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The December 2019 New Corona Virus (SARS-CoV-2) Outbreak: 
A Behavioral Infectious Disease Policy Model 

 

Abstract 

It is critical to understand the impact of distinct policy interventions to the ongoing December 
2019 coronavirus (SARS-CoV-2) pandemic. We develop a flexible behavioral, dynamic, and 
sectorial epidemic policy model comprising both endogenous virus transmission and public 
health and citizen responses. Applicable to the full epidemic cycle including resurgence, the 
model allows exploring the multivariate impact of distinct policy interventions, including 
general and targeted testing and social contact reduction efforts. Calibrating the model to the 
early SARS-CoV-2 outbreak at the level of continents, we demonstrate how early, rapid, and 
extensive buildup of testing and social contact reduction efforts interplay to suppress the 
outbreak. Next, applying the model within hypothetical contexts we demonstrate how: i) 
sociodemographic variation in vulnerability to the virus affects overall reported and actual 
outbreak patterns; ii) feasible timing of deconfinement depends on earlier responses to the 
outbreak; and, iii) targeted approaches help suppress resurgent outbreaks and their various 
impacts. Finally, given the importance of broad support of outbreak control efforts, across 
public health experts, policymakers, volunteers, media, and citizens, we make the model also 
accessible in the form of a free web-based management flight simulator.  

Introduction 
On March 11 the World Health Organization declared the coronavirus (SARS-CoV-2) 
outbreak a global pandemic (WHO, 2020a). Since early April over 1.25 Million cases and 
over 67 Thousand deaths have been reported (Roser, Ritchie, and Ortiz-Ospina, 2020). While 
the disease has affected at least 190 countries, areas, and territories, outbreak patterns and 
responses have varied widely (Cohen and Kupferschmidt, 2020). In Singapore, extensive 
restrictions on movement started three days after the first discovered case (Xianbai, 2020), 
whereas other countries have been slower to reduce social and economic interactions. South 
Korea deployed rapid and large-scale testing across the population, while the United States 
has initially been slow to build up testing capacity (Cho, 2020).  

Across Europe, responses have also differed considerably (Politico, 2020). On March 
16 the French government ordered citizens to stay at home except for essential activities 
(Erlanger, 2020). In contrast, the UK government initially suggested avoidance of public 
places (Triggle 2020), yet bars, restaurants, and museums remained open. Prime Minister 
Boris Johnson subsequently changed course, but confusion persists over what is and isn’t 
allowed (Mason 2020). The same virus, different government and citizen responses.  

Early data on the developing pandemic (Roser et al. 2020) suggest that early 
testing and interventions aimed at reducing social interactions are vital to decrease total and 
peak infections. But, these different approaches and pathways across countries raises a 
number of critical questions, including: How do these various interventions impact the 
outbreak patterns? Why is large-scale and early testing so important? What is the differential 
effect between enforcing or discouraging social contact reduction? How do multiple 
interventions interact to alter outbreak patterns? How long should policies be maintained? 
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How important are targeted interventions? And, what is the importance of coordinating and 
aligning efforts across countries? 

To answer questions like these, policy makers, journalists, and citizens must 
understand not only the disease transmission dynamics but also the role of human responses 
to the outbreak. Epidemiology experts examine the diffusion patterns of infectious diseases, 
their models focus on critical virus and transmission characteristics, including transmission 
rate, and incubation and infectious period. In addition to understanding the virus transmission 
dynamics, it is essential to understand how these dynamics can be altered by the behavior of 
policy makers and citizens (Ferguson et al. 2020a). Yet, epidemiological models typically do 
not capture such endogenous human behavioral responses. 

The purpose of the Behavioral Infectious Disease Policy Model we develop here is, 
first, to facilitate improved understanding of how virus transmission dynamics and 
endogenous policy and citizen responses to a developing outbreak interact to produce 
outcomes. Second, by considering these interactions, the model serves to evaluate individual 
and joint impact of diverse specific public health control measures over the full epidemic 
cycle including resurgence. The model captures the virus transmission dynamics through what 
is called a “susceptible exposed infectious recovered” (SEIR) model (Hetchote 2000), part of 
the mostly widely studied class of SIR epidemic models  (Brauer, Castillo-Chavez, and 
Castillo-Chavez, 2012). Yet, following principles of behavioral dynamic modeling (Sterman 
2001), the model also captures how, in response to the progression of the outbreak, 
populations alter their social contacts, and how policymakers and health experts ramp up 
testing and reporting, and implement policies related to social distancing. The model 
differentiates reactive and proactive testing approaches as well as differentiates interventions 
such as general population social distancing, home confinement of suspected populations, and 
quarantining of positive cases detected. Importantly, in the model, as in real life, citizens and 
policy makers respond to reported – not actual – data of a progressing virus outbreak. Each of 
these behaviors in turn alters the outbreak path itself. The model tracks key epidemic 
variables over time (including the population within the various epidemic stages and the 
reproductive number - the average number of secondary cases that one case generates over the 
course of its infectious period), as well as clinical data (hospitalizations, deaths), and 
behavioral data (such as the degree of social contacts, and home-confined population, 
reported versus actual cases etc.). The model is generic in the sense that it can be used to 
explore how the dynamics change depending assumptions related to infectious diseases, such 
as SARS, HIV, H1N1, and H5N1, Influenza, and Ebola,1 as well as can handle differing 
assumptions about citizen and policy behavior across populations, within and across socio-
demographic segments. 

Here we use the model to explore both current questions about managing the 
December 2019 SARS-CoV-2 outbreak and future questions about managing resurgence. We 
develop a baseline run that calibrates the most important parameters against the (rapidly 
developing) data and literature on the ongoing SARS-CoV-2 outbreak (Roser, Ritchie and 
Ortiz-Ospina, 2020; Dong, Du, and Gardner, 2020; The Lancet, 2020). Disaggregating our 
baseline at the level of continents, we demonstrate how differences in early and extensive 
testing and extensive social contact reduction measures interplay and can explain different 
outbreak pathways across regions. We also highlight the challenge of catching up once falling 
behind in curtailing the outbreak. We then use the calibrated model to perform, within more 
hypothetical contexts, dynamic analyses, of socio-demographic (eg age-related) variation in 
vulnerability to the virus, of deconfinement efforts, and of virus resurgence. In particular, we 

                                                
1 This model builds on a model developed during the 2014 Ebola outbreak, which is online available (Struben 
2014). However, we note that the model has been altered considerably to incorporate key issues related to the 
2019 SARS-CoV-2 outbreak (as well as others).  
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show the importance of targeted approaches for effectively reducing the multifaceted impacts 
of the outbreak.  

While stylized, the model demonstrates the fundamental complex dynamics of 
infectious diseases caused by both virus transmission and human behavior. Powerful positive 
feedbacks that accelerate infections combine with delays in infection detectability, inertia in 
the buildup of testing capabilities, and with challenges in rapidly limiting human contacts. 
Together these factors lay the ground for the risks associated with wait-and-see approaches to 
epidemic outbreaks. In showing these interdependencies the model further helps understand 
how swift and comprehensive responses can reduce the impact of epidemic outbreaks. In 
clarifying these endogenous dynamics, our model provides insights that are fundamentally 
different from, but complement, policy models that study interventions as exogenous shocks 
(Kissler et al. 2020). By allowing the exploration of different intervention strategies through 
endogenous behavior - from social distancing advice, to self-home confinement , and 
enforced quarantine, we provide a general quantitative framework for better understand under 
what conditions measures are critical for successful  reversing epidemic growth if applied 
efficaciously at an early stage of an outbreak or during the later stage of resurgence 
management. 

Finally, because much of the success depends on collective involvement from not only 
experts, but also policy makers, local volunteers, citizens, and media that all need to better 
understand these dynamics, a version of the model has been coupled to a free 
online Behavioral Infectious Disease Simulator (Struben 2020) that enables users to explore 
the impact of government and citizen responses, and how they could alter the course of a 
pandemic. In the remainder we provide a short background of the 2019 coronavirus outbreak, 
the responses, and of the existing relevant literature. We then  and perform a number of 
calibrated and stylized simulations to demonstrate the value of the model. We end by 
discussing next steps. 

Background 

The virus 
From December 31 2019 March 3 2020 a total of 44 patients with pneumonia of unknown 
etiology were reported in China. On January 07 2020 a new type of coronavirus was isolated 
by the Chinese Ministry of Health. Soon the Chinese Ministry of Health reported the cases’ 
exposure history to the Huanan Seafood Wholesale Market in Wuhan. The second week of 
January 2020 other countries identified confirmed cases related to traveling overseas 
including Japan, Thailand, South Korea. Reported cases went from over 150 thousand by 
mid-march to over 1.25 M on April 6th with over 65 thousand reported deaths in a total of 
180 countries (Roser, Ritchie, and Ortiz-Ospina, 2020; Korean CDCs, 2020).  .  

The virus “severe acute respiratory syndrome coronavirus 2” (SARS-CoV-2, earlier 
provisionally named “2019 novel coronavirus” (2019-nCoV)), is thought to spread from 
person to person through droplets and contacts when a person with the virus coughs or 
sneezes and by touching objects contaminated with the virus, then touching one's eyes, nose 
or mouth. SARS-CoV-2 causes the respiratory illness  coronavirus disease 2019 (COVID-19). 
(Hereafter we solely use the acronym SARS-CoV-2, indicating either.) Main symptoms 
include  diverse symptoms from respiratory infections, ranging from mild to severe, such as 
fever, malaise, cough, shortness of breath and pneumonia. In addition, phlegm, sore throat, 
headache, hemoptysis, nausea, and diarrhea also appear.  Elderly, immunocompromised 
patients, and patients with underlying medical comorbidities are most likely to be in critical 
condition or die from the virus. Best current estimates suggest a case fatality rate (CFR) for 
SARS-CoV-2 of about 1-2% (Shim et al., 2020; WHO, 2020b), much larger than the order of 
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0.1% for a moderate seasonal influenza. Yet, there is still much uncertainty about this number 
because of the often limited testing capabilities, and endogenous factors such as hospital 
overload (Ghaffarzadegan and Rahmandad, 2020). Further, estimating the CFR requires 
information about the number infected (the denominator). Yet, this number is hard to detect, 
because of the  large number of cases with mild and/or flu-like symptoms. For example, about 
80% of people with SARS-COV-2 has mild (or no) symptoms, while 20% has severe 
symptoms, with about a third of those latter group becoming critically ill (ECDC, 2020).  

The extent of an epidemic outbreak is affected by key virus transmission parameters. 
Estimating values of parameters such as infectious contacts and duration of infectivity is of 
critical interest to those seeking to impact this (Anderson et al., 2020). Compared to 
Influenza, or Ebola transmission is rapid due too high infectivity. The duration of the 
infectious period for SARS-COV-2 is estimated to be 5-10 days (Zou et al. 2020), after an 
incubation period of 2-14 (5.5 average) days. The incubation period for SARS-COV-2 is 
about 5–6 days (Li et al. 2020). The fundamental metric transmissibility of a virus, the basic 
reproduction number R0 – representing the number of people infected during once infectivity 
at the first infection – is estimated to be on the order of 2.4-3.3, quite higher than that for 
seasonal flus or Ebola (Chowell et al. 2004) but lower than for severe acute respiratory 
syndrome (SARS) (Lipsitch et al. 2003; Read et al. 2020; Walker et al. 2020). Estimates using 
this reproduction number suggest that globally, an unmitigated SARS-CoV-2 epidemic would 
lead to about 7.0 billion infections (Walker et al. 2020). Given the case fatality estimates, this 
could potentially result in resulting in 40 million deaths.  

An unmitigated scenario, while important as reference is unrealistic because 
transmission rates decline as, no matter how, governments and citizens will respond as 
reported cases and deaths accumulate, leading to reduced contacts. However, with such a high 
basic reproduction number outcomes must be seen in not only the total number of deaths, but 
also the peak load on the health systems and the risks of resurgence. Therefore, key policy 
questions are what set of responses and their timings help manage the outbreak path, in the 
short and longer run (Ferguson et al., 2020; Pueyo, 2020), and at what cost (Eichenbaum et 
al., 2020). 

Policy questions 
Responses in Asia (South Korea, Hong Kong, Singapore, Mainland China, and, to some 
extent, Japan) show that active policy measures such as quarantine, social distancing, and 
isolation of infected populations can contain the epidemic (WHO, 2020b).  While the outbreak 
has been contained within multiple countries through early government action and through 
social distancing measures taken by individuals, in many other countries this has not been the 
case.2 To illustrate, consider the outbreak and responses across three continents (Figure 1). 
The three graphs show respectively cumulative reported cases (per million people (pmp)), 
cumulative tests performed (pmp), and metrics of social activities, starting from the day of the 
first case reported case to the WHO (December 31, 2019, time = 0 in the Figure) until April 8 
(time = 100). The first reported cases within South Korea, Italy (the first known epicenter in 
Europe), and United States occurred all within one day (January 18-19 2020, Figure 1, top 
left). Initially, reported cases were much higher in South Korea, suggesting it had become an 
epicenters. However, the fate of the countries differed considerably during the following 90 
days: Whereas in South Korea reported cases stabilized under 200 pmp by early March, in 
Italy by the end of march it was at 1700 cases pmp whereas in the United States ,by the end of 
March, there were already 527 reported cases pmp. Case reporting however, is not 

                                                
2 Most of those countries/regions that responded well have had earlier experience with the SARS epidemic 
(2002–03). 
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independent from case testing. In South Korea it took 43 days to get from the first reported 
case to 2500 tests pmp, at which point there were 68 reported cases ppm. Italy reached 2500 
tests pmp 15 days later with reported cases ppm at 291 ppm . The United States, reached this 
on March 27, 26 days later than South Korea, at which point there were 260 (steeply growing) 
cases ppm. With exceptions such as Iceland, testing has lagged more in many other countries. 

----------  FIGURE 1 ABOUT HERE ------------ 

South Korea’s approach reflects a more proactive approach beyond just testing. In 
particular South Korea has focused on early detection of persons at risk and so to identify and 
then isolate the virus (Korean CDCs, 2020). As part of this South Korea implemented a policy 
of early and widespread identification of suspected cases through targeted testing and 
isolation of “suspected cases” - family members and, through contact tracing, those that are 
thought to have been in close contact with positive cases. The quarantining and monitoring of 
positive and suspected cases involves follow up according to specific protocol and timing. 
Finally efforts are done to build capacity of local government, build systems of cooperation 
between affiliated organizations, and educate and raise public awareness among the 
community (Korean CDCs, 2020). In Europe confinement policies have been implemented 
but often much more slowly. Yet, they have more focused on  confinement of the general 
population. Italy’s general lockdown commenced in the center and was gradually expanded to 
northern provinces (March 8). In the United States, despite urging from public health experts, 
by eatly April some states and counties have taken limited action, with beaches and 
restaurants still open (Axelrod, 2020). Indeed, social activity has taken much more time to 
slow in Europe and North America (Figure 1, bottom showing short term Air B&B lettings 
and Mobility trends for places like public transport hubs such as subway, bus, and train 
stations ).   

These contrasting results suggest that a mixture of interventions are considered to 
affect outcomes. Research suggests the importance of not only testing and general social 
distancing as often practiced in epidemic outbreaks (Jefferson et al. 2008), but also more 
targeted approaches (Fraser et al 2004; Wong et al. 2016). Yet, outcomes will be very 
sensitive to the actual actions taken, some of which depend on specific regional conditions.  

The Model 
We develop a computational model of infectious disease outbreak dynamics that captures the 
distributions of times to symptoms and infectiousness for the etiological agent concerned and 
consistent with earlier theoretical studies but that is also sensitive to the socio-behavioral 
complexity of policies and citizen response. The model focuses on an infectious disease 
outbreak throughout its epidemic period. While the main focus of the model is highlighting 
interactions among key policy levers and citizen responses and with virus transmission 
dynamics, transmission and behavior can be affected considerably by geographic and by 
socio-demographic conditions. For example, the perceived severity of the outbreak  at which 
policy makers and citizens begin to respond to the outbreak - differs by region and is in the 
baseline lower for the early Asian countries than for others regions. To allow exploring key 
sensitivities to demographic variation, he model disaggregates into N demographic segments. 
These sections can be used to represent geographical regions such as continents, countries, 
provinces for example (as long they are sufficiently large so that individual contacts are less 
important). The sectors can also be used to represent different socio-demographic segments 
(older versus younger populations; vulnerable versus less vulnerable groups) within a 
geographic region.  
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In what follows we highlight only the key model concepts, structures, and variables. 
Figure 2 provides a high level overview. Likewise, the accompanying figures show simplified 
representations of the model sections. The online appendix3 (Appendix A.1) lists the model 
equations in the same sequencing as below and provide additional visuals. The model itself is 
also available for download.  

----------  FIGURE 2 ABOUT HERE ------------ 

 

Transmission dynamics 
The core of the model forms a classic epidemiological compartmental model, called the 
“Susceptible-Exposed -Infectious (Symptomatic)-Recovered” (SEIR) model (Figure 3) 
commonly used by epidemiologists (Hethcote, 2000). The infectious population transmits the 
virus to susceptible population within demographic segment d, 𝑃",4 through infectious 
contacts at infection rate 𝑖𝑟" = 𝑣𝑡" ⋅ 𝑃". Infectious contacts may come from the symptomatic 
population in any demographic segment d’ 𝑆"* as well as from exposed population 𝐸"* being 
in contact with susceptible population at contact rates 𝑐𝑠"." and 𝑐𝑒"*". The contact rate of the 
exposed population (the contact rate prior to the outbreak) forms a reference for variation in 
social contacts across population segments and time. (Those with symptoms tend to have 
lower contact rates than those without. (If you feel sick you tend to stay at home more, even 
absent any awareness of a virus outbreak.). Further, contacts change over time in response to 
the outbreak.) 

Infectious contacts further depend on infectivity (the probability of infection given 
contact between a symptomatic and an infected person). While infectivity of the he 
symptomatic population, 𝑖𝑠", tends to be higher than of the exposed population, 𝑖𝑒" , viral 
load measures suggest that in the case of the SARS-CoV-2 infectivity commences before the 
onset of first symptoms (Ferguson et al. 2020; Pan et al. 2020; Zou et al. 2020;). Then, the 
virus transmission (simplified form) is given by:5 

 

𝑣𝑡" =0𝑐𝑒"*" ⋅ 𝑖𝑒" ⋅ 𝐸". + 𝑐𝑠"." ⋅ 𝑖𝑠". ⋅ 𝑆". , (1)
"*

 

 
where 𝑐𝑠"."are equal to the contacts within segment 𝑐𝑠"adjusted with relative cross-segment 
contacts 𝑓𝑐"*": 𝑐𝑠"." = 𝑓𝑐"*" ⋅ 𝑐𝑠"..  

Infected people remain exposed during a latent or incubation period 𝜆, at which point 
they (may) begin to show symptoms. Details of a more disaggregated symptomatic stage, 
including parameters marked with *, are discussed below.) Subsequently, depending on the 
case lethality fraction, those in the symptomatic stage either recover or die after  (Figure 3 
right). 

----------  FIGURE 3 ABOUT HERE ------------ 

                                                
3 See: https://eeec2475-e7ec-4220-91dc-69dd9ef9e7a1.filesusr.com/ugd/f2ccb2_cb16bd1138cf499d8907e5514ccc6607.pdf 
4 We use the letter P (“Potentially infectible”) to denote the susceptible population as we reserve the letter S for the 
population in the symptomatic stage.  
5 This is a simplified representation of the virus transmission rate. In the model the stocks of exposed and symptomatic 
populations are each disaggregated into different stocks with different contact rates. For example, part of either stock 
population segment may be quarantined or home isolated (discussed below). Further, average infectivity needs to be adjusted 
for the fraction of the various symptomatic populations that are infectious. 
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Population in symptomatic stage 
The structure of the symptomatic population is further disaggregated (Figure 4), highlighting 
that symptoms may vary considerably across those infected (ECDC, 2020). Only a small 
fraction of those infected has severe symptoms (defined here as those requiring 
hospitalization). Those with severe symptoms progress from a pre-hospitalization stage (time 
to hospitalization 𝜏9) to the hospitalization stage (time to recover from hospitalization 𝜏:;), 
after which they either recover or die, depending on the actual (not reported) lethality fraction 
of the severe cases 𝑓𝑟𝑠. All of the mild cases recover after a time to recover 𝜏:<. 

----------  FIGURE 4 ABOUT HERE ------------ 
Infectivity can differ from symptoms. Early research suggests that viral load is fairly constant 
for a period of time. Defining the average days infectious, 𝛾 explicitly, as the period during 
which people exhibit symptoms and possess the infectivity.  

Endogenous social contacts 
Virus transmission depends not only on exogenous virus-related transmission parameters but 
also on behavioral responses from citizens and policy makers as they respond as they perceive 
a more severe outbreak. As the population adjusts social contacts, infectious contacts and 
transmission change too. In the model social contacts by the symptomatic population as well 
as by the general population (and thus exposed) may reduce in response to the severity of a 
perceived outbreak (Figure 5).  

The population in the symptomatic state may reduce contacts in four ways: i) positive 
tested (detected) cases admitted to hospitals or detected elsewhere being quarantined 
(quarantined); ii) undetected being associated with detected cases, through targeted search, 
being home-isolated (suspected symptomatic cases being home-confined); iv) undetected  
symptomatic cases reducing  contacts voluntarily or urged by governments, beyond what they 
prefer because of sickness  (symptomatic contact reduction); iv) undetected cases reducing 
voluntarily or urged by governments (general social distancing). The last behavior ranges 
from increasing washing hands, reduction in gathering in groups, travel restrictions, school 
and work closings (except for essential ones) etc.  

The exposed population may reduce contacts in two ways: i) undetected cases being 
associated with detected cases and home-isolated (suspected exposed cases being home-
confined ); ii) undetected cases reducing social contacts, voluntarily or urged by governments 
(general social distancing).  

----------  FIGURE 5 ABOUT HERE ------------ 

In the model aggregate social contacts, for both the exposed and symptomatic population, 
forms a weighted sum across populations subjected to the respective contact constraints. 
Further, the effects are multiplicative. For example, the combined contact reduction effect 
𝑒𝑐𝑟"for someone being both home confined, with effect 𝑒𝑐𝑓", and subject to social distancing, 
with effect 𝑒𝑠𝑑", equals 𝑒𝑐𝑟"=1-(1-𝑒𝑐𝑓"). (1-𝑒𝑠𝑑"). Indicated contacts (for the symptomatic 
population example) then are: 

 
𝑐𝑠𝑑" = 𝑓𝑐𝑠 ∙ 𝑐𝑒@A:< ∙ (1 − 𝑒𝑐𝑟"), (2) 

 
where 𝑐𝑒@A:< is the normal contact rate of the exposed population, 𝑓𝑐𝑠 is the relative contact 
rate of symptomatic population (compared to the normal contact rate of the exposed 
population).  
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The endogenous contact reduction effects adjust to indicated levels. Those quarantined 
and home-confined adjust contacts as they are being transferred to their new state. Contact 
reductions for those within their state adjust changing indicated levels of social distancing 
over  adjustment time 𝜏D. For example, for social distancing, 𝑒𝑠𝑑" adjusts to the level 
indicated by social distancing 𝑒𝑠𝑑"∗ 	.	First, "	H;"I

"	J
= KH;"I

∗LH;"IM
NO

. Finally, the newly 
symptomatic population adjust behavior of the symptomatic population over time. This 
adjustment of contacts towards symptomatic behavior is captured through a co-flow structure 
(Sterman 2000). 

 
The adjustment of contact reduction through each of the above contact reduction 

responses depends the perceived outbreak level 𝑜", relative to the reference breakout level 
𝑜:HQ,". The actual responses depend on three factors: First, the sensitivity to an increase in the 
perceived outbreak captures heterogeneity in responsiveness to the perceived severity of the 
outbreak. Second, there are limits to how much each response is able to reduce contacts. This 
limit may come from implementation challenges (quarantining may still lead to health worker 
infection), enforceability limits (home isolation is not defined properly), practical limits 
(those being home-isolated still need to go out to buy groceries), or, simply, because not 
everybody complies. For the social distancing effect, 𝑒𝑠𝑑" , with 𝛽;,"	sensitivity and 
maximum contact reduction 𝑐𝑟𝑒<ST,"the formulation is: 

 

𝑒𝑠𝑑" = 	 𝑐𝑟𝑒<ST," 	 ∙ 𝑀𝑖𝑛 W1,1 − 𝑒𝑥𝑝 Z𝛽;," ∙ [
𝑜"

𝑜:HQ,"
− 1\]^ , (3) 

	
 

As policymakers and citizens alter their behavior in response to the severity of the 
perceived outbreak and so affect virus transmission rates they respond to reported (not actual) 
data about positive tests and deaths. Media and experts report different metrics about the virus 
but reported absolute cases and deaths tend to dominate the media and affect population 
behaviour (Xiao et al. 2015). We formulate the perceived outbreak level 𝑜" as a weighted 
function of the reported deaths 𝑅𝐷" and reported cumulative cases 𝑅𝐶" :𝑜" = 𝑤" ⋅ 𝑅𝐷" +
(1 − 𝑤") ⋅ 𝑅𝐶", with 𝑤" weights of reported deaths. 

Case testing and quarantine 
Case testing follows two main approaches: reactive and proactive. First, reactive testing is 
driven by the symptoms occurring under the currently undetected symptomatic population 
𝑆de	(omitting demographic index d) within any of the states 𝑖 ∈ {𝑒𝑚, 𝑎𝑚, 𝑒𝑠, 𝑎𝑠} - either the 
early 𝑒 or advanced 𝑎 for mild 𝑚 or severe 𝑠 cases (Figure 4). This happens when the 
population either self-reports their symptoms or is hospitalized with symptoms.  
The reactive testing process for all states i is identical (Appendix Figure A.1 visualizes the 
testing process for hospitalized population (advanced-severe, 𝑎𝑠)). Positive tests equal the 
fraction of actual cases tested 𝑡d times the case detection fraction 𝑓𝑑, and the fraction of actual 
tests being positive 𝑡𝑝d = 𝑓𝑑 ⋅ 𝑓𝑝d ⋅ 𝑡d.	The actual testing rate is equal to the desired testing 
rate constrained by effective testing capacity available for i, 𝑡𝑐𝑒d. Hence, 𝑡d = min	(𝑡𝑐𝑒d,

Jn
∗

Qon
). 

Desired testing 𝑡d∗ results from a fraction of the population 𝑆de reporting symptoms of which a 
maximum fraction and is deemed acceptable for testing, together captured by 𝑓𝑡d∗. (The 
appendix details aggregation from and allocation across the different symptomatic states.) 
With time to identify and test case 𝜏J, this defines the indicated test rate for symptomatic 
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segment i 𝑡d∗ = 𝑓𝑡d∗
⋅pnq
	Nr

. Those test positive are quarantined at quarantined fraction 𝑓𝑞d, and 
thus move at rate 𝑓𝑞d ⋅ 𝑡𝑝dfrom undetected 𝑆de to quarantined state 𝑆dt , while  the remainder 
(1 − 𝑓𝑞d) ⋅ 𝑡𝑝d	moving to detected (but not quarantined) state 𝑆d" . 

Second, proactively, experts can perform field tests, provided available capacity. 
There are two types of field tests: “sampling” and targeted testing, indicated by index 𝑓 ∈
{𝑠𝑎, 𝑐𝑡}. (Appendix Figure A.2 shows the relations.) Targeted testing may involve methods 
such as contact tracing testing and occurs within a small targeted sample of the population 
with relatively high likelihood of positive case detection. However, this approach requires 
efforts identifying potential positive cases. Tracing this back requires effort. In addition, for 
contract tracing to be effective a sufficient large amount of amount of positively tested cases 
need to be traced.  

Positive testing over time to identify and test potential case 	𝜏J increases with the 
number of tests performed within the effective population size (or catchment area) 𝑁Q . 
However, the marginal value decreases in tests 𝑡Q performed, with that of the first being equal 
to the effective density 

pvq
wv

, The solution for this problem is: 

 

𝑡𝑝Q =
𝑆Qe
	𝜏J

⋅ [1 − 𝑒𝑥𝑝 Z−
𝑡Q⋅𝜏J
𝑁Q

]\ , (4) 

 
where , as with reactive testing, proactive testing is constrained by the capacity, hence 𝑡Q =

min	(𝑡𝑐𝑒Q,
Jv
∗

Qov
). 𝑁Q	is the effective pool within which to search. Because neither search type is 

close to random 𝑁Qcan be considerably smaller than the effective population size within 
which is searched. We find by the ratio of size of the undiscovered pool 𝑆Qe and the actual 
likelihood of finding a subjective case 𝑝Q. This  𝑁Q =

pvq
ov
	A clustering parameter  𝜅Q tunes the 

likelihood of a positive tests (with random probability being the base likelihood). The 
adjusted likelihood of a positive test corrects for the maximum fraction of potential cases 
accepted for testing 𝑓𝑡Q∗  and for detection fraction 𝑓𝑑: 

 
𝑝Q = 1 − (1 − 𝑝𝑓z){v, (5) 

 
where 𝑝𝑓z = 𝑓𝑑 ⋅ 𝑓𝑡Q ⋅ 𝑝𝑟	, and 𝑝𝑟 is the likelihood of a single undetected symptomatic 
person 𝑝𝑟 = pq

w
. The targeted search effectiveness parameter 𝜅Q captures the effectiveness of 

pro-active testing by indicating how efficiently “detectable cases “ (those that have been 
infected by others) are actually identified and tested. This formulation implies that at small 
probabilities (𝑝𝑓* ≪ 1), 𝜅Q approximately acts to linearly increase the probability of success ( 
𝑝Q ≈ 𝜅Q ⋅ 𝑝𝑓z) and thus proportionally decreases the effective search space 	𝑁Q ≈

pvq
pq

w
{v
	. (The 

formulation of Eq. (5) assures robustness for larger values of 𝜅Q ⋅ 𝑝𝑓.)  
To illustrate, consider a population of 𝑁 = 16𝑀 and 𝑆e = 16𝑘 undetected cases in 

total (ie 0.1% of the population, so 𝑝𝑓z = 0.1%, assuming for simplicity 𝑓𝑑 ⋅ 𝑓𝑡Q = 1). Let 
𝑆e =1000 of those cases exist within some known hotzones/clusters/communities etc., and 
𝑡Q⋅ =50 tests being performed within those known hotzones, with search time 	𝜏J=1 day. 
Then, a targeted search effectiveness 𝜅Q = 1 (random search) would give about 0.05 expected 
positive tests. Then, using the approximation 	𝑁Q ≈

pvq
pq

w
{v

, 𝜅Q = 12 implies that 𝑡𝑝Q ≈
z���
	z

⋅
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�1 − 𝑒𝑥𝑝 �−50 z�H�⋅z�
z���⋅z�H�	

�� ≈	0.6 positive tests, while 𝜅Q = 24 gives ≈	1.2 positive tests, and 
𝜅Q = 480 gives about 23 out of 50 tests being positive. (When actually using the model 
Equation 5 for 𝑝Q, 𝜅Q = 480 gives about 19 out of 50 tests positive -  one can see the 
diminishing returns in  𝜅Q ). The value of targeted search effectiveness 𝜅Q depends much 
on	conditions affected by social structures and mobility of the population as well as on the 
capabilities of experts in tracing actual positive cases within hot-zones given such structures 
and mobility.  

For sampling, simply 𝑆;S,e = 	 𝑆e. For targeted testing the pool of detectable 
symptomatic population 𝑆JS,e depends on active work done to trace the tested population and 
identify potential suspect cases. Thus, 𝑆JS,ebuilds with the detection of new cases 𝑡𝑝, 
depending on the contact tracing ability  𝑎𝑐𝑡 as well as on the effective cases each infects, 𝑅. 
Thus, new detectable cases build with "pOr,q

"J
= 	𝑓(𝑎𝑐𝑡 ⋅ 𝑅 ⋅ 𝑡𝑝). The actual change rate is 

contained with the size of the pool of undetected cases and has outflow proportional to the 
loss rate of undetected cases. (Appendix Figure A.3 shows the relations.)  

Capacity for case testing 
Testing is capacity constrained by availability of testing kits 𝑇𝐾. Initially a fixed number of 
kits 𝑇𝐾�	are available (omitting index d, if relevant). When cumulative hospital visits 
associated with the virus symptoms exceed threshold level 𝐶𝐻∗	, the building of additional 
testing kits begin with growth rate 𝑔. The production of test kits continues until a desired 
level of testing capacity is achieved (cases/day/million people). Utilization of test kits is a 
function of the growth rate of reported active cases. (If reported active cases decline 
(increase), utilization reduces (increases). (The process of capacity building and utilization is 
detailed in Appendix Figure A.4) Finally, testing capacity is allocated in order of priority: i) 
reactive - hospitalized population; ii) reactive - self-reported symptomatic population;  iii) 
proactive - field testing. 

Home confinement of potential cases (exposed and undiscovered symptomatic) 
Home quarantining of potential suspect exposed and undiscovered symptomatic population 
builds from the stock of detectable cases for positive tests though contact tracing, in the same 
way as for field testing through contract tracing ability 𝑎𝑐𝑡. (The process of home isolation is 
detailed in Appendix Figure A.5). The actual home isolation rate depends on the home 
quarantining fraction 𝑓𝑞𝑠. This fraction builds as a function of perceived outbreak in the same 
way as social distancing. 

Vaccination  
Finally, the model has a substructure allowing the implementation and roll-out of (potentially 
imperfect) vaccination (Figure A.6). This structure (as well as immunity loss rate) is switched 
off for the purpose of this analysis. 

Analysis 
To illustrate the value of the model for policy analysis, and to demonstrate its flexibility we 
perform three different experiments. The first involves the construction and analysis of a 
baseline case, that builds, through calibration on the actual SARS-COV-2 outbreak. In the 
second experiment we perform a sensitivity analysis of this baseline case, centered on policy 
and citizen responses to the outbreak. In the third experiment we perform an analysis about 
managing resurgence (by lifting social distancing policies) using hypothetical regions. 
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Experiment 1 – A baseline scenario building on the SARS-COV-2 outbreak 
We begin our analysis with a baseline run, calibrated to the ongoing outbreak. To do this, we 
define the following regions: 

• Region 1: Asian (only outbreak countries: China, South Korea, Japan, Singapore, …); 
• Region 2: Europe; 
• Region 3: Africa; 
• Region 4: North America; 
• Region 5: South America; 
• Region 6: Oceania (includes all later outbreak Asian countries) 
Next we set the virus-transmission parameters (eg incubation time) and clinical 

parameters (eg hospitalization fraction) for which we can build on best available existing 
estimates of the for SARS-COV-2. Next we calibrated the testing growth rate g and threshold 
for testing capacity CH* to the cumulative tests for Asia, Europe, and North America, using 
respectively data on South Korea, Italy, and United Sates. Next, we estimate remaining 
transmission and socio behavioral parameters using OLS estimation of outbreak data 
(reported cases, active cases) for Asia, Europe, North America, and Oceania (including later 
outbreak countries). Table 1 (virus transmission and clinical) and Table 2 (socio behavioral) 
provide the resulting parameter settings as well as sources and means of estimation.  

----------  TABLE 1 ABOUT HERE ------------ 
 

----------  TABLE 2 ABOUT HERE ------------ 

Figure 6a shows the resulting simulation run of the cumulative reported and actual, and, 
for the relevant time horizon, the data on reported cases for Asia, Europe, and North America. 
Reported cases are on average about 19% of actual (that is – on average 19% of cases are 
detected.).6 Figure 6b provides more details about the underlying dynamics showing a number 
of different indicators of the outbreak, including related to case detection. The top left graph 
in Figure 6b shows see that the reporting fraction for the mild cases is much lower than for 
severe cases (15-25% versus about 90%). Asia has a higher detection fraction of the mild 
cases than the other regions. This is in part the result of proactive – field-based – testing and 
monitoring. The top left graph shows the social contacts for exposed population reducing due 
to social distancing and, to some degree, home confinement, of targeted policies (mostly in 
Asia.). As more cases get detected governments and citizens respond and reduce action. Asia 
has a strong sensitivity of social distancing to the outbreak and hence a strong balancing 
feedback loop B3, Figure 5). However, the slopes in contact reduction do not differ much 
across regions. This is because the weaker response in Europe and North America has the 
effect to increase transmissions, in turn inducing a stronger response than is needed in Asia.  

----------  FIGURE 6 ABOUT HERE ------------ 

                                                
6 A note of caution: Any simulation, but in particular those looking forward during a developing case (as this 
one) should be interpreted with great caution and scepticism, for at least three reasons: i) there is still much 
uncertainty about transmission parameters; ii) estimation of behavioural parameters is done at a very aggregate 
level and with a bias towards the Asian and early European outbreaks. This does not necessarily are a good 
representation of other regions; iii) forward looking outcomes do not incorporate future policy and citizen 
actions that may different from those simulated here. Yet, the uncertainty is fundamental to the problem itself. 
Our main purpose is to develop and enhancing a grounded understanding of the problem, to build confidence in 
and allow challenge what are brought forward as plausible explanations, and support in the best way those policy 
decisions that need to take place under this great uncertainty. 
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Infectious contacts together with transmission delays (incubation time – the time before 
symptoms begin to appear - and duration of infectivity - of the symptomatic population) 
determine how many people an infectious person infects during its infectivity, affecting the 
likelihood and extent of the epidemic outbreak. The basic reproductive number R0 captures 
how transmission parameters as social contacts affect the initial growth rate of the outbreak. It 
is defined as the average number of secondary infections produced when one infected 
individual is introduced into a host population where everyone is susceptible (Dietz, 1975). A 
value of R0 > 1 implies that an epidemic can get started. The reproductive number  R (Figure 
5b, bottom left) captures how changes in transmission parameters as social contacts (as well 
as changes in the remaining susceptible population, which is negligible here) affect the 
growth rate of the active cases and thus of the outbreak over time. The reproductive number 
begins at around 3 close to estimates of the basic reproductive number R0  (Read et al. 2020). 
It then first goes below 1 in Asia followed by Europe, and North America, and the Total 
(including other continents.).  

Figure 6b bottom right shows the over-time population distribution of the population 
(exposed, quarantined, symptomatic (non-detected), hospitalized, and cumulative deaths). The 
figure highlights the lags in peaking from exposed towards hospitalized. Global hospitalized 
populations peak later than others, early May at around 350 Thousand people. (This is most 
likely an underestimation of both timing of peak and quantity.) 

The baseline results suggest that the stricter measures in response to the outbreak were 
critical in curtailing the outbreak. We now examine the interaction effects between 
interventions more closely. 

Experiment 2 – Sensitivity of baseline results to behavioral responses 
We next examine the effect of hypothetical changes in policy and citizen responses to the 
outbreak – and in particular on actual (and reported) cumulative cases (Figure 7). We alter 
three distinct parameters: The reference virus outbreak level 𝑜:HQ," (ROB), behavioral social 
distancing exponent (exposed)  𝛽H," (SDE), the cumulative hospitalization for testing growth 
rate 𝐶𝐻"∗ (TST) (the threshold for building testing capacity), as well as their joint effect (All). 
The effect of High responsiveness vs Low responsiveness values are shown for North 
America. High (Low) indicate parameter settings that correspond to high (low) policy/citizen 
responsiveness to the outbreak. (Table 3 shows details on parameter ranges compared to the 
baseline). Once can see that a more responsive government to the outbreak, citizen’s social 
distancing, and earlier testing ramp up all have the effect to reduce cumulative cases. The 
Low parameter values are approximately equal to Asia’s baseline values. Hence, the results 
suggest that each of the policy measures taken – earlier and more extensive can help reduce 
the outbreak. On the other hand, any reduced responsiveness greatly exacerbates the outbreak. 
Further, we see a strong interaction effect among socio-behavioral responses (See “All” vs 
individual changes).  

----------  FIGURE 7 ABOUT HERE ------------ 

Reported cases (bottom left) tend to be less responsive - in particularly visible for the 
interaction effects. This is because the increased actual cases creates precisely those problems 
that make it hard to keep up with testing. This observation is important because reported cases 
are main drivers for decisions and citizen responses. This itself contributes to the strong 
effects we observe in the actual cases. Further, deaths (white bars) correlate more with the 
actual than with reported cases. While it is problematic to respond to reported deaths (with 
lags between infection and death being 3-4 weeks), the sensitivity analysis shows the risk of 
underestimating the effects of too little action, when driven by reported cases (especially 
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when relative reported cases are low). Figure 7 (top right) highlights these amplification 
effects from response interactions and in particular from the delays in the system, showing 
hospitalizations. While actual cumulative cases are strongly sensitive to changes in behavioral 
responses, lagged elements in the system, such as hospitalization experience even stronger 
amplification (compare with actual cumulative cases in Figure 6) . 

Figure 8 further highlights the strong interaction effect between behavioral responses 
to the outbreak. Figure 7 (left) shows the joint effect of social distancing and the threshold for 
building testing capacity. While a moderate higher/lower response has the effect of reducing 
(lighter colors)/increasing (darker colors) actual cumulative cases, their joint change strongly 
amplifies these effects. For example, policies that stimulate social distancing are greatly 
enhanced when policy makers and citizen have a more accurate perception of the extent of the 
outbreak. Figure 8 (right) shows even more clearly the hurdle to implementing effective 
policies during the outbreak, because of such interaction effects. The figure shows again, 
testing sensitivity, but now interacting with the clustering parameter, indicating the efficiency 
at which “detectable/suspected cases “ (those that have been infected by others) are actually 
identified and tested. The map indicates that improving this effectiveness does not necessarily 
help. This is so because successful targeted testing requires a lot of “detectable/suspected 
cases”. Thus, absent capacity to identify cases in the first place, one cannot find others 
through such targeted approaches. One need a combination of high effectiveness in 
identifying of both early testing buildup. Note the positive feedback that acts to move efforts 
towards downstream-reactive testing – away from pro-actively identifying, testing, and 
isolating upstream exposed and symptomatic populations: once testing capacity falls behind, 
most cases are identified in the hospital, or through severe-symptoms in the late stage (Figure 
A7 shows the positive feedbacks involved in detail). By then those have infected many others, 
but at this point there is also little opportunity to both identify and test those that they 
infected. Instead, slack in testing capacity frees up resources for proactive testing and helps 
build up a stock of potentially identifiable existing and future cases. 

----------  FIGURE 8 ABOUT HERE ------------ 

The results highlight the extraordinary measures in many of the early outbreak 
countries were critical to control the outbreak. In particular the combination of testing and 
finding ways to reduce general social contacts are critical. More targeted approaches can work 
as long as complementary resources (identification ability, testing, monitoring) are available. 
We also ran the model without interventions and testing leading to herd immunity at a 
recovered population of 6.8 B people (with 900 M remaining susceptible). While not every 
country has the same ability to Together this suggest that controlled mitigation – considered 
in various countries - without other ways to immunize would be near impossible.  

Experiment 3 – Managing Deconfinement 
In the following experiment we focus on the challenge of managing deconfinement. 
Illustrating one aspect, we define deconfinement here as the reduction (to some degree) of 
social distancing for the general population. Because confinement has high social and 
economic costs, there is large pressure to reduce this at some point after active cases begin to 
reduce (or even earlier.) But when is too early? To illustrate some of the key tensions we 
show a single simplified analysis. Consider a stylized region of 16M people (the approximate 
size of a metropole like New York or Paris, of the hard-hit region of Northern Italy, or of a 
country like the Netherlands.). At time zero we introduce an outbreak with 100 undetected 
infections with characteristics identical to that of SARS-COV-2. Finally, we allow policy 
makers to reduce a fraction (50%) of social distancing at time 𝜏" for the general population 
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only (so symptomatic social contact reduction efforts as well as home-isolation efforts remain 
in place). Table 2 shows all parameters different from the baseline. Figure 9 (left) shows 
simulated cumulative deaths (per Thousand people; darker is more deaths) using these 
synthetic data, varying confinement time 𝜏" (horizontal axis) as well as the reference level for 
the first policy response	𝑜��� (indirectly, vertical axis). The graph shows, first, how the time of 
first response to the outbreak (since the first case) increases with this reference level for the 
first policy response	𝑜��� (vertical axis). Next, for sufficiently large confinement reduction 
time, cumulative deaths do not increase as confinement time decreases. Thus, after 
sufficiently large time confinement can be reduced. However, at some point, as the 
deconfinement time decreases the cumulative deaths begin to increase sharply (Figure 9, 
centre). This sensitivity of cumulative deaths to deconfinement time is much stronger for late 
responders (compare line  (1) to (2), also in left graph). Figure 9 (right) plots the cumulative 
death as a function of time of the first response to the outbreak, further illustrating not only 
that responsiveness to the outbreak greatly reduces cumulative deaths but also permits regions 
to deconfine much earlier (compare (3) and (4), also in left graph.). Finally, the inset in Figure 
9 (centre) shows the sensitivity of the cumulative deaths when 50% deconfinement gets 
extended to symptomatic population (retaining quarantining). 

Together these results, while illustrative only, show the strong sensitivity of the 
consequences of deconfinement to not only its timing and extent but also to the history of 
response to the outbreak. Further analysis should elaborate on the relation between these key 
factors and relating them to measurable data such as reported active cases and testing 
intensitiy. Further, key follow up questions should focus on the degree and ramping up of 
deconfinement as well as the interaction between general deconfinement and maintenance of 
other social contact reduction policies (such as targeted isolation).  

----------  FIGURE 9 ABOUT HERE ------------ 

Experiment 4 – Managing resurgence 
In the following experiment we focus on the challenge of managing resurgence. Because in 
the short run – without available vaccines  –  building up herd immunity is not likely a 
feasible strategy (Ferguson et al. 2020), it is highly likely that additional waves of outbreaks 
will occur in the near future. Different from a first wave, during resurgence testing capacity 
will likely be available. Hence, in this phase pro-active testing approaches (community 
oriented, and/or contact tracing) will be a feasible as a policy even when not so during the 
first wave. To illustrate how this may work, consider again a stylized region of 16M people 
(the approximate size of a metropole like New York or Paris, of the hard-hit region of 
Northern Italy, or of a country like the Netherlands.). At time zero we introduce an outbreak 
with 100 undetected infections with characteristics identical to that of SARS-COV-2. Finally, 
to allow resurgence we let policy makers and citizens respond to the reported active (not 
cumulative) cases (Table 2 shows all parameters different from the baseline.) Figure 10 shows 
simulations using these synthetic data, varying proactive testing effectiveness (measured by 
the clustering parameter	𝜅�). First notice that all scenarios respond similarly to the first wave, 
irrespective of proactive testing effectiveness. This is so because, as before, testing is 
capacity-constrained. Therefore, proactive testing can do little to alter the path of the first 
wave during which testing capacity is being built up (and lags). We note further that this firs 
wave is similar to what it would have been in case of a population responding to cumulative 
cases. 

----------  FIGURE 10 ABOUT HERE ------------ 
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However, in this experiment, at some point the virus outbreak appears to be receding, 
as reported actual cases go down considerably (bottom left). As social distancing rebuilds 
(right) the virus can transmit again easier among the population allowing a second wave to 
commence, and so forth. While the oscillating resist suppression in the base case, proactive 
testing effectiveness (higher 𝜅�) is very effective in dampening the oscillation. The rapid 
detection of new cases takes an important share of the newly introduced symptomatic 
population out of contact (bottom right, symptomatic population remains at a relatively low 
level. The policy is very effective in not only reducing oscillations and overall emergence of 
new cases, but also strongly suppresses oscillations and increases of social distancing but also 
restores a fairly high (but not 100%) level of social contacts for the general population.  

While  serving as an illustrative experiment, besides showing the importance of 
targeted policies, this experiment highlights the importance of differentiating policy 
constructs so to be able to identify policy levers. 

Experiment 5 –Dynamics around vulnerable population segments 
Symptom severity, hospitalization, and case fatality fraction differs considerably across age 
groups, with the older population being disproportionally vulnerable to the impact of the virus 
(Russel et al., 2020; Russell et al., 2020). In a final analysis we use the model segmentation to 
help better understand how these differences affect the different population groups as well as 
the overall outbreak dynamics. To illustrate the value of analyzing this in more depth, we 
focus in particular on explaining the role of different social interactions across these segments 
in different countries in explaining the outbreak patterns. We perform an analysis in the same 
stylized way as the previous experiment. Doing this helps focus on the key dynamics at work. 
We again use a stylized region of 32M (2*16M) people, but now we differentiate the 
population into two age cohorts, differentiating those that are more and less vulnerable 
(consider “older” and “younger” populations, though note that the distinction can also proxy 
other stratifying variables such as income or race.). We control the difference between the 
segments by varying their relative case fatality (𝑓𝑠" ), holding the average case fatality 
constant. Testing capacity grows as before, with an initiation threshold of 100 hospitalized 
cases. At time 0 we introduce again a SARS-COV-2 outbreak with 200 undetected infections, 
but only within the less vulnerable population segment. (See Table 3 for parameter details.) 

Figure 11 shows the results. The graphs show on the horizontal axis the relative case 
fatality (𝑟𝑓𝑠�) across the segments (relative to within segment contacts). A value of one 
indicates that the fraction of severe cases (and therefore the same case fatality rates), is 
identical in the two segments, while moving to the left signifies a relative severity of cases 
(and with that case fatality) that increases for the vulnerable population. The left graph shows 
the actual cases (left vertical axis, as share of the population) and deaths (right vertical axis, 
percentage of total population in the stylized simulation). We also vary relative contact rates 
between the segments (𝑓𝑐"."). Continuous (dashed) lines have high (low) intersegment 
contacts. (When varying contact rates between segments we control for total contact rates 
within the population.) The right graph shows the cumulative death fraction, in three different 
ways: total versus reported, total versus actual cases, and as the share of vulnerable population 
to the total. (For reference, one can see that this share reaches to 50% at high intersegment 
contacts, when 𝑓𝑠z = 𝑓𝑠�.) The graph shows a number of interesting insights about how cases 
and deaths develop as we vary these two parameters. In particular, when case fatality is very 
uneven, actual cases increase (left graph). This is so because low vulnerability implies (mild 
on average milder symptoms and, because of that, lower detection. With low reporting there 
is little policy response and infections can easily spread among the less vulnerable 
populations. A relevant, but not unrealistic starting condition in this analysis is that the 
outbreak initiated among the young population. For example, in regions like New York City it 
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appears that socially active younger population (with mostly mild symptoms) one can 
envision that the virus has spread rapidly but fairly undetected for a while. The results further 
show that the worst case in terms of absolute fatalities, high variation in case fatality, and 
relatively high contacts between the population segments, disproportionally affects the 
vulnerable population (dashed line top right.) This is so because after the virus spread has 
spread among those who are less vulnerable, it can easily spread to the vulnerable population 
segment, at which point it is uncontrollable. It is the latter that may have be playing part in 
Italy, with relative contacts across generations generally being larger than in many other 
countries.  

While only a synthetic analysis, this analysis on stratified vulnerability may partially 
help explain variation in reported CFR across counties. Or, why the reported CFR in some 
countries seem low for a while, only to go up later. These insights also may have policy 
recommendations may vary depending on the demographic makeup. For example, when 
relaxing general confinement policies, or when managing resurgence, should populations that 
are deemed more vulnerable remain (longer) isolated at home? Based on the insights here, 
that may be a feasible direction, though provided that mild cases can be monitored and 
isolated. 

----------  FIGURE 11 ABOUT HERE ------------ 

Discussion 
This paper developed the Behavioral Infectious Disease Model capturing how virus 
transmission dynamics and policy and citizen responses interact to shape the course of an 
epidemic virus outbreak. Applicable to the full epidemic cycle including resurgence, the 
model allows exploring the impact of individual and joint policy interventions.  

Central to the model are not only virus transmission dynamics, following SEIR-based 
epidemic modeling traditions, but also populations altering their social contacts, and 
policymakers ramping up testing, reporting, and interventions - quarantining, home-
confinement, social distancing, etc. - in response to the outbreak. The model incorporates 
some key behavioral aspects that policy makers need to consider – including imperfect 
compliance. As we showed, the model also treats critical constructs at a more fine grained 
level: mild versus severe symptoms; reactive versus proactive testing; interventions for 
general, suspected, versus detected populations; and, interactions across sociodemographic 
and geographical segments. Finally, impact metrics in the model include reported and actual 
deaths and actual positive cases, but also variables related to societal and economic costs of 
an overloaded health system and of widespread and recurrent social distancing. 

Through these features, the model can be used to evaluate the impact of diverse (in 
particular non-pharmaceutical) public health control measures, to consider interaction with 
testing and reporting, and citizen response. We provided some illustrations, using the model 
to explore both current questions about managing the December 2019 SARS-COV-2 outbreak 
and future questions about managing resurgence. We showed the interactive effects of distinct 
policies and/or of citizen behavior and policies. We also showed the longer term interactive 
dynamics of resurgence and key policy levers for addressing this. Our findings raise important 
questions about the means by which such targeted policies can be implemented, without 
compromising citizen privacy. Our final analysis demonstrated the value of strategic 
disaggregation to generate important insights – such as inequality issues that affect both 
segments overall outbreak dynamics. Together, the analysis shows the nature of non-linear 
and multi-feedback system being resistant to change. Our analysis shows what is generally 
true for complex dynamic systems: Significantly altering the pathway of a focal variable 
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within the system requires a mix of interventions is required to address different positive 
feedback loops and delays within the system.  

The model and analyses suffer from usual limitations as well as from those related to the 
emergent case of the outbreak. First, the relatively aggregate representation of population 
segments implies that important dynamics may be missed. For example particular social 
network structures may help explain the dynamics such as the emergence of super spreader 
clusters. The current model also leaves out important structure such as endogenous infections 
and case fatality within the health providing system (eg in hospitals, or the effect of hospital 
load on case lethality) and not only endogenous testing but also endogenous testing growth 
rates – see eg. Ghaffarzadegan and Rahmandad, 2020). Finally, given the preliminary and 
aggregate calibration, one should be careful to draw strong conclusions from the quantitative 
results.  

Our analyses and limitations listed here suggest at least three clear directions for further 
work. First, while our analyses demonstrate that fundamental insights can be derived with a 
relatively aggregate model, additional subsequent empirical analysis on country- or region-
level analysis, involving varying epidemic pathways and policies can provide more 
confidence in the specific parameter values related to both virus transmission and social 
behavior. In terms of problem orientation, given that in the current pandemic countries 
increasingly begin to reach the peak of the first outbreak wave, current analysis should focus 
on managing the transition towards deconfinement and resurgence waves. Finally, in cases 
such as these, with need for on the ground learning within a turbulent and dynamic 
environment and with limited and emerging data, it is critical to have a tool that allows 
investigating and provides sufficient clarity so that it can forms the bases for policy 
discussions that are grounded in science and in formal representations whose behaviour they 
produce can be explained – and then challenged and/or build upon - in internal consistent 
ways.  

As part of the last future direction, given the importance of broad support - across health 
exports policymakers, volunteers, citizens, and media - of outbreak control efforts, we make a 
version of the model also accessible in the form of a free web-based management flight 
simulator (Struben 2020). Doing this enables users to explore the impact of government and 
citizen responses, and how they could alter the course of a pandemic. Accompanying graphs 
display the results immediately, including actual and reported people infected, recovered, and 
deceased, new infections, effective contact rates, and hospitalizations. Users can create 
different scenarios by altering assumptions about each of these factors, and then create and 
compare multiple scenarios. Sliders allow users to simulate policy choices and citizen 
behaviors – for example, how rapidly citizens alter their contacts with others voluntarily (such 
as staying at home), or adjust government policies on social distancing (recommended versus 
forced closures), quarantine (targeted versus general), or case testing and reporting. Users can 
also vary a range of assumptions about the disease transmission parameters (infectivity, 
contact rates, incubation time, duration of infectivity), or alter the regional characteristics 
(population size, interregional contacts). (For reference, users can also observe reported data 
on the outbreak.) 
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Table 1. Virus transmission and clinical parameters (baseline).  

Shrt Name Valu
e 

Units Approach and justification 

𝑖𝑠 

Normal 
Infectivity 
Symptomatic 
Population 

0.92 

dmnl Estimated.* Note that the model allows region-specific infectivity, with 
𝑖𝑠# = 𝑓𝑖# ⋅ γs ⋅ 𝑖𝑠 . (γs captures the relative days a symptomatic person is 
infective. See below.) With currently limited understanding of how 
regional climate (temperature/humidity) affects transmission, we 
assumed	𝑓𝑖# = 1∀𝑑. 

𝑐𝑒/012 Normal 
Contact Rate  1.5 

dmnl/ 
day 

Free parameter. Transmission rate  vt= 𝑖𝑠 ⋅ 𝑐  . Because neither 𝑖𝑠 and 𝑐 
is directly observable, but transmission rate can be estimated, we can set 
𝑐 freely and then estimate i. 

𝑓𝑐𝑠 

Relative 
Normal 
Contact Rate 
Symptomatic 

0.15 

dmnl Free parameter. Compared to that of asymptomatic people (the normal 
value), once they realize they have symptoms (due to ramp up this may 
take a day). This should be lower because people with symptoms are less 
on the streets (even though they may not know they are really sick , in 
particular sick from the particular virus.  

𝜆 Incubation 
Time 5.1 

days Based on literature. For COVID-19 estimated between 2-14 days with 
5.1 day average. (Leung 2020; CDC 2020) 

𝑓𝑠 

Actual 
Fraction 
Symptomatic 
Severe 

0.05 

dmnl Based on literature (ECDC, 2020). Note that this reflects % of actual and 
not reported cases. The criterium for severe cases is hospitalization 
requirements (thus including those don’t making it the hospital). 
Estimates range between 5% (Ferguson et al. 2020) and 15% .  

𝜏𝑚 Time to 
recover (mild) 9 days Based on literature. Time between onset of mild symptoms and full 

recovery Ferguson et al. (2020) 

𝜏ℎ Time to 
hospitalize 5 days Based on literature. Time between onset of symptoms and hospitalization 

for those with severe symptoms. Ferguson et al. (2020) 

𝜏𝑟 
Time to 
Recover /Die 
(Severe) 

16 
days 

Estimated.* (Also consistent with Ferguson et al. (2020).)  

𝛿𝑠 
Actual Virus 
Lethality 
(Severe) 

0.25 
dmnl Based on literature. based on estimates of actual virus lethality 	𝛿, with 

𝛿 = 𝑓𝑠 ⋅ 𝛿𝑠.  Using 𝛿=0.0125 (Shim et al. 2020; WHO 2020b estimate 
range between 1% to 1.5%) we set 

𝑣e; 
	𝑣s 

Viral Load 
Duration 
(exposed; 
symptomatic) 

0.5, 
6.5 

days Based on literature. Research suggests that infectivity may begin about 
12 hours before onset of symptoms and last 6-7 days after onset (Pan et 
al. 2020;Ferguson et al. 2020). 

γi 

Relative 
Symptomatic 
Infectuousnou
s Duration 
 

derive
d 

dmnl Derived. parameter dictating the share of the symptomatic population 
being infectious. Assuming proportional infectivity, 
γi = <=>?@⋅<1	

<@∗
	 B@
<=>?@⋅<1

= 	 B@
<@∗
	(severe) ∧ γi = B@	

<@∗
	(mild) ; 

where 𝜏𝑠∗ = 𝜏ℎ + 𝑓𝑠 ⋅ 𝜏𝑟 +(1-fs)	⋅ (𝜏𝑚 − 𝜏ℎ) is the average duration of 
symptoms for the symptomatic population. 

γe 

Relative 
Exposed 
Infectuousnou
s 
 

0.05 

dmnl 
Derived & Based on literature. The relative infectivity of a contact 
between susceptible and exposed individuals, 𝑖𝑒# = 𝑓𝑖# ⋅ γe ⋅ 𝑖𝑠.	γe ≈
𝑣e/𝜆 Given lower onset infectivity we set this number to 0.05. 

* Estimated through calibration using December 29 2019 - April 6 2020 data (reported cumulative 𝑅𝐶# and 
reported active 𝑅𝐴#,	and reported cumulative deaths 𝑅𝐷#). 
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 2 

 

Table 2. Main socio-behavioral parameters (baseline).  

Shrt Name Value Units Notes 

𝑔 Testing Capacity 
Growth Rate 0.16 

dmnl/day 

Estimated **  
𝐶𝐻#∗ 

Cumulative 
Hospitalization For 
Testing Growth Rate 

100 
𝐶𝐻Q@RQ∗ = 80 

people 

𝑓𝑐#U# Relative Contact Rate 
Across Regions.  calculated 

dmnl Calculated: 	

𝑓𝑐#V# = 𝑓𝑐2QW
𝐺𝐷𝑃# ⋅ 𝐺𝐷𝑃#V

𝑚𝑎𝑥[𝐺𝐷𝑃#" ⋅ 𝐺𝐷𝑃#""]
 

𝑓𝑐2QW  
Maximum contact rate 
across regions, relative 
to within region contact 
rate 

0.001 

dmnl 

Estimated* 

𝐸`# 
Initial exposed/ 
undetected symptomatic 
population (by region) 

1250, 
15,1,3,1,1 

people 
Estimated* 

𝑤# Weight Death vs Case 0.5 
dmnl 

Estimated* 

𝑜1e? Cumulative cases for 
outbreak response 3000 

dmnl 
Estimated* 

𝑟𝑜1e?,# Relative Outbreak  
Level 

𝑟𝑜1e?,# = 1 
𝑟𝑜1e?,/Q = 9 
𝑟𝑜1e?,0g= = 6 

dmnl Estimated ∗ 𝑜1e?,# = 𝑟𝑜1e?,#𝑜1e? Default 
= 1; we set Asia  to 1 and estimated North 
America and Europe. 

𝛽e,#	
𝛽@,#  

Social Distancing 
Exponent 

0.3;0.07; 
𝛽e,Q = 1.5 
𝛽@,Q@ = 0.3 

dmnl 
 Estimated* 
 

𝑐𝑟𝑒2QW,# 
𝑐𝑟𝑠2QW,# 
𝑐𝑟𝑞2QW,# 
𝑐𝑟𝑐2QW,#  

Maximum Contact 
Reduction Fraction 

0.65;0.8;0.99;0.85 
𝑐𝑟𝑒2QW,Q = 0.85 
𝑐𝑟𝑠2QW,Q@ = 0.95 
𝑐𝑟𝑒2QW,/Q = 0.60 
𝑐𝑟𝑠2QW,/Q = 0.75 

dmnl Heuristically estimated. The maximum 
contact reduction fraction reflects 
imperfections in the design, compliance. 
(𝑐𝑟𝑒2QW,Q@RQand 𝑐𝑟𝑠2QW,Q@RQ  estimated 
using calibration.) 

𝑓𝑡R∗ 

Maximum fraction 
symptomatic self-
reporting and deemed 
acceptable for testing, 
together captured  

𝑓𝑡e2∗ = 0.04 
𝑓𝑡e@∗ = 0.08 
𝑓𝑡Q@∗ = 1 

 

dmnl 

 
Estimated through iteration, using the 
literature and data* with partial model 
sensitivity analysis.  
 

𝑓𝑝R 
Fraction of cases 
reported positive 0.2 dmnl 

𝑓𝑑 Positive case 
detectability  0.8 dmnl 

𝑓𝑞R  
Quarantine fraction 
detected cases 0.95 dmnl 

𝜅 Clustering effectiveness 10 
 

dmnl Iteratively (manually) estimated using 
the data* and anecdotes, with 
sensitivity analysis on the sub model 
structure. Further: 
𝜅vg = 𝑟𝜅vg ⋅ 𝜅  
𝜅?,# = 𝑟𝜅# ⋅ 𝜅?  
  

𝑟𝜅vg 
Relative clustering 
effectiveness targeted 
search 

10 
dmnl 

𝑟𝜅# Clustering effectiveness 
1	

𝑟𝜅Q@RQ = 8 
 

dmnl 

*) Estimated through calibration using December 29 2019 - April 6 2020 data (reported cumulative 𝑅𝐶# and 
reported active 𝑅𝐴#,	and reported cumulative deaths 𝑅𝐷#)   
**) Estimated (using available data on testing representative countries from ourworldindata.org (Roser et al. 
2020) https://ourworldindata.org/covid-testing )  
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 3 

 

Table 3. Parameter changes in various experiments, compared to (baseline)  
 
Experiment Figure Parameter Value Range 

Experiment 1 - 
baseline 6 

See Tables 1 and 2. 

Experiment 2 - 
sensitivity of 

baseline 
 

 
7 

Reference outbreak level 𝑜1e?,# 𝑜1e?,/01g=	Q2e1RvQ = {0.8,2.4, 5}  
Cumulative hospitalization for 
testing growth rate 𝐻𝐶#∗ 

𝐻𝐶/01g=	Q2e1RvQ∗ = {50,100,500}  

Behavioral social distancing 
exponent (exposed)  𝛽e,# 

𝛽e,/01g=	Q2e1RvQ = {0.025,0.05,0.15}  

8 

Cumulative hospitalization for 
testing growth rate 𝐶𝐻#∗ 

𝐻𝐶/01g=	Q2e1RvQ∗ = [0,400]  

Behavioral social distancing 
exponent (exposed)  𝛽e,# 

𝛽e,/01g=	Q2e1RvQ = [0.05,0.15]  

Clustering Parameter (relative) 
𝑟𝜅vg,# 

𝑟𝜅vg,/01g=	Q2e1RvQ = [0,80]  
𝜅vg,# = 𝜅 ⋅ 𝜅vg,# ⋅ 𝜅vg,# 

 
Experiment 3 - 

managing 
deconfinement  

 

9 Specific settings 
 

N = 16𝑒6  
𝑓𝑐2QW = 0  
All sector specific variables (index d) 
are set to 1 
 

Deconfinement time 𝜏# (time at 
which general social distancing 
is reduced by 50%) 
Reference Reported Cases for 
Outbreak Response (𝑜1e?) 

𝜏#=	[50,160] 
𝑜1e?=	[125,1125] 

Experiment 4 - 
managing 
resurgence 

 

10 Specific settings 
 

N = 16𝑒6  
𝑓𝑐2QW = 0  
𝑜# = 𝐴𝐷  
 
All sector specific variables (index d) 
are set to 1 
 

Clustering parameter 𝜅  𝜅#=[0.5,8];	𝜅 =20 
 
 

Experiment 5 - 
sociodemographic  

segments 
 

11  Specific settings 
 

N = 32𝑒6  
𝐸`{ = {0,200}  
All sector specific variables (index d) 
are set to 1 

𝑓𝑠 Actual Fraction 
Symptomatic Severe 

Actual Fraction Symptomatic Severe 
𝑟𝑓𝑠{=[0,1]  
(holding 𝑓𝑠	total constant: 𝑓𝑠# =
𝑟𝑓𝑠# ⋅ 𝑓𝑠 ; 𝑟𝑓𝑠}=1-𝑟𝑓𝑠{) 
 

𝑓𝑐#U# 𝑓𝑐#U# = [0,0.25] holding total contacts 
constant 
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Figure 1. Data on reported cumulative cases and tests 

per Million people (pmp) in South Korea, Italy, and United 
State, and social contact indicators (December 29 2019-

April 4 2020). Sources: John Hopkins; Our World in Data; 
AirDNA (via the Financial Times); Google.
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(SEIR) Transmission Dynamics Case Testing and Reporting

Endogenous Contacts

• Symptomatic
o Detected cases quarantined
o Suspected cases home-confined
o Symptomatic population urged for 

contact reduction
o General social distancing of 

undetected symptomatic

• Exposed
o Suspected cases home-

confinement
o Social distancing of general 

population

• Testing capacity and utilization
• Reactive testing

o Hospital admissions
o Self-reporting symptoms

• Proactive testing
o Sampling
o Targeted (eg, contact tracing) 

• Reporting  
o Cases, Death, Recovery

• Population states (high level)*
o Susceptible, Exposed, Symptomatic, 

Recovered,  Vaccinated, Diseased
• Transfer States

o Infection, Emergence, Recovery, 
Deaths, Loss of Immunity

• Infectivity, Contacts
• Incubation period, Infectivity duration
• Lethality
• Reproductive number

Policy Intervention Settings
• Threshold for testing growth
• Desired testing growth 
• Targeted testing effectiveness
• General social distancing responsiveness
• Symptomatic contact reduction 

responsiveness
• Positive case quarantining effectiveness
• Positive case tracing effectiveness
• Suspected case identification 

effectiveness
• Suspected case isolation effectiveness

Exposed
• Home-confined
Symptomatic
• Undetected, Detected, Quarantined
• Mild, Severe Case
• Early, Advanced Staged
• Hospitalizations
Population Segments
• Geographic
• Demographic

*) Population States (Detail)*

Figure 2. Model Overview (High Level)
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B1
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Diseased
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Recovery
Time*

Death Rate
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B2 Case
Lethality*

DeathsInfection (from Exposed)

Figure 3. Virus transmission structure (simplified representation). 

Note: Asterix indicate parameters that are constructed from others, presented elsewhere. Not shown here but modeled: potential for loss of 
immunity (of recovered population), potential for immunization of population through vaccination.
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Figure 4. Symptomatic Population. Stacked boxes refer to different status of detection and 
confinement (Undetected vs Detected & Not-Quarantined vs Home-Isolated vs Quarantined). 

“State Change” flows guide transfer between those different status (discussed below).
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• Detected cases quarantined
• Suspected cases being home-confined
• Symptomatic population urged for contact reduction
• General social distancing of undetected symptomatic

• Suspected cases home-confined
• Social distancing of general population

Figure 5. Social contact reduction in response to perceived 
outbreak severity (simplified representation).
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Figure 6a. Baseline Simulation – Cumulative Cases and Death Rate (Reported and Actual), by Region 
(Note different Y-axis ranges).

Note: calibrated against current coronavirus outbreak 29 December 2019- April 6 2020 (shade areas): Simulated results thereafter are sensitive to 
behavioral parameter assumptions as well as to changes in future policy interventions and responses. 

Asia (early outbreak countries) Europe

North America World
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Figure 6b. Baseline Simulation – Details
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Note: calibrated 
against current 
coronavirus outbreak 
29 December 2019-
April 6 2020 (shade 
areas): Simulated 
results thereafter are 
sensitive to 
behavioral parameter 
assumptions as well 
as to changes in 
future policy 
interventions and 
responses. 
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Figure 7. Sensitivity of baseline Cumulative (and Reported) 
Cases to changes in policy and citizen responses compared to the 
baseline (Base): reference outbreak level (ROB), social distancing 

sensitivity exponent (SDE), cumulative hospitalizations before 
testing growth (CHT), and their joint effect (All). “High” 

responsiveness vs “Low” responsiveness shown for North America. 
Values of low responsiveness parameters are resemble Asia’s 
baseline values. White bars in the Reported Cumulative Cases 

graph show cumulative deaths relative to each other.
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Figure 8. Sensitivity of baseline analysis to policy response threshold: i) interaction between social distancing sensitivity and 
threshold for testing (left); ii) interaction between proactive testing effectiveness and threshold for testing (right).
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Figure 9. Cumulated Deaths (per Thousand people) as a function of Deconfinement Time !" (retaining Quarantine and 
Home Isolation for Symptomatic Population), also varying Reference Reported Cases for Outbreak Response (#$%&)
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Figure 9. Cumulated Deaths (per Thousand people) as a function of Deconfinement Time !" (50% deconfinement; retaining 
Quarantine, Contact Reduction for Symptomatic*) Population and Suspect Case Home Isolation), also varying Reference Reported 

Cases for Outbreak Response (o$%&). Inset (centre): include 50% Symptomatic Deconfinement*) (retaining Quarantine)
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Figure 10. Stylized simulation (hypothetical regions) of outbreak and 
response to reported active cases, varying proactive testing effectiveness 

(measured by the Relative Targeting Effectiveness Parameter $&')
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Figure 11. Simulation of outbreak impact as a function of relative severe cases across two 
(hypothetical) demographic population segments (demographic 1=“vulnerable”; demographic 2=“less 

vulnerable), also varying relative contacts between segments (populations of both demographics are 50%)
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Table 1. Virus transmission and clinical parameters (baseline).  

Shrt Name Valu
e 

Units Approach and justification 

𝑖𝑠 

Normal 
Infectivity 
Symptomatic 
Population 

0.92 

dmnl Estimated.* Note that the model allows region-specific infectivity, with 
𝑖𝑠# = 𝑓𝑖# ⋅ γs ⋅ 𝑖𝑠 . (γs captures the relative days a symptomatic person is 
infective. See below.) With currently limited understanding of how 
regional climate (temperature/humidity) affects transmission, we 
assumed	𝑓𝑖# = 1∀𝑑. 

𝑐𝑒/012 Normal 
Contact Rate  1.5 

dmnl/ 
day 

Free parameter. Transmission rate  vt= 𝑖𝑠 ⋅ 𝑐  . Because neither 𝑖𝑠 and 𝑐 
is directly observable, but transmission rate can be estimated, we can set 
𝑐 freely and then estimate i. 

𝑓𝑐𝑠 

Relative 
Normal 
Contact Rate 
Symptomatic 

0.15 

dmnl Free parameter. Compared to that of asymptomatic people (the normal 
value), once they realize they have symptoms (due to ramp up this may 
take a day). This should be lower because people with symptoms are less 
on the streets (even though they may not know they are really sick , in 
particular sick from the particular virus.  

𝜆 Incubation 
Time 5.1 

days Based on literature. For COVID-19 estimated between 2-14 days with 
5.1 day average. (Leung 2020; CDC 2020) 

𝑓𝑠 

Actual 
Fraction 
Symptomatic 
Severe 

0.05 

dmnl Based on literature (ECDC, 2020). Note that this reflects % of actual and 
not reported cases. The criterium for severe cases is hospitalization 
requirements (thus including those don’t making it the hospital). 
Estimates range between 5% (Ferguson et al. 2020) and 15% .  

𝜏𝑚 Time to 
recover (mild) 9 days Based on literature. Time between onset of mild symptoms and full 

recovery Ferguson et al. (2020) 

𝜏ℎ Time to 
hospitalize 5 days Based on literature. Time between onset of symptoms and hospitalization 

for those with severe symptoms. Ferguson et al. (2020) 

𝜏𝑟 
Time to 
Recover /Die 
(Severe) 

16 
days 

Estimated.* (Also consistent with Ferguson et al. (2020).)  

𝛿𝑠 
Actual Virus 
Lethality 
(Severe) 

0.25 
dmnl Based on literature. based on estimates of actual virus lethality 	𝛿, with 

𝛿 = 𝑓𝑠 ⋅ 𝛿𝑠.  Using 𝛿=0.0125 (Shim et al. 2020; WHO 2020b estimate 
range between 1% to 1.5%) we set 

𝑣e; 
	𝑣s 

Viral Load 
Duration 
(exposed; 
symptomatic) 

0.5, 
6.5 

days Based on literature. Research suggests that infectivity may begin about 
12 hours before onset of symptoms and last 6-7 days after onset (Pan et 
al. 2020;Ferguson et al. 2020). 

γi 

Relative 
Symptomatic 
Infectuousnou
s Duration 
 

derive
d 

dmnl Derived. parameter dictating the share of the symptomatic population 
being infectious. Assuming proportional infectivity, 
γi = <=>?@⋅<1	

<@∗
	 B@
<=>?@⋅<1

= 	 B@
<@∗
	(severe) ∧ γi = B@	

<@∗
	(mild) ; 

where 𝜏𝑠∗ = 𝜏ℎ + 𝑓𝑠 ⋅ 𝜏𝑟 +(1-fs)	⋅ (𝜏𝑚 − 𝜏ℎ) is the average duration of 
symptoms for the symptomatic population. 

γe 

Relative 
Exposed 
Infectuousnou
s 
 

0.05 

dmnl 
Derived & Based on literature. The relative infectivity of a contact 
between susceptible and exposed individuals, 𝑖𝑒# = 𝑓𝑖# ⋅ γe ⋅ 𝑖𝑠.	γe ≈
𝑣e/𝜆 Given lower onset infectivity we set this number to 0.05. 

* Estimated through calibration using December 29 2019 - April 6 2020 data (reported cumulative 𝑅𝐶# and 
reported active 𝑅𝐴#,	and reported cumulative deaths 𝑅𝐷#). 
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Table 2. Main socio-behavioral parameters (baseline).  

Shrt Name Value Units Notes 

𝑔 Testing Capacity 
Growth Rate 0.16 

dmnl/day 

Estimated **  
𝐶𝐻#∗ 

Cumulative 
Hospitalization For 
Testing Growth Rate 

100 
𝐶𝐻Q@RQ∗ = 80 

people 

𝑓𝑐#U# Relative Contact Rate 
Across Regions.  calculated 

dmnl Calculated: 	

𝑓𝑐#V# = 𝑓𝑐2QW
𝐺𝐷𝑃# ⋅ 𝐺𝐷𝑃#V

𝑚𝑎𝑥[𝐺𝐷𝑃#" ⋅ 𝐺𝐷𝑃#""]
 

𝑓𝑐2QW  
Maximum contact rate 
across regions, relative 
to within region contact 
rate 

0.001 

dmnl 

Estimated* 

𝐸`# 
Initial exposed/ 
undetected symptomatic 
population (by region) 

1250, 
15,1,3,1,1 

people 
Estimated* 

𝑤# Weight Death vs Case 0.5 
dmnl 

Estimated* 

𝑜1e? Cumulative cases for 
outbreak response 3000 

dmnl 
Estimated* 

𝑟𝑜1e?,# Relative Outbreak  
Level 

𝑟𝑜1e?,# = 1 
𝑟𝑜1e?,/Q = 9 
𝑟𝑜1e?,0g= = 6 

dmnl Estimated ∗ 𝑜1e?,# = 𝑟𝑜1e?,#𝑜1e? Default 
= 1; we set Asia  to 1 and estimated North 
America and Europe. 

𝛽e,#	
𝛽@,#  

Social Distancing 
Exponent 

0.3;0.07; 
𝛽e,Q = 1.5 
𝛽@,Q@ = 0.3 

dmnl 
 Estimated* 
 

𝑐𝑟𝑒2QW,# 
𝑐𝑟𝑠2QW,# 
𝑐𝑟𝑞2QW,# 
𝑐𝑟𝑐2QW,#  

Maximum Contact 
Reduction Fraction 

0.65;0.8;0.99;0.85 
𝑐𝑟𝑒2QW,Q = 0.85 
𝑐𝑟𝑠2QW,Q@ = 0.95 
𝑐𝑟𝑒2QW,/Q = 0.60 
𝑐𝑟𝑠2QW,/Q = 0.75 

dmnl Heuristically estimated. The maximum 
contact reduction fraction reflects 
imperfections in the design, compliance. 
(𝑐𝑟𝑒2QW,Q@RQand 𝑐𝑟𝑠2QW,Q@RQ  estimated 
using calibration.) 

𝑓𝑡R∗ 

Maximum fraction 
symptomatic self-
reporting and deemed 
acceptable for testing, 
together captured  

𝑓𝑡e2∗ = 0.04 
𝑓𝑡e@∗ = 0.08 
𝑓𝑡Q@∗ = 1 

 

dmnl 

 
Estimated through iteration, using the 
literature and data* with partial model 
sensitivity analysis.  
 

𝑓𝑝R 
Fraction of cases 
reported positive 0.2 dmnl 

𝑓𝑑 Positive case 
detectability  0.8 dmnl 

𝑓𝑞R  
Quarantine fraction 
detected cases 0.95 dmnl 

𝜅 Clustering effectiveness 10 
 

dmnl Iteratively (manually) estimated using 
the data* and anecdotes, with 
sensitivity analysis on the sub model 
structure. Further: 
𝜅vg = 𝑟𝜅vg ⋅ 𝜅  
𝜅?,# = 𝑟𝜅# ⋅ 𝜅?  
  

𝑟𝜅vg 
Relative clustering 
effectiveness targeted 
search 

10 
dmnl 

𝑟𝜅# Clustering effectiveness 
1	

𝑟𝜅Q@RQ = 8 
 

dmnl 

*) Estimated through calibration using December 29 2019 - April 6 2020 data (reported cumulative 𝑅𝐶# and 
reported active 𝑅𝐴#,	and reported cumulative deaths 𝑅𝐷#)   
**) Estimated (using available data on testing representative countries from ourworldindata.org (Roser et al. 
2020) https://ourworldindata.org/covid-testing )  
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Table 3. Parameter changes in various experiments, compared to (baseline)  
 

Experiment Figure Parameter Value Range 
Experiment 1 - 

baseline 6 
See Tables 1 and 2. 

Experiment 2 - 
sensitivity of 

baseline 
 

 
7 

Reference outbreak level 𝑜1e?,# 𝑜1e?,/01g=	Q2e1RvQ = {0.8,2.4, 5}  
Cumulative hospitalization for 
testing growth rate 𝐻𝐶#∗ 

𝐻𝐶/01g=	Q2e1RvQ∗ = {50,100,500}  

Behavioral social distancing 
exponent (exposed)  𝛽e,# 

𝛽e,/01g=	Q2e1RvQ = {0.025,0.05,0.15}  

8 

Cumulative hospitalization for 
testing growth rate 𝐶𝐻#∗ 

𝐻𝐶/01g=	Q2e1RvQ∗ = [0,400]  

Behavioral social distancing 
exponent (exposed)  𝛽e,# 

𝛽e,/01g=	Q2e1RvQ = [0.05,0.15]  

Clustering Parameter (relative) 
𝑟𝜅vg,# 

𝑟𝜅vg,/01g=	Q2e1RvQ = [0,80]  
𝜅vg,# = 𝜅 ⋅ 𝜅vg,# ⋅ 𝜅vg,# 

 
Experiment 3 - 

managing 
deconfinement  

 

9 Specific settings 
 

N = 16𝑒6  
𝑓𝑐2QW = 0  
All sector specific variables (index d) 
are set to 1 
 

Deconfinement time 𝜏# (time at 
which general social distancing 
is reduced by 50%) 
Reference Reported Cases for 
Outbreak Response (𝑜1e?) 

𝜏#=	[50,160] 
𝑜1e?=	[125,1125] 

Experiment 4 - 
managing 
resurgence 

 

10 Specific settings 
 

N = 16𝑒6  
𝑓𝑐2QW = 0  
𝑜# = 𝐴𝐷  
 
All sector specific variables (index d) 
are set to 1 
 

Clustering parameter 𝜅  𝜅#=[0.5,8];	𝜅 =20 
 
 

Experiment 5 - 
sociodemographic  

segments 
 

11  Specific settings 
 

N = 32𝑒6  
𝐸`{ = {0,200}  
All sector specific variables (index d) 
are set to 1 

𝑓𝑠 Actual Fraction 
Symptomatic Severe 

Actual Fraction Symptomatic Severe 
𝑟𝑓𝑠{=[0,1]  
(holding 𝑓𝑠	total constant: 𝑓𝑠# =
𝑟𝑓𝑠# ⋅ 𝑓𝑠 ; 𝑟𝑓𝑠}=1-𝑟𝑓𝑠{) 
 

𝑓𝑐#U# 𝑓𝑐#U# = [0,0.25] holding total contacts 
constant 

 

 


