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Abstract

In a recent paper [I], Singh and Adhikari present results of an analysis of a mathematical
model of epidemiology based on which they argue that a 49 day lockdown is required in India for
containing the pandemic in India. We assert that as a model study with the stated assumptions,
the analysis presented in the paper is perfectly valid, however, any serious comparison with real
data and attempts at prediction from the model are highly problematic. The main point of the
present paper is to convincingly establish this assertion while providing a warning that the results
and analysis of such mathematical models should not be taken at face value and need to be used

with great caution by policy makers.



I. INTRODUCTION

A large number of recent papers have analyzed mathematical models, of varying degrees
of complexity, in an attempt to understand and sometimes make predictions about the
growth and spread of Covid-19 across the world. Such models often come with serious
limitations arising from several facts such as: (i) compartmentalization of the actual degrees
of freedom to make analysis simpler, (ii) too many parameters whose values are known with
high degrees of uncertainties, (ii) inherent nonlinearities in the governing equations which
make long time predictions difficult.

Nevertheless, there have been papers which make (or appear to make) definitive predic-
tions and many of these end up generating a lot of media hype and get wide attention in the
social media. One real risk is that this is actually noticed and used by policy makers. In the
present note, we analyze the paper by Singh and Adhikari, which we believe is in this class.
In particular, the paper appears to make the claim that a 49 day lockdown is required to
effectively control the growth of the Covid-19 pandemic in India. In this note, we explain
why this claim should not be taken seriously.

At the outset we make it clear that the present comment does not question the technical
validity of the results in [I]. However the present comment points out that there are many
issues on details such as that of interpretation of variables while making comparison with real
data and choice of model parameters — these make any attempts at predictions meaningless.

In Sec. (II) we first analyze a simpler version of the model studied in [I] and show that for
a certain choice of model parameters, this already reproduces the main features seen in the
more complicated model. However we show that, on making small changes of the parameters
to somewhat more realistic values, the predictions change significantly. In Sec. (III) we point
out a large number of other problems related to the study in [I] which imply that numerical

predictions emerging from such studies are completely unreliable.

II. AN ANALYSIS OF A SIMPLIFIED VERSION OF THE SIR-TYPE MODEL
OF SINGH AND ADHIKARI

The basic model considered by the authors is one which compartmentalizes the population

according to age. At any time each compartment has a number of susceptible (S) , infected
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(I) and recovered (R) individuals and these evolve with time. The division into age groups
is to account for the fact that the levels of contact between different groups (and within
groups) vary and so they have different probabilities of passing infections. To discuss the
main aspects of the model, it is sufficient to ignore the compartmentalization into age groups
and we present the simpler version here.

This more basic model is one which divides the population of size N into individuals
who are susceptible () , asymptomatic infectious (I*), symptomatic infectious (/°) or are
recovered (R), with the constraint N = S+ I*+ I°*+ R. The number R also includes people
who have died.

Dynamics: Let I = I*+I° be the total number of infected individuals. For a well mixed
population, the probability that an S individual meets an [ individual is < (I/N). We
define the infection rate [, which controls the rate of spread and represents the probability
of transmitting disease between a susceptible and an infectious individual. We assume that
infected people typically either recover or die after Tk days, so I — R happens at a rate
v = 1/Tr. We also assume that a fraction « of the infected population is asymptomatic.
However, as in the analysis of [1], we will set a = 0 which effectively means that we ignore
asymptomatic carrier populations (if any).

We then have the following dynamics for the system
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The time dependent function u(t) is the “lockdown” function that incorporates the effect of
a lockdown on the rate of spreading of the infection. A reasonable form is one where u(t)
has the constant value (= 1) before the beginning of the lockdown, at time ¢,,, and then it
changes to 0 < u; < 1 over a characteristic time scale ~ t,,. Thus we can take a form

uwt) =1 t < ton,

=y + (1 —wy)e Utod/to g 5 g (5)
The number u; indicates the lowering of social contacts as a result of a lockdown. This was
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set to the value 0 in [I] but we note that realistically it is expected that social contacts
cannot be brought down to zero (for example, people still have to get groceries).

An important parameter is the so-called reproductive number Ry = (/v which is the
average number of new people infected by one infected person. Typical values reported in
the literature for Covid-19 are in the range Ry = 2 — 7 [2]. Note that while Ry is like the
“free” reproductive number, u(t)Ry is an effective reproductive number incorporating the
fact that the number of contacts any individual makes has been brought down as a result of
the lock down.

The other parameters in the model are v, a and the size of the susceptible population
itself. Apart from these parameters, a solution of the above equations requires the initial
data for S(0),7%(0), I*(0) and R(0).

An immediate property of the model is that it leads to an exponential growth of the
infected population at intermediate times. We can understand this easily by a linear analysis
around the initial state with S = N, I* = I* = R = 0. This shows that the infected numbers
grow exponentially as ~ e* with A = 8 — +. Thus we get a growth only if Ry = 3/ > 1.

We now show results from the numerical solution of these equations with a choice of
parameters (Set I below) consistent with [I] and make a comparison of our results with
theirs. We find that the predictions of the simplified model are more or less the same as
those obtained from the more complicated model. However, on changing parameters to
somewhat more realistic values [Sets (IL,III)], the predictions change drastically.

Parameter set (I): We choose the parameter values v = 1/14 per day (14 days recovery
time) and § = 0.24 per day. This gives Ry = 3.36 and the observed exponential growth rate
of around A ~ 0.17 (doubling time ~ 4 days). We also fix « =0, t,, = 0.1 and v; = 0. With
this choice of parameters, let us now see how the infected population evolves as a function
of time for the choice of initial conditions I* = 20, [* = R =0 N = 10°. [Notes: (a) the
values of 5 and v are different from [I] but they are consistent with known estimates of Ry
and the observed exponential growth rate in the Indian data for confirmed cases, (b) the
values of «, t,, and w; are as those used by [I] (they take ¢,, < 1) and are clearly unrealistic,
(c) the initial conditions are chosen so as to fit the initial growth seen in the real data after
the confirmed number of cases is ~ 20.]

Parameter set (II): We keep v = 1/14,8 = 0.24,« = 0 and u; = 0 but change the

time, for the lockdown to be effective, to a more realistic value of t,, = 4.0 days.
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FIG. 1. Forecast of the COVID-19 epidemic in India with the simplified SIR model:
The evolution of the SIR model in Eqs. (1-4) starting with a seed infected population of size
I(0) = 20 and a total population N = 10°. Lockdown is imposed after t,, = 19 days. The other
parameter sets are given in the figure legend. The horizontal black dashed line indicates an infected
population of size I = 10 and we see that this number is reached approximately after 54 days from
the start of lockdown (for Set I), after 68 days for Set II, while for Set III this takes about 101
days. The evolution for parameter set (I) is very close to the results presented in [I]. Note also
that the evolution for the three parameter sets are identical before the lockdown. Notably, the real
data (for the period March 6 - April 7, 2020) is following a completely different trajectory (orange

points). The inset shows the same data plotted on a semi-log scale.



Parameter set (III): We keep v = 1/14, f = 0.24, & = 0 but change both the time, for
the lockdown to be effective, to t,, = 4.0 days and take u; = 0.1 (since, as discussed above,
contacts are never reduced to 0).

In Fig. (1) we show the results for these three parameter sets and a comparison with
real data for the number of confirmed Covid-19 cases in India. [Note: For comparison with
real data, we follow [I] and assume that 7°(t) is equal to the number of reported confirmed
cases. In the comments in the next section, we explain however that this is not a reasonable
assumption.|

In Fig. (1) we observe that the results from parameter set (I) are already in close agree-
ment to those presented in Fig. (4d) of [I]. The estimated lockdown period for the number
of infected to reduce to a value less than 10 is 54 (which compares remarkably well with the
number 49 in [I], the small difference is expected in this type of analysis). For the three
parameter sets we find that the time required for the infected population to reduce to the

value I = 10 are respectively

Set (I) — 54 days,
Set (II) — 68 days,
Set (I1I) — 101 days. (6)

We thus conclude that small changes in parameters which make the model more realistic
change the predictions significantly. More importantly, as is clear from Fig. (1) and the inset,
the predictions of the model are nowhere following the actual trajectory of the pandemic.
This is of course also true for the predictions of the more sophisticated model studied in [I]
— the true data after the lockdown has no resemblance to their predicted evolution.

Warning: The improved estimates quoted in Eq. @ should not be used as suggested
periods of lockdown. They are given here simply to point out the limitations of the present
model.

We end this section by emphasizing that while the analysis presented here ignores details
such as the contact population’s age break up, population distribution and connectivity
matrices, we already recover the main qualitative (and to a large extent, even quantitative)
aspects of the results in [I]. It is expected that the main message on sensitivity of model

predictions to parameter choices would not change by increasing the complexity of the model.
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III. A LIST OF PROBLEMS WITH THE PAPER

In the previous section, through the analysis of a simpler model, we highlighted some
of the reasons why models such as those studied in [I] cannot be taken seriously for their
predictive powers. However there are many more serious problems in the analysis and claims

of the paper. Some of these are:

1. The modeling ignores important factors such as latency periods, asymptomatic and
presymptomatic transmission. Presymptomatic transmission could happen over the
order of 5 — 10 days and is a period during which individuals show no symptoms (and

are undetected) but are infecting others.

2. The modeling ignores the fact that the number of people who have been tested are
relatively very small in India and the actual number of infected people could be much

higher.

3. A related point is the following — in their study, the number of infected individuals I
is compared with the total reported number of confirmed cases. However one expects
that the reported confirmed cases (say C') are those that habve already been detected
and therfore it does not make sense that they should be counted amongst the ones
who are spreading the infection. It seems reasonable to us that I >> C. So the
comparison with real data (C) through the identification I = C' is flawed. In fact it

seems to us that it makes more sense to instead compare R with the real data.

4. The choice of initial conditions in solving these equations is subtle and it is unclear
how the authors fix these. Small changes in initial conditions can lead to drastically

different predictions.

5. As we have demonstrated, small changes in parameter values would lead to drastically

different predictions.

6. The choice of the lockdown parameters ¢,, < 1 and u; = 0 are completely unrealistic.
We expect there should be a time lag for the lockdown to take effect and even under

lockdown, social contacts are not reduced to zero.

7. The optimal lockdown period is computed based on the arbitrary criterion that the

infected number drops to the value 10. Why not 100 which would give a completely
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different prediction for the required lockdown period ? We do not see why this com-

pletely arbitrary value should be used as a criterion.

8. The actual trajectory of infections (or rather number of confirmed cases) after the
lockdown started in India has no resemblance whatsoever with what is predicted by
the authors, even for short times. In fact, a data analysis of the effect of lockdowns in
several countries on the confirmed number of cases, presented in [3], shows that the
evolution differs qualitatively in all the countries from the picture presented in [I]. In
our opinion, this basically proves that the model has no predictive value and should not

be used as guiding material for policy makers.

IV. CONCLUSIONS

We have established in this brief note that the studies of mathematical models of disease
spreading, such as the one in [I], typically have very limited ability to make numerical
predictions. Such models, if analyzed properly, could play an important role in our qual-
itative understanding of disease evolution and, with some effort, perhaps in making short
term predictions. Unfortunately, completely absurd claims sometimes attract a lot of public
attention and run the risk of leading to wrong policy decisions.

While there are many such examples in the recent literature, we have focused here on an-
alyzing one specific model study [I]. This paper is technically correct in that they state their
assumptions clearly and the stated results are obtained under these assumptions. However,
we have pointed out a number of serious problems in their analysis [listed in Sec. (III) of
the present paper] which makes any numerical predictions from the model for the growth of
the pandemic in India completely meaningless. This becomes obvious when one compares
the real growth curve, since the date of the lockdown, with the predicted one [see Fig. (1)].

The model fails, even at a qualitative level, right from the time of the lockdown.
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