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Executive Summary 

 While New Zealand case numbers remain low, tracing, testing, and rapid case isolation, combined with 
population-wide control methods, offer an opportunity for the country to contain and eliminate 
COVID-19. 

 Simulations using our model suggest that the current population-wide controls (Alert Level 4) have 
already had a significant effect on new case numbers (see figure below).  

 

 We also find that fast case isolation, whether as a result of contact tracing, rapid testing, or otherwise, 
can lead to containment and possibly even elimination, when combined with strong population-wide 
controls. 

 Slow case isolation can also lead to containment, but only as long as strong population wide controls 
remain in place. It is unlikely to lead to elimination.   
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Abstract 
 
While case numbers remain low, population-wide control methods combined with efficient tracing, testing, and 
case isolation, offer the opportunity for New Zealand to contain and eliminate COVID-19. We use a stochastic 
model to investigate containment and elimination scenarios for COVID-19 in New Zealand, as the country 
considers the exit from its four week period of strong Level 4 population-wide control measures. In particular 
we consider how the effectiveness of its case isolation operations influence the outcome of lifting these strong 
population-wide controls. The model is parameterised for New Zealand and is initialised using current case 
data, although we do not make use of information concerning the geographic dispersion of cases and the model 
is not stratified for age or co-morbidities.  

We find that fast tracing and case isolation (i.e. operations that are sustained at rates comparable to that at the 
early stages of New Zealand’s response) can lead to containment or elimination, as long as strong population-
wide controls remain in place. Slow case isolation can lead to containment (but not elimination) as long as 
strong Level 4 population-wide controls remain in place. However, we find that relaxing strong population-wide 
controls after four weeks will most likely lead to a further outbreak, although the speed of growth of this 
outbreak can be reduced by fast case isolation, by tracing, testing, or otherwise. We find that elimination is only 
likely if case isolation is combined with strong population-wide controls that are maintained for longer than 
four weeks.  

Further versions of this model will include an age-structured population as well as considering the effects of 
geographic dispersion and contact network structure, the possibility of regional containment combined with 
inter-regional travel restrictions, and the potential for harm to at risk communities and essential workers. 

 
 
      

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 11, 2020. .https://doi.org/10.1101/2020.04.08.20058743doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.08.20058743
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 
 
 

 
Page | 2 

  
 

The University of Auckland 
Private Bag 92019 
Auckland 1011 
New Zealand 

Introduction 

The COVID-19 outbreak originated in Wuhan China in November 2019 (WHO, 28 February 2020) before 
spreading globally to become a pandemic in March 2020 (WHO, 11 March 2020). The human population 
currently lacks immunity to COVID-19, a viral zoonotic disease with reported fatality rates that are of the order 
of 1% (Verity et al 2020). Many countries have experienced community transmission after undetected 
introductions of the disease by travellers exposed in China. This has led to exponential growth of new infections 
in many countries, even as China, through the use of strong controls and rapid testing and tracing, has 
apparently managed to eliminate the disease.  

At the time of writing (8 April 2020) New Zealand has yet to see significant community transmission with the 
majority of its detected cases directly or indirectly related to international travel (Ministry of Health, 2020). 
After imposing strong border restrictions in mid-March and very strong population-wide control measures in 
late March, the number of new cases detected per day has plateaued, presenting the country with an 
opportunity to explore strategies that are not available to other countries. While case numbers remain small 
(through the imposition of population-wide controls or otherwise), tracing, and case isolation operations may 
be able to remain ahead of infection rates, resulting in containment, and opening up the possibility for 
elimination. 

A number of deterministic compartment models have been developed for the spread of COVID-19 
internationally (e.g. Ferguson et al 2020), as well several that have been specifically adapted for New Zealand 
(James et al 2020, Wilson 2020). Such models are expected to describe the progression of an epidemic after the 
onset of community transmission and at high population densities where random encounters are important 
sources of infection. They have been used to explore long-term consequences and strategies for New Zealand 
should the disease not be contained, but at the early stages of an outbreak or in regions with low population 
densities, stochastic models are expected to be more appropriate. In particular, stochastic models can be used 
to explore scenarios with tracing and case isolation or alternative testing strategies which may lead to 
containment or even elimination of the disease.    

In this study, we introduce a continuous-time branching process model similar to that of Davies et al (Davies 
2020) (although our model is currently not age-structured) and explore different scenarios for case isolation 
and population-wide control interventions. In particular we use the model to explore the possible scenarios if 
New Zealand were to exit its current highly restrictive control measures in late April, after four weeks. The 
model is intended for use only when case numbers are small relative to population size and herd immunity is 
not prevalent in limiting secondary cases. It may, however, provide insight into short-term scenarios that 
explore New Zealand’s options towards the end of its first four-week Alert Level 4 lockdown period. Longer 
term scenarios can be considered using the model if herd immunity is added to the model, but other models 
should also be considered in these circumstances.  

Methods 
 
We use a continuous-time branching process to model the number of infections, with initial seed cases 
representing overseas arrivals. Key model assumptions are: 

 Infected individuals are grouped into two categories: (i) those who show clinical symptoms at some 
point during their infection; and (ii) those who are subclinical. Each new infection is randomly assigned 
as subclinical with probability 𝑝sub = 0.33 and clinical with probability 1 − 𝑝𝑠𝑢𝑏, independent of who 
infected them. Once assigned as clinical or subclinical, individuals remain in this category for the 
duration of their infectious period. 

 In the absence of self-isolation measures (see below), each infected individual 𝑖 causes a randomly 
generated number 𝑁𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑅𝑖) of new infections. For clinical individuals, 𝑅𝑖 = 𝑅𝑐𝑙𝑖𝑛  and for 
subclinical individuals, 𝑅𝑖 = 𝑅𝑠𝑢𝑏, which is assumed to be 50% of 𝑅𝑐𝑙𝑖𝑛  (Davies 2020).  

 The model can be generalised to include additional sources of individual heterogeneity by drawing 𝑅𝑖  
is drawn from a specified distribution (e.g. Lloyd-Smith 2005), instead of simply one of two fixed values 
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𝑅𝑐𝑙𝑖𝑛  and 𝑅𝑠𝑢𝑏. However for simplicity we ignore individual heterogeneity within the clinical and 
subclinical categories. 

 The time between an individual becoming infected and infecting another individual, the generation 
time 𝑇𝐺 , follows a Weibull distribution (𝑊) with mean and median equal to 5.0 days and standard 
deviation of 1.9 days (Feretti 2020). The infection times of all 𝑁𝑖  secondary infections from individual 𝑖 
are independent, identically distributed random variables from this distribution (see Figure 1). 

 Clinical individuals have an initial period during which they are either asymptomatic or have sufficiently 
mild symptoms that they have not self-isolated. During this period, their infectiousness is as shown by 
the blue curve in Figure 1. At the end of this period, once they have developed more serious symptoms, 
they are isolated and their infectiousness reduces to 𝑐𝑖𝑠𝑜 = 65% (Davies 2020) of the value it would 
have without isolation (green curve in Figure 1). This represents a control policy of requiring 
symptomatic individuals to self-isolate.  

 Subclinical individuals do not get isolated and are not reported in case data. 

 All individuals are assumed to be no longer infectious 30 days after being infected. This is an upper 
limit for computational convenience; in practice, individuals have very low infectiousness after about 
12 days because of the shape of the generation time distribution (Fig. 1). 

 Individuals who have recovered from the virus are assumed to have immunity for the duration of the 
period simulated and cannot be infected again. This means that the proportion of the population that 
is susceptible at time 𝑡 is 1 − 𝑁(𝑡)/𝑁𝑝𝑜𝑝, where 𝑁(𝑡) is the cumulative number of infections at time 𝑡 

and 𝑁𝑝𝑜𝑝 is the total population size. 

 The time 𝑇𝑖𝑠𝑜 between infection and isolation the sum of two random variables 𝑇1 and 𝑇2. 𝑇1 represents 
the incubation period (time from infection to onset of symptoms) and has a gamma distribution with 
mean 5.5 days and shape parameter 5.8 (Lauer 2020). 𝑇2 represents the time from onset to isolation 
and is taken from New Zealand case data (see below). 

 The model does not explicitly include a latent period or pre-symptomatic period. However, the shape 
of the Weibull generation time distribution (Figure 1) captures these phases, giving a low probability 
of a short generation time between infections and with 90% of infections occurring between 2.0 days 
and 8.4 days after infection. 

 The model is simulated using a time step of 𝛿𝑡 = 1 day. At each step, infectious individual 𝑖 produces 
a Poisson distributed number of secondary infections with  mean  

 

𝜆𝑖 =  𝑅𝑖 (1 −
𝑁(𝑡)

𝑁𝑝𝑜𝑝
) 𝐶(𝑡)𝐹(𝑡 − 𝑇𝐼,𝑖 − 𝑇𝑖𝑠𝑜,𝑖) ∫ 𝑊(𝜏 − 𝑇𝐼,𝑖) 𝑑𝜏

𝑡+𝛿𝑡

𝑡
    (1) 

 
where 𝑅𝑖 ∈ {𝑅𝑐𝑙𝑖𝑛 , 𝑅𝑠𝑢𝑏} is the individual’s mean number of secondary infections, 𝑇𝐼,𝑖 is time individual 

𝑖 became infected, 𝑇𝑖𝑠𝑜,𝑖  is the delay from becoming infected to being isolated, 𝐶(𝑡) is the control 

effectivity at time 𝑡 (see below), and 𝐹(𝑡) is a function describing the reduction in infectiousness due 
to isolation: 

𝐹(𝑠) = {
1 𝑠 < 0

𝑐𝑖𝑠𝑜 𝑠 > 0
     (2) 

 

 Clinical infections have a probability 𝑝𝐻 = 7.8% of being hospitalised, equivalent to an overall 
infection-hospitalisation ratio of 5.25% (Verity et al 2020). The duration of hospital stay is 
exponentially distributed with mean 10 days (Zhou et al, 2020). For simplicity, hospitalisation is 
assumed to occur at the same time as onset of symptoms, i.e. time 𝑇1 after infection. 

 The model was initialised with seed cases representing arrival of infected individuals from overseas. 
The number and timing of these seed cases was chosen to replicate real case data (see below for 
details).  
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Figure 1. Schematic diagram showing the timeline and infection intensity of a typical infection. In the early stages 
secondary infections are unlikely. Red arrows show the exposure times of new secondary infections. After isolation the 
infection intensity is reduced to a lower level (green curve). Subclinical infectives are not isolated and follow the shape of 
the blue curve throughout, but with a lower overall infectiousness. Time from infection to isolation is the sum of two random 
variables 𝑇𝑖𝑠𝑜 = 𝑇1 + 𝑇2 drawn from shown in Table 1. Clinical infections have probability 𝑝ℎ of hospitalisation; length of 
hospital stay 𝑇𝐻 is a random variable drawn from the distribution shown in Table 1. 

 
Case data  
Data was obtained from the Ministry of Health showed 𝑁 = 1214 confirmed and probable cases of COVID-19 
in New Zealand up to 7 April 2020. For each case, the dataset contained the following fields: whether there was 
recent international travel history and if so date of arrival to New Zealand; date of onset of symptoms (from 
patient recall, where available); date of isolation. 
 
Model simulations were seeded with the 𝑁𝑖𝑛𝑡 = 501 cases that had a known international arrival date. For these 
cases, the infection date was estimated backwards from the date of onset of symptoms (distribution shown in 
Table 1). For cases that did not include an onset date, the infection date was backdated from the arrival date.  
Cases missing an isolation date were assumed to remain fully infectious for the whole infectious period. 
Secondary infections that occurred before arrival in New Zealand were ignored. Cases that were flagged as 
associated with international travel but missing an arrival date were assumed to have arrived at the same time 
as infection, so all their secondary infections were included. To allow for the fact that the case data only includes 
clinical cases, an additional number 𝑁𝑖𝑛𝑡,𝑠𝑢𝑏~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑖𝑛𝑡𝑝𝑠𝑢𝑏/(1 − 𝑝𝑠𝑢𝑏)) of subclinical seed cases were 

added. The arrival, onset and isolation dates for these subclinical seed cases were approximated by random 
sampling with replacement from the clinical seed cases.  
 
The distribution of time between symptom onset and isolation date, 𝑇2, was estimated to be an exponential 
distribution (Kucharski 2020). The mean of the distribution, 𝐸(𝑇2) = 2.18 days, was the mean taken from the 
𝑁𝑑𝑜𝑚  cases that were not associated with international travel. It is likely this will be an underestimate as the 
data is from the early stage epidemic when there are few community transfer cases and contact tracing is more 
effective. Results are also shown using the more conservative estimate of 𝐸(𝑇2) = 6 days (Davies 2020). We 
refer to these instances as fast and slow case isolation. 
 
To allow for the time lag from isolation to reporting, each isolated case was assigned a time for the delay to 
reporting drawn from a gamma distribution, with parameters approximated from the 𝑁𝑑𝑜𝑚  domestic cases (see 
Table 1). The international cases were assigned the actual reporting date as recorded in the data. 
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Control sub-model 
Population-wide control interventions were modelled via the function 𝐶(𝑡), which represents the transmission 
rate relative to no population-wide control. Population-wide control interventions include closure of schools, 
universities or non-essential businesses, restrictions on large gatherings and domestic travel, social distancing 
measures and stay-at-home orders. New Zealand’s control measures are based on a scale of Alert Levels from 
1 to 4. Alert Level 4 was introduced on 25 March 2020. It is currently too early to assess the effectiveness of this 
control so different scenarios are shown below. 
 

Model outputs 
For each simulation, the model outputs the number of newly infected cases each day, the number of cases 
reported each day, and the total number of cases currently in hospital. The main focus of this paper is the short-
term effects of different control interventions, so we do not show hospitalisations in most of our results. 
However, the model can be used to assess demand for hospital beds and fatality rates over the longer term, 
comparable to James et al (2020). Results show 50 realisations of the stochastic model, with the average 
overlaid.  
 

Parameter Value Source 

Distribution of generation times 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(5.67, 2.83) Feretti et al 
Distribution of exposure to onset (days) T1~Γ(5.8, 0.95) Lauer et al 
Distribution of onset to isolation (days) (from data) 𝑇2~𝐸𝑥𝑝(2.18) Davies et al 
Distribution from isolation to reporting Γ(1, 3.48) Fitted to data 
Relative infectiousness of subclinical cases 𝑅𝑠𝑢𝑏/𝑅𝑐𝑙𝑖𝑛 = 50% Davies et al 
Proportion of subclinical infections 𝑝𝑠𝑢𝑏 = 33% Davies et al 
Relative infectiousness after isolation 𝑐𝑖𝑠𝑜 = 65% Davies et al 
Reproduction number for clinical infections (no 
case isolation or control) 

𝑅𝑐𝑙𝑖𝑛 = 3 Estimated 

Basic reproduction number (no case isolation or 
control) 

𝑅0 = 𝑝𝑠𝑢𝑏𝑅𝑠𝑢𝑏 + (1 − 𝑝𝑠𝑢𝑏)𝑅𝑐𝑙𝑖𝑛  
=2.5 

 

Proportion of infections needing hospitalisation 𝑝ℎ = 5.25% Verity et al 
Length of hospital stay 𝑇𝐻~𝐸𝑥𝑝(10) Zhou et al 
Population size 𝑁𝑝𝑜𝑝 = 5 million  

Table 1. The parameters used in the model and their source.  

 

Scenarios 
 
We consider a number of scenarios that draw on optimistic and pessimistic views on the effectiveness of New 
Zealand’s Alert Level system1. At the time of writing, New Zealand is at Alert Level 4, which includes strong 
population-wide controls such as: 

 requiring anyone not involved in essential work to stay at home; 

 the closure of educational facilities; 

 the closure of businesses, except for essential services such as supermarkets, pharmacies and clinics, 
and lifeline utilities. 

These measures were enacted on 25 March, and at the time of writing, there has been an insufficient period of 
time to fully observe their effectiveness from clinical case data alone. New Zealand only spent two days at Alert 
Level 3, and these days were unlikely to be representative of how these control measures may work in the 
longer term. Nonetheless, we can observe the effects of similar population-wide controls in other countries, 
some of which have been in place for significantly longer. We categorise these controls in two ways: by their 
apparent strength compared to the New Zealand Alert Level system, and by their observed effectiveness in 
controlling case numbers. Following Binny et al (Binny 2020), we summarise this categorisation in Table 2. It is 
evident from the table that the effectiveness of controls varies widely, which likely reflects the time over which 
the controls have been in place as well as political, social, and cultural considerations.   
 

                                                                        
1 See www.covid19.govt.nz 
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It is apparent that highly effective Alert Level 4-strength controls can lead to effective reproductive numbers of 
less than one (e.g. Denmark). However, we also observe Level-4 strength controls that are less effective, 
although in general we observe that in most countries that have imposed controls have found their 
effectiveness improves over time. New South Wales has also demonstrated highly effective Alert Level 3 
strength controls, with a basic reproduction number observed to be just over one. In countries with relatively 
small numbers of cases (e.g. Hong Kong), Alert Level 2 measures can be highly effective when combined with 
sufficiently rapid tracing, testing, and isolation. 
 

Alert Effectiveness 

Low Med High 

Level 4 
2.1  

(e.g. GBR) 
1.3-1.6       (e.g. 

DEU) 
0.9        

(e.g. NOR) 

Level 3 
1.8       

(e.g. USA) 
1.3        

(e.g. NLD) 
1.0-1.1           

(e.g. NSW) 

Level 2  1.6-1.8       (e.g. 
SWE) 

1.1           (e.g. 
HKG) 

Table 2. Observed values of the effective reproduction number 𝑅𝑒𝑓𝑓  sourced from international reporting of case numbers 

and information concerning the levels of controls in place (Binny 2020). Exemplar countries are noted in the table for each 
category.  

 
In what follows we consider optimistic, pessimistic, and realistic scenarios that attempt to span reasonable 
estimates of the effectiveness of controls as well as the speed of case isolation. In particular, we consider 
scenarios where New Zealand reduces its Alert Level from 4 to 3 from 23 April. The relative transmission rate 
𝐶(𝑡) at each alert level and under optimistic, pessimistic, and realistic scenarios, is shown in Table 3. These have 
been chosen by comparison with other studies (Flaxman 2020) and with observed 𝑅𝑒𝑓𝑓  internationally (Binny 

2020). 
 

 Optimistic Realistic Pessimistic 

𝐶(𝑡) 𝑅𝑐 𝑅𝑒𝑓𝑓  𝐶(𝑡) 𝑅𝑐 𝑅𝑒𝑓𝑓  𝐶(𝑡) 𝑅𝑐 𝑅𝑒𝑓𝑓  

Level 1 1 2.5 2.3 1 2.5 2.3 1 2.5 2.3 

Level 2 0.64 1.6 1.49 0.72 1.8 1.68 0.80 2.0 1.87 

Level 3 0.44 1.1 1.03 0.52 1.3 1.21 0.60 1.5 1.40 

Level 4 0.28 0.7 0.65 0.32 0.8 0.74 0.36 0.9 0.84 

 
Table 3. Assumed effectiveness of population-wide controls used in the model at alert levels 1-4. 𝐶(𝑡) is the transmission 
rate relative to no control 1; 𝑅𝑐  is the reproduction number under a given level of population-wide control, but before 
accounting for case isolation. 𝑅𝑒𝑓𝑓  is the effective reproduction number under a given level of population-wide control and 

accounting for fast case isolation (average 2.18 days from onset to isolation). Slow case isolation will give an effective 
reproduction number that is between the quoted values of 𝑅𝑐  and 𝑅𝑒𝑓𝑓.  

 
We consider levels of effectiveness fast case isolation, by tracing or otherwise. Fast case isolation results in an 
expected time from the onset of symptoms to isolation of 2.18 days, as noted above. This is comparable to 
what occurred at an early stage in the New Zealand case data (Ministry of Health 2020), and assumes that this 
has been sustained despite the heavier case load. We also consider scenarios where the speed of case isolation 
has slowed (due to heavier case-loads for testing and contact tracing teams or otherwise), so that the expected 
time from symptoms to isolation has increased to 6 days (Davies 2020). 
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In what follows, we regard scenarios that, in 50% of stochastic realisations, eliminate all infections as having 
resulted in elimination. Similarly, scenarios that on average across realisations result in steady case numbers of 
less than 50 new cases per day are considered to be contained, while scenarios that result in unbounded growth 
during the simulation time as resulting in an outbreak.  
  

Results 
 

Population wide controls 
We first consider the effect of the current level 4 population-wide controls that began on 25 March, relative to 
a scenario with only weak population-wide control (Alert Level 2) (and existing border controls). The latter 
provides an important counterfactual for evaluating the benefits of the current Alert Level 4 controls. We 
consider optimistic and pessimistic Level 4 controls applied from 25 March. These are compared to an weakly 
controlled (Level 2) counterfactual scenario in Figure 2, which shows reported cases per day in comparison with 
the actual data. The fact that current cases numbers have remained steady (consistently < 100 new cases per 
day) suggest that the lockdown has had the effect of containing case numbers. Note that the close match 
between model outputs and actual data up to the end of March is because the majority of cases during this 
period are overseas cases, which are taken directly from data. 
 

 

Figure 2: (Counterfactual scenario) Fast case isolation (expected time from symptom onset to isolation is 2.18 days) in 
scenarios with optimistic (red) and pessimistic (green) Alert Level 4 control effectiveness compared to a scenario with no 
population-wide controls (purple). For these scenarios, it was assumed that an average of 10 cases per day continue to arrive 
from overseas for the period simulated. 

Speed of case isolation  
We also investigate the effect of the speed of case isolation in realistic control scenarios that both start with 
Level 2 control, i.e. only weak social distancing. On 25 March, this switches to Level 4 control. After 28 days at 
level 4, we switch to Level 3 control. The two scenarios differ based on the effectiveness of case isolation: 

 Scenario A: a scenario where case isolation is fast. Here the expected time from the onset of symptoms 
to isolation is 2.2 days. This is comparable to early stage New Zealand data, and assumes that this can 
been sustained despite the heavier case load. 

 Scenario B: a scenario where the speed of isolation have slowed so that the expected time from 
symptoms to isolation has dropped to 6 days.  

 
In scenario A, the population-wide effective reproduction number 𝑅𝑒𝑓𝑓  at each alert level is as shown in Table 

3. These values were calculated by simulating the number of secondary cases from a single seed case and 
averaging over 106 realisations. Scenario A leads to a decline in daily isolated cases during Level 4 control but 
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cases rise after switching back to level 3 (Figure 3). In scenario B, the slower case isolation scenario, the effective 
reproduction rates are 1.26 in level 3 and 0.77 in level 4. Now there is a slower drop during Level 4 control as 
cases are still rising from the previous Level 1 control period and the rise at Level 3 is faster. This is illustrated in 
Figure 4. 

 

Figure 3: (Scenario A) Fast case isolation (expected time from symptom onset to isolation is 2.18 days) in a scenario with 
realistic Alert Level 4 and 3 control effectiveness. This scenario results in an outbreak. 

 

Figure 4: (Scenario B) Slow case isolation (expected time from symptom onset to isolation is 6 days) in a scenario with 
realistic Alert Level 4 and 3 control effectiveness. This scenario results in an outbreak. 

An optimistic control scenario allows for the possibility of containment. Once more these scenarios begin with 
Level 2 control, followed by a switch to Level 4 control on 25 March. After 28 days Level 3 control is initiated. 
The two scenarios differ based on the speed of case isolation: 

 Scenario C: case isolation remains fast (as in A).  

 Scenario D: case isolation have slowed (as in B).  
Figure 5 illustrates the outcome of scenario C. In this scenario, the effective reproduction numbers 𝑅𝑒𝑓𝑓  at Level 

3 and Level 4 are as shown in Table 3. Case numbers are slowly reduced to a level of approximately 30 per day 
for the period of Level 3 controls. In scenario D however (effective reproduction numbers 1.06 and 0.68 in levels 
3 and 4 respectively), cases gradually rise after the transition to Level 3 controls (not shown).   
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Figure 5: (Scenario C) Fast case isolation (expected time from symptom onset to isolation is 2.18 days) in a scenario with 
optimistic Alert Level 4 and 3 control effectiveness. This scenario results in containment. 

Finally we consider a pessimistic scenario with slow case isolation. In this scenario (Scenario E), cases are 
contained during Level 4 but rebound very soon after the switch back to Level 3 (not shown). The effective 
reproduction numbers at Level 3 and Level 4 respectively are 1.45, and 0.87 respectively. 
 
Extended Level 4 controls  
We also illustrate the effects of extending the Level 4 period from 28 days to either 45 days or 90 days. In an 
optimistic scenario with 45 days at Level 4 with fast tracing and case isolation, this leads to containment as 
shown in Figure 5 (Scenario F). A 90 day period at Level 4 leads to containment to very low levels by the end of 
the 90 day period (Scenario G), shown in Figure 6. This scenario leads to elimination in approximately 50% of 
stochastic realisations, although a full analysis of the probability of elimination is left for future work.   

 

Figure 6: (Scenario F) Fast case isolation (expected time from symptom onset to isolation is 2 days) in a scenario where an 
optimistic Alert Level 4 control is extended for 45 days. This scenario results in containment. 
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Figure 7: (Scenario G) Fast case isolation (expected time from symptom onset to isolation is 2 days) in a scenario where an 
optimistic Alert Level 4 control is extended for 90 days. This scenario results in elimination. 

Long-term simulations  

Finally, although not the focus of this report, the model can also be used to simulate longer term scenarios, 
including those where the outbreak cannot be contained and the number of cases becomes large. The model 
accounts for the development of herd immunity by reducing the number of new infections in proportion to the 
number of susceptible individuals remaining in the population (see Methods). Results of a long-term simulation 
under scenario B (realistic control effects with slow case isolation, reflecting that this becomes more difficult 
once case numbers accelerate) are shown in Figure 8 for a total population size of 5 million people. 

 

Figure 8: A long-term simulation under scenario B (realistic control efficacy and slow case isolation) with Alert Level 4 
control in place for 28 days, followed by Alert Level 3. Deaths are calculated using a baseline infection fatality rate of 0.88% 
and an elevated rate at times when hospital capacity is exceeded up to a maximum infection fatality rate of 1.65%. 

Discussion 
 
Our results show that for small COVID-19 case numbers, such as those New Zealand is currently managing, 
rapid case isolation can play an important role. This opens up the possibility of containment or elimination, 
scenarios that are very distant for most other countries. We summarise the results of the scenarios considered 
here in Table 3. An optimistic scenario with strong effective controls and rapid case isolation can contain the 
outbreak at the end of the four week Level 4 period. Other scenarios where the Level 4 controls are relaxed at 
the end of four weeks lead to a further outbreak. These scenarios would require the re-imposition of Level 4 
control at a later stage if this second outbreak were to be controlled. Longer control periods allow for 
containment in realistic scenarios with rapid case isolation. Longer control periods are more likely to be able to 
reduce the number of cases so levels where COVID-19 might be eliminated.  
 
The effective reproduction numbers used in the optimistic, realistic, and pessimistic scenarios are comparable 
to those observed in other countries that have enacted strong population-wide controls. This should give some 
confidence in the utility of the scenarios considered here, although ideally the control function 𝐶(𝑡) should be 
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determined from an understanding of the underlying contact structure in New Zealand. This will be considered 
in future work. 
 
We have also shown that rapid case isolation while case numbers are low can drive these effective reproduction 
numbers even lower. The results also show that an indication of New Zealand’s effective reproduction numbers 
should emerge in the coming weeks, giving a good sense of the likelihood of containment if numbers fall. 
Nevertheless, longer periods of strong population-wide controls will delay or reduce the risk of a further 
outbreak. 
 
Our results also suggest that different testing strategies (e.g. testing of essential services personnel with high 
numbers of contacts) followed by case isolation and contact tracing should also be considered as an additional 
control measure. New technologies that allow for faster contact tracing or testing should also be investigated. 
Improving the speed at which cases are isolated, by testing, tracing, or otherwise, will increase the chance of 
containment and elimination. 

It is important to stress the limitations of the model for assessing long-term impacts. Further versions of this 
model will include an age-structured population with the possibility that contact rates between age groups or 
other demographic groupings could be differentially affected by specific control interventions. It will be 
important to consider the effects of geographic dispersion and contact network structure. This will allow for 
investigation of regional containment combined with inter-regional travel restrictions, selective reopening of 
schools and businesses, and potential harms to at risk communities and essential workers.  

The branching process model assumes that all infected individuals in either the clinical category or the 
subclinical category have the same transmission rate. This understates the effect of stochasticity and 
demographic variability among individuals. In reality, there will be a distribution of transmission rates and the 
model could be generalised to include this. The effect of this is to increase variance in the model trajectories, 
and this tends to results in a higher proportion of realisations ending in elimination, but conversely faster 
growing outbreaks for realisations that do not end in elimination (Lloyd-Smith et al, 2005). 

The model can be used to test potential strategies for shifting between alert levels based on, for example, newly 
reported cases or current hospital demand. Different types of strategy can be examined, for example, a strategy 
aimed at elimination might require a period with no new cases to go from alert level 4 to 3. A strategy aimed at 
containment might move the alert level down if the number of new cases falls below some threshold.  A 
strategy aimed at keeping hospitals under capacity could move the alert level up once the number of patients 
in ICU exceeds some threshold. These strategies could also be examined at a regional level.   

 

Scenario Population-wide 
controls 

Case isolation Strong control 
(Level 4) period 

(days) 

R3 R4 Outcome after strong 
controls relaxed 

A Realistic Fast 28 1.21 0.74 Outbreak 

B Realistic Slow 28 1.26 0.77 Outbreak 

C Optimistic Fast 28 1.03 0.65 Contained 

D Optimistic Slow 28 1.06 0.68 Outbreak 

E Pessimistic Slow 28 1.45 0.87 Outbreak 

F Optimistic Fast 45 1.03 0.65 Contained 

G Optimistic Fast 90 1.03 0.65 Contained/eliminated 

Table 4: Summary of the results by scenario, showing the effective reproduction numbers during each stage (Level 4 and 
Level 3, R4 and R3 respectively) and the eventual outcome.   
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