 2.57–5.00, p = .0001) and the classic CFR of 0.66 (95%-CI: 0.47–0.91, p = 
.0.0001; Figure 3 upper left). 
An epidemiologically derived IFR of 0.040 % (95%-CI: 0.029%–0.055%) was determined for Iceland and 
was very close to the calculated IFR of 0.057% (95%-CI: 0.042–0.078), but highly significantly 2.7–6-
fold lower than CFRs. IFRs, but not CFRs, were positively  associated with the medians of the countries 
IFRs were significantly positively associated in men with the proportion of elderly people in the 
respective countries age cohorts >25 years (r = 0.44, p = .044),  >50 years (r = 0.47, p = .034), > 75 years 
(r = 0.46, p = .036), while only significantly associated with the age cohort >75 years (r = 0.45, p = .041) 
in females (Figure 3 lower part).  
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Table 3: Presented are the IFRs for the countries with their means and 95%-CIs in the validation data set. In the 
lines in bold, the IFRs are nested into three groups according to progressive increase in time period, ranging from 
below 9 days over 9-13 days to 2 weeks and more. In the two lower lines the estimates for the CFR and the classic 
CFR are shown. 

 

 

Country (N) 
Mean 

span (d) 
Mean IFR 

(%) 
CI 

lower 
CI 

upper 

Australia 18 7.5 0.042 0.03 0.058 

Austria 54 7.5 0.094 0.079 0.111 

Bahrain 36 9 0.156 0.128 0.189 

Canada 18 6 0.121 0.091 0.161 

Costa Rica 18 7.5 0.019 0.012 0.028 

Croatia 18 7 0.023 0.016 0.033 

Denmark 45 8 0.14 0.117 0.167 

Germany 9 5 0.067 0.043 0.101 

Iceland* 54 7.5 0.036 0.03 0.043 

Japan 117 11 0.054 0.048 0.061 

Lithuania 9 6 0.096 0.063 0.143 

Malaysia 27 9 0.052 0.04 0.067 

Norway 81 9 0.059 0.051 0.068 

Pakistan 9 8 0.007 0.002 0.014 

Peru 9 6 0.027 0.015 0.043 

Poland 36 6.5 0.086 0.07 0.105 

Russia 18 7.5 0.039 0.028 0.053 

Slovenia 45 10 0.148 0.124 0.176 

South Korea 162 13.5 0.06 0.055 0.067 

Switzerland 9 6 0.158 0.106 0.232 

Thailand 27 8 0.021 0.015 0.028 

IFR<9d 374 < 9 days 0.041 0,037 0.044 

IFR 9-13d 299 
9-13 
days 

0.087 0.080 0.095 

IFR> 13d 146 
≥ 2 

weeks 
0.097 0.086 0.109 

CFR 91 12 2.73 2.28 3.26 

classic CFR 91 - 0.680 0.568 0.814 
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Figure 3 
 

Fig.3: In the upper left the 
CFR (blue) classic CFR (red) 
and IFR (green) are 
compared in relation to the 
length of the period 
between reported deaths 
and cases. Spline of the 
Means line and 95%-CIs 
shaded are shown. The 
upper right compares the 
means and diamonds with 
their peaks representing 
95%-CIs for the log-
normalized data of the 21 
countries with the CFRs and 
IFRs from periods >9 days. 
The lower panels show on 
the left hand side 
comparisons of the ranks of 
the proportions for three 
different age groups (above 
25, 50 and 75 years) in 
males and on the right hand 
side in females.  

 

 

  

 
 
Discussion 
 
During the outbreak of a pandemic, it is difficult to estimate and then communicate a CFR precisely 
enough from epidemiological data5, while situations, where many countries may run out of health 
resources nevertheless require guidance and recommendations by experts1,11. In the current situation 
of the SARS-CoV-2 outbreak, the general public is confronted with large differences in the estimation 
of conventional CFRs between countries like Italy (>7%), South Korea (>1%) or Germany (0.4%).  
Experts’ estimates for CFR vary between 0.1 up to 1, which reflects a broad range of pandemic 
scenarios and a broad range of possible mitigation and suppression strategies which could be derived 
by experts. In this situation, modelling of scenarios is applied, by relying on key parameters of epidemic 
spread1,9,11. The most crucial imputation for such models is the basic reproductive number R0, which 
can be assessed from Data on the early outbreak of a pandemic, but is compromised by a significant 
level of uncertainty on top of any epidemiologically derived level of statistical confidence due to 
essential uncertainties how such data can be transferred from one scenario to another. To put this in 
simple terms, a cruise ships’ field conditions during a quarantine8 are not comparable to an 
unanticipated new pandemic outbreak in China9, are not comparable to Europe1. Applying modelling 
now requires even more imputation on the latent period of the infectious period and the interval of 
half-maximum infectiousness. Values could again all be derived from environmental observations, and 
all prone to a substantially unknown extend of error, especially if assessed for a new pathogen for the 
very first time. In principal, imputation values can be subject to modelling itself21. Also modeled values 
used for imputation into the next model as an assumption will not avoid further inflating the level of 
uncertainty12. What will come out at the end, is the most precise we can get with modeling, we will 
end up in a range of scenarios from the Spanish Influenza down to the seasonable flu and with a range 
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of mitigation or suppression strategies that will all be supportable, principally. To improve modelling 
substantially would now require narrowing the range of fatality down to a margin at which modelling 
makes sense. A very recent publication describes a way, how we could achieve this goal14. In this 
publication, again a high number of imputations had to be fed again into a model, again field 
conditions, which are not comparable between each other, had to be chosen and basic assumptions 
had to be made to model an estimate for the IFR. While this estimate may indeed be more precise 
than former estimates, the basic problem of requiring a lot of proper field work and requiring a lot of 
as precise basic assumptions as possible to avoid excessive error propagation of unknown extend, had 
not been solved or dealt with. The IFR was adjusted for census and for a problem, which at first glance 
my IFR is not capable to cope with, ascertainment aspects14. However, a more morbid person, which 
ends up preferentially in a test pool during the outbreak of a pandemic, may not be a more elderly 
person or a person having better access to testing, only. We just are not aware, of the many factors 
that all may contribute to preferentially testing certain people in the heat of a pandemic. We are 
trusting in ex posteriori - derived assumptions and confirm them with a model.   
Here I propose a way to adjust for this one particular problem in infection epidemiology – preferential 
selection of persons that will show up in a test pool -, if there was equal access to the test pool and 
enough testing capacity.  
I deduced that my approach only required sequentially monitored confirmed cases, recovered cases, 
and death events in conjunction with total numbers of diagnostic tests performed in a given 
population. These data, except the total number of tests conducted, are already subject to official 
reporting and data collection by national and international centres of disease control. I showed that 
this approach successfully stabilized against selection bias, with a validation against field data in 
Iceland and by comparing CFRs and calculated IFRs for plausibility and for their ability to reflect an 
association with census not only within countries, but also across countries. The latter is important, if 
we assume that biological aspects of a virus are valid across the boundaries of nations.  
This approach required deducing a correction for selection bias, here termed f, and validating the 
effect of applying this correction factor to empirical data, to arrive at preliminary estimates for 21 
countries of the world with 95% confidence intervals for IFRs. It is a preliminary estimate with all its 
shortcomings, but it is a single, potentially relevant variable for crude mortality, logically deduced, 
requiring only data imputations that potentially could be delivered with high certainty during future 
pandemics, with low effort, and at low cost. More crucially, it does not require exponential modelling 
or substantial expert knowledge to arrive at a readout for crude mortality that appears to be robust 
between countries and appears to reflect viral biology.  
The correction factor f is simply the square root of the quotient of the total population divided by total 
tests conducted. Even if countries would either go through periods of rapid test rate growths or 
experience limitations with their testing capacities, the distortion provoked will not lead to huge 
uncertainty ranges by a substantial unknown error propagation. 
Correcting CFRs with f is capable of harmonizing differences in CFRs between countries that would 
otherwise be difficult to explain. Amongst these candidate countries are Japan, South Korea, Iceland, 
and Norway, which have done meticulous work in dealing with their testing data, protocolling 
everything transparently and timely, to the public, and moreover, which have strong economies and 
strong health care systems to cope with the current pandemic.  
Amongst those, that report their testing data almost in real time and comprehensively, is Pakistan. 
Pakistan is a country, which seems to fall out of the range of IFRs, with an IFR of 0.007 that is roughly 
10-fold lower than the one reported for the so-called developed countries. Since testing was reported 
transparent and timely, it is important to understand, whether this extremely low IFR figure reported 
in Table 3 could be possibly realistic, or not. 
Population statistics of this country compared to any of the developed countries is very informative 
with this regard. As of 2018, 6.7% of the population in Pakistan were over 60 years old and 45% were 
younger than 20. In Germany 19 % were younger than then 20 years old, 29% were older than 60 years. 
The CFR for people aged 60-69 compared to people aged below 20 has been published to be roughly 
20-fold higher9.  Even though this figure is most likely too high because of the CFR being prone to be 
inflated by selecting a more morbid population into the testing pool, there is agreement amongst 
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scientists, that SARS-CoV-2 at least shows a strong difference within countries or within regions to be 
associated with higher values for older people4. By using the correction factor f it is now possible to 
show significant association of a SARS-CoV-2 related mortality figure with age composition not only 
within, but also between countries.  
A crucial problem for testing data prevails, on the present level of accuracy for official reporting. Even 
for countries like the US, Italy and the UK, with very timely and detailed test reporting, a calculation of 
an IFR could not have delivered any meaningful outcome than a CFR calculation, or essentially, 
guessing. In the heat of an ongoing pandemic, it is often still possible to report a death almost in real-
time. At the same time, cases will be prone to unreported delay factors, once testing reaches maximum 
testing capacity. During an exponential growth, this will cause a severe distortion, if a CFR or IFR is 
calculated. This might happen just because we think that our cases are reported with the day of testing, 
but in fact, the case may appear as a reported case many days after the death of the person, leading 
to a CFR of sometimes more than 1,000% (for an example; UK, Figure 1).  
On the opposite, Germany had been able to expand its testing volume presumably (pending data 
revision as of April 6th, suppl. Table 1 for reference) by a factor of 2.7 from week 11 to week 12 of the 
current year, which inflated case number.  
Such bias will not only limit the validity of the CFR, but also limit the validity of IFR calculation. However, 
in contrast to the problems of unknown error propagation in modeling approaches, such limitation 
could principally be dealt with. if a similar pandemic outbreak, with concomitantly high enough testing 
capacity, in a well enough informed and health educated cohort of enough people would occur again.  
The numbers generated here for the IFRs need to be critically taken into consideration by abductive 
reasoning in an interdisciplinary committee of experts. They are no standalone figures for mortality, 
since they mainly reduce one particular sort of bias amongst the manifold in empirical work in the field 
of infection epidemiology. With the decisions to follow certain mitigation or suppression strategies by 
almost all developed nations, there will be problems to be solved around the globe22. 
There is one last question, which I will not discuss here. Provided that there was a defined place with 
more than 364.000 people, and provided at that place everybody knew what COVID-19 is, will not miss 
a single death, will take care of people coughing, and provided that there was enough testing capacity 
at hand: Could it be that my formula (5) to correct for selecting more morbid persons into a test pool, 
will also correct for all other sorts of selection bias, therefore delivering an ultra-precise early estimate 
for mortality?  
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