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Abstract

It is of vital importance to understand and track the dynamics of rapidly unfolding epidemics.

The health and economic consequences of the current COVID-19 pandemic provide a poignant case.

Here we demonstrate that a class of widely used models is fundamentally flawed and cannot account

for some important features of the viral spread. We suggest an integral equation based method that

can be implemented in most of the reported models. Taking the example of COVID-19 data for

New York City, we show that our model yields a significantly larger estimate for the initial basic

reproduction rate than other models, much more accurately accounts for the dynamics of the epidemic

after restrictive public congregation measures were introduced, and provides a novel way to determine

the incubation period. We suggest that no decisions about public health or economic measures should

be based on any unimproved model.

Introduction

A commonly used approach to describe the dynamics of epidemics is based on SEIR-type (Susceptible-

Exposed-Infectious-Recovered) differential equations [1–5]. Recently these methods have been applied

to the COVID-19 pandemic to determine the basic reproduction number [6–11], the incubation pe-

riod [12–14] and to describe the dynamics of the pandemic [15–22]. In this framework there is no

natural and transparent way to account for the delay occurring due to the incubation period of the dis-

ease. Even after refinements to try to account for some aspects of this delay [15–17, 23], these models

are still plagued by uncontrolled approximations. We suggest that models based on differential equations

should not be used, they should be replaced with ones based on an integral equation, which provides a

natural setting to implement the time delay. The approach we present is not new, it was already implicit

in the original Kermack-McKendric theory proposed in 1927 [24]. Even though several variants of that
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model with various degrees of precision circulate in the current literature [25–28], their superiority over

the differential equation based method has not been widely recognized.

We emphasize that in the form presented below, the integral equation based approach is neither techni-

cally nor conceptually more complicated than the one based on differential equations. More importantly,

it gives a much more realistic representation of the epidemic dynamics. We demonstrate this by com-

paring how the two types of approach describe the New York City data [29], taken from the currently

ongoing COVID-19 pandemic. Firstly, we show that even in the initial simple exponential phase of the

epidemic, the correct, integral equation based model can give a vastly larger estimate for R0, the basic

reproduction rate. Secondly, we show that the oscillations in the graph of the number of newly infected

people after restrictive public interaction measures were introduced, is well described by the integral

equation model. This is a generic feature of COVID-19 data, seen in several countries, and there is no

simple way the differential equation based models could explain it.

Our comparison here is based on a simple SEIR-type differential equation model and its integral

equation counterpart containing the same variables, but a different time evolution. It can be seen from

our general discussion that the differences we find are generic features of the two types of models and

carry over to more sophisticated versions of these models. We cannot take on the task of performing

a similar comparison for all the models currently accepted by the community, but we urge everyone to

test how different their results are between the two approaches in the case of the particular models they

use. Finally, based on our findings, we suggest that in the future, decisions about public health measures

should be based solely on models relying on the integral equation approach, and the differential equation

based approaches should be completely abandoned.

Integral equation description for discrete and continuous time evo-

lution

The mathematical modeling of how infectious diseases spread is almost exclusively based on compart-

mental models. In this framework the population is divided into different categories and a dynamical

model is set up to describe how the number of individuals in each category evolves with time. A sim-

ple model of this type is the so called SEIR model, in which the compartments are susceptible (not yet

infected), exposed and infected (but not yet capable of infecting others), infectious, and recovered (not

capable of infecting others any more). In its simplest form the model is characterized by three parame-

ters, α, β, γ that determine the transition rates among different compartments through the following set

of differential equations:

dS

dt
= −β

I

N
S,

dE

dt
= β

I

N
S − αE,

dI

dt
= αE − γI,

dR

dt
= γI, (1)

where S(t), E(t), I(t) and R(t) are the number of susceptible, exposed, infectious and recovered indi-

viduals, all functions of the time, and N = S + E + I +R is the total population.

In the initial phase of a rapidly developing epidemic, the situation we are concerned with here, S/N ≈

1, which we will assume. The generalization to include S as a dynamical parameter, to consider births

and deaths or other parameters is straightforward. With this approximation the two functions describing

the dynamics are E(t) and I(t). At this point it is instructive to introduce te and and ti, the average
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Figure 1: The number of new infections per day, shown up to the eleventh (top) and the twelfth day

(bottom) of the epidemic. The blue area represents those that are infected, but not yet infectious, i.e.

people who were exposed between today and te = 4 days ago. The red area represents those that are

infectious, i.e. people who were exposed more than te days ago, but not more than te + ti = 7 days ago.

In the SEIR model the number of people who cease to be infectious from day 11 to day 12 is equal to

the daily average of the red area in the top panel. In reality, however, only people in the leftmost red

histogram, here a much smaller number, cease to be infectious. Similarly, in the SEIR model the number

of people who become infectious is the daily average of the blue area, when in reality it is only people

in the leftmost bar of the blue area who become infectious from day 11 to day 12. Clearly the only case

when the SEIR model correctly represents the situation is when the number of newly infected people per

day is constant in time.

days an individual spends in the categories E and I respectively. It is convenient to write the equations

in terms of these parameters and the basic reproduction rate, R0, using the simple relations α = 1/te,

β = R0/ti and γ = 1/ti.

With these new parameters the simplified form of the differential equations valid for the initial stage

when S/N ≈ 1 is

d

dt

(

E

I

)

=

(

−1/te R0/ti
1/te −1/ti

)(

E

I

)

. (2)

There is, however, a fundamentally wrong assumption underlying Eq. (2). Let us assume that for

every day t in the past we know how many individuals became infected on that day, and denote their

number with ρ(t). This can be depicted in a histogram with time flowing from left to right along the

horizontal axis (Fig. 1). Based on this information we would like to estimate ρ(t + 1), the number of

individuals becoming infected on the following day. For the sake of simplicity let us assume that anyone

exposed to the infection will become infected, but will not be infectious for te days. Such a person will

become infectious te days after exposure and will remain in this category for an additional ti days, after

which he is isolated and ceases to be capable of infecting others. In the simplest version of the model

te and ti can represent averages, but later on we will indicate how to generalize the model by using

continuous distributions. In Fig. 1 the blue area represents those in category E, with te = 4, and the red

area those in I , with ti = 3. Now, exactly as in the SEIR model, described above, the number of newly
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infected on the following day, day 12 in the figure, will be

ρ(t + 1) = β

t−te−1
∑

τ=t−ti−te

ρ(τ), β =
R0

ti
(3)

where the sum is the total number of infectious individuals at time t, i.e. the red area in the top panel of

Fig. 1. At this point we can depict the situation at time t+ 1 simply by shifting both the blue and the red

region, showing the people in category E and I , one day forward to the right (bottom panel of Fig. 1).

From this point on the same procedure can be further iterated day by day: on each day we calculate the

number of newly infected for the following day and shift the windows delineating the exposed and the

infectious by one day forward.

Let us now see how the number of exposed and infectious people evolve in time according to the

SEIR model of Eq. (2). In the SEIR model the rates at which individuals flow out of the pools E and I

are proportional to the number of people in the respective pools (see the explanation below Fig. 1). In

reality, however, the number of people entering (leaving) the I and E pool is represented by the rightmost

(leftmost) histogram bars of the respective red and blue regions. In a rapidly changing situation the SEIR

model gives a very bad description of reality.

At this point the objection could be raised that we have been comparing the continuous SEIR model

with a discretized model. However, the framework presented in the histograms can be easily generalized

from days to arbitrarily fine time steps. In the limit of infinitely fine time steps dt, we can choose the

height of the histogram bars ρ(t) such that ρ(t)dt be the number of people becoming infected in the time

interval [t, t + dt]. In this case the sum in the right hand side of Eq. (3) becomes an integral and the

equation can be rewritten as

ρ(t) = β

∫

t−te

t−ti−te

ρ(τ) dτ, β =
R0

ti
. (4)

We emphasize that only this continuous version of the model describes the real situation properly.

Determination of R0, the example of New York City

We illustrate the failure of the SEIR model in two examples. First let us consider the case of constant

R0 > 1 which leads to the exponentially growing solution with exponent λ, i.e. all relevant quantities

(E(t), I(t) of SEIR and ρ(t) of the integral equation) are proportional to exp(λt). A simple substitution

gives:

R
(SEIR)
0 = 1 + λ(te + ti) + λ2

· teti and R
(integral)
0 =

tiλ

e−λte − e−λ(te+ti)
(5)

Solving the discretized equation (3) with time step ∆t leads to R
(discretized)
0 = (eλ∆t−1)/(λ∆t) ·R

(integral)
0 .

Figure 2 shows these three R0 (SEIR, integral equation, discretized integral equation) using realistic

parameters that describe the initial phase of the pandemic in New York City. There is a striking difference

between the SEIR and integral equation predictions. While the SEIR result is largely insensitive to the

split of the total incubation period into te and ti, this is not the case for the solution of the integral

equation. The true value of R0 can be 3-4 times larger than the one predicted by the SEIR model. For

ti ≈ 2 days which, as we will later see, provides a reasonable description of the daily reported cases, R0
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Figure 2: R0 as a function of ti, the infectious part of the incubation period. The total incubation period is

taken to be te+ti=6.4 days [13] and the exponential growth parameter is 1/λ = 1.78 days which describe

the growing phase of the New York City data [29] well. The orange color curve with the maximum shows

the prediction based on the SEIR model of eq. (2). The blue and red lines correspond to the solution of

the integral equation (4) and its discretized version (3) with an hourly time step, respectively. Their

agreement indicate that such a discretization is sufficient. A daily discretization would give 34% higher

R0 values.

can be as high as 20. R0 is, of course region dependent. Less populated areas can have much smaller R0

values.

One might think that this difference is only due to the relatively large incubation period (as compared

to the characteristic growth time of the pandemic) and the SEIR model gives reliable estimates for small

incubation periods. Surprisingly this is not the case. A trivial expansion of R
(integral)
0 in λte and λti yields

R
(integral)
0 ≈ 1 + λ(te + ti/2) + λ2(t2

e
/2 + teti/2 + t2

i
/12) + O(λ3) which is clearly different from the

SEIR result.

The precise determination of R0 for the initial phase of the pandemic in New York City is beyond

the scope of this paper but the message is clear: no determination of R0 should be based on differential

equation based models such as SEIR.

The effect of decreasing R0, delay and oscillation

The parameter R0 in both the SEIR- and the integral equations is in general time dependent. The most

important goal of the first restrictive measures was to decrease the value of R0 as fast as possible and

bring it below the critical value of 1. In the following we study how the different models react to a sudden

decrease of R0 and compare them qualitatively to the daily reported new cases in New York City [29]. To

simplify our discussion we will assume that all cases are reported exactly after the incubation period, i.e.
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Figure 3: Left: time evolution of new reported cases after a lockdown on day 73 in the case of the SEIR

and integral equation models. For the initial phase of the pandemic 1/λ = 1.78 days, te = 4.4 days

and ti=2 days was used. This corresponds to RSEIR
0 = 7.37 and Rintegral

0 = 19.7. The value of R0 was

instantaneously decreased to 0.95 in both cases on day 73. The difference between the two models is

quite dramatic. The SEIR solution reacts immediately and turns smoothly to a decreasing exponential

function. The solution of the integral equation is qualitatively different. There is a delay of te + ti after

which the effect of the lockdown becomes visible, then an oscillation follows. The characteristic scales of

this oscillation are indicated in the figure. Right: time evolution of the new reported cases after a gradual

lockdown from day 71 to day 74 confronted with the data of New York City. The initial parameters are

the same as for the left panel. R0 is now decreased to 0.95 linearly in time during this four day period

in both models. The main features of the curves are similar to the left panel but the amplitude of the

oscillation is reduced, making it similar to the real data. Note that we did not fit our model to the data.

This plot is an illustration that the main features (delay and oscillation) of the data are well captured by

the integral equation and neither of these is reproduced by SEIR.

te + ti time after first exposure. In the case of the SEIR model the rate of people leaving the incubation

phase is dR/dt = γI while in the case of the integral equation it is ρ(t − te − ti). These two functions

will be referred to as ”reported new cases” in the following. If we assume that the majority of cases are

reported when symptoms emerge, it follows that any change in the parameters will only show up te + ti
days later in the data. Any reasonable model should be able to naturally account for this delay. Quantities

in differential equations react immediately to any change of the parameters, thus no differential equation

based model (such as SEIR or its simple extensions) is expected to explain such a delay. The integral

equation (4), on the other hand, naturally provides a delay.

The simplest possibility is to assume that R0 decreases instantaneously after a successful lockdown.

The left panel of Figure 3 shows how the reported new cases evolve after a lockdown happens on March

13 (day 73 of 2020) which reduces R0 to 0.95. A more realistic situation is shown in the right panel of

Figure 3. Here the value of R0 was gradually decreased from March 11 to March 14. In both cases it is

clear that the expected delay, which is clearly visible in the data, is only explained by the integral equation.

The reported data of many countries show an interesting oscillation after the effect of a lockdown starts

to show up. This feature is also naturally described by the integral equation.

One remark is in order. The incubation period of 6.4 days is accidentaly very close to the weakly
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Figure 4: Two possible choices for the P (τ) probability at which an individual is infectious τ time after

exposure. The red curve corresponds to fix te and ti. The blue curve shows a more realistic scenario. The

small plateau or even a second peak at larger times may correspond to people who are symptom free and

are therefore infectious for a longer period, possibly until they naturally recover.

cycle of 7 days. Thus, the oscillation might in principle be just a weekend effect. Looking at the weekend

during the strongly exponential growth with enough statistics (March 14, Saturday to March 16, Monday)

one observes less cases during Saturday and Sunday and an accordingly higher number of cases on

Monday than the average exponential growth would predict. Correcting the data for this effect later would

weaken but not eliminate the observed oscillation, it seems to be a real effect. This is also supported by

the fact that different countries have minima and maxima of their oscillation on different days (e.g. in

Italy the minima are on Mondays and Tuesdays, in the Netherlands they are on Tuesdays). The main

message, however, is again clear: no differential equation based model should be used to predict the

evolution of the pandemic.

It is in principle possible to determine the incubation time te and ti from this oscillatory pattern.

Taking the distance of subsequent minima we determined te + ti. Using data of New York City, Italy,

Spain, Germany, and the Netherlands [29, 30] the period of the oscillations seems quite robust and is

around te + ti = 7.4 days on average with a spread of 0.2 days.

Once te and ti are known, one can solve eqn (4) for β(t) or equivalently R0(t) by taking ρ(t) and

the (numerical) integral from the actual data. In this way one can continuously monitor the effect of

restrictive or easing measures.

Conclusions and Outlook

In the previous sections we illustrated the failure of the SEIR model in a simple approximation when

both te and ti are fixed. In reality the incubation period is described by a probability function P (τ) which

gives the probability that a person is infectious a time τ after exposure. Figure 4 shows the probability

function corresponding to fixed te and ti and a sketch for a more general choice. The integral equation
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(4) can easily be generalized to include P :

ρ(t) = β

∫

∞

0

ρ(t− τ)P (τ)dτ, R0 = β

∫

∞

0

P (τ)dτ. (6)

In general, the transmission rate β also changes in time since new restrictive measures can be imple-

mented. This can also be incorporated into the equation, however, in that case R0 might not have a trans-

parent interpretation. This equation has been around in the literature for a long time (see e.g. [25–27])

but unfortunately it has not yet been widely adopted. Any evolution computed using this equation is

expected to have qualitatively similar features (delay and oscillation) as in the simple approximation pre-

sented above. The SEIR model is not a good approximation of this integral equation even if the P (τ)

probability is built into its parameters.

For later stages of a pandemic when S/N < 1 the integral equation can be generalized to include S

as well:

ρ(t) = β
S(t)

N

∫

∞

0

ρ(t− τ)P (τ)dτ, S(t) = N −

∫

t

−∞

ρ(τ)dτ. (7)

Any further extension which can be included in the SEIR equations (e.g. birth and death rate,

day/night differences, inhomogeneities, metapopulation systems, etc.) can also be naturally included

in the integral equation formalism.

We demonstrated that the widely used differential equation based models of epidemiology, in par-

ticular the SEIR model, are fundamentally flawed. They may significantly underestimate R0 and fail to

reproduce the expected time delay in reported cases after a reduction of R0. We suggest using the integral

equation formalism instead, which has originally been developed almost 100 years ago. We presented

a simple way to implement this equation in numerical simulations which is not more complicated than

the numerical solution of the SEIR equations. Any further improvement should be based on the integral

equation formalism and not on differential equations.
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