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TO THE EDITOR: Emerging clinical reports from China, Italy, and
the United States reveal that SARS-CoV-2 is associated with a
prominent incidence of cardiovascular morbidities and com-
plications (1, 36), including myocarditis, acute myocardial
infarction, and worsening heart failure. These cardiovascular
manifestations have been encountered in preceding epidemics
of corona viruses, namely Severe Acute Respiratory Syndrome
(SARS) and Middle-East Respiratory Syndrome (MERS), as
well as during H1N1 influenza outbreaks (1, 36). Moreover,
several preliminary reports indicate that a vast majority of
patients with comorbidities are prone to SARS-CoV-2 compli-
cations (50–86%). Congestive heart failure (CHF), chronic
kidney disease (CKD), diabetes, and pulmonary diseases are
the principal-identified clinical conditions predisposing to
SARS-CoV-2-induced morbidities and mortality (7). Although
pneumonia, the principal alarming feature of SARS-CoV-2
infection, could by itself evoke cardiovascular complications
as a result of hypoxemia, systemic inflammation and enhanced
myocardial oxygen demand, a direct cardiovascular injury,
likely develops, initiated by binding of SARS-CoV-2 to ang-
iotensin-converting enzyme 2 (ACE2), widely expressed in
myocardial and vascular endothelial cells, leading to adverse
cardiovascular consequences. The following short commentary
outlines potential mechanisms by which elimination of ACE2
by this virus may lead to deleterious cardiovascular outcome.

ACE2 is a transcellular protein predominantly expressed in
the heart, vasculature, kidney, lung, brain, intestine, and testis
and is usually located at the apical side of cells attached to
basal membrane (Fig. 1) (30). In the heart, ACE2 is widely

expressed in all cardiac cell types, including endothelial cells,
smooth muscle cells in the myocardial vasculature and in
cardiac myocytes (2, 9). ACE2 has 400-fold affinity to angio-
tensin II (ANG II), as compared with the classic ACE, and it
converts ANG II to angiotensin-(1–7) [Ang-(1–7)] (31). The
latter short peptide exerts vasodilatory, natriuretic/diuretic,
anti-inflammatory, and antifibrotic effects via Mas receptor
(MasR). Noteworthy, both clinical (2, 3, 10, 13, 37) and
experimental (2) heart failure is characterized by upregulation
of cardiac ACE2 and enhanced Ang-(1–7) generation, which
may represent a cardioprotective compensatory response aimed
at reducing or preventing cardiac remodeling (28) (Fig. 1). In
agreement with this notion, targeted overexpression of cardiac
ACE2 by applying local injection of lenti-viral vector in
Sprague-Dawley normotensive rats significantly attenuated
cardiac hypertrophy and myocardial fibrosis induced by pro-
longed ANG II administration (15). Similarly, overexpression
of ACE2 in cardiac tissues of spontaneously hypertensive rats
decreased cardiac remodeling in as was evident by reduced left
ventricular wall thickness and perivascular fibrosis (6), proba-
bly via reduction of collagen production (11). Collectively,
these animal studies highlight a cardioprotective role for the
ACE2–Ang-(1–7)–MasR axis.

Binding of the SARS viral spike glycoprotein to ACE2
triggers its internalization along with the virus (13). This might
be of supreme importance for cardiomyocytes of patients with
heart failure, characterized by intense upregulation of ACE2
(9, 10, 37) (Fig. 1). Possibly, intracellular translocation of
SARS-CoV-2 coupled with ACE2 leads to its depletion in cell
membranes. It is tempting to assume that consequent ACE2
elimination might participate in many features of acute corona
virus infection. Among such clinical characteristics are decom-
pensation of preexisting CHF, respiratory distress irrespective
to left-ventricular backward failure (due to impaired pulmo-
nary capillary endothelium and endothelial barrier function),
acute kidney failure (reflecting altered renal microcirculation
and hypoxic injury), and diarrhea (caused by injured gut
microcirculation with hypoxic damage and injured mucosal
barrier.

Indeed, corona virus has already been shown to induce
myocardial inflammation and dysfunction accompanied with
adverse cardiac outcomes in patients with SARS, assumedly
due to downregulation/elimination of the myocardial ACE2
system (25). Support for this concept emerges from previous
experimental reports demonstrating cardiac contractility de-
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fects in rats with reduced X chromosomal-derived ACE2
expression and heart failure with pulmonary congestion in
ACE2-knockout mice (ACE2-KO) (4, 34). These undesired
changes were prominent in males and progressed with age,
coincidentally overlapping the observations that elderly and
men are more susceptible to SARS-CoV-2-induced serious
infection. Interestingly, the hearts of animals depleted of ACE2
exhibited similar changes that occur after coronary artery
disease or bypass surgery in humans (5). Subsequent studies
demonstrated extended infarct size, reduced contractility, al-
tered ventricular remodeling, and increased mortality follow-
ing myocardial infarction (MI) induced by ligation of the
proximal LAD in mice with ACE2 deletion, as compared with
their wild-type controls (20). Moreover, these mice showed
enhanced oxidative stress and concomitant upregulation of
proinflammatory cytokines, plausibly parallel to the observed
hypersensitive immunological response reported in patients
with SARS-CoV-2 infection.

Furthermore, preliminary alarming data from SARS-CoV-
2-infected patients suggested that those treated with renin-

angiotensin-aldosterone (RAAS) inhibitors such as angioten-
sin-converting enzyme inhibitors (ACE-I) or angiotensin-re-
ceptor blockers (ARBs) experienced severe symptoms with a
higher mortality rate as compared with nonuser counterparts
(7, 26). Noteworthy, cardiac ACE2 expression is markedly
enhanced in response to RAAS blockade by ACEi (24), ARB
(8, 18, 19), and even by mineralocorticoid receptor (MR)
antagonist (19, 21) (Fig. 1). Conceivably, this is translated into
increased vulnerability of patients with RAAS blockade during
SARS-CoV-2 infection. Furthermore, several studies have
demonstrated that binding of ANG II to its AT1 receptors in
target organs, including the heart, activates ADAM 17, a
sheddase affecting ACE2 (22) (Fig. 1). Conclusively, blocking
ANG II synthesis or its binding to AT1 receptors by RAAS
inhibitors likely leads to the upregulation of ACE2 and even-
tually hypersensitizing the heart to SARS-CoV-2 infection.
Enhancement of myocardial invasion by the virus due to
enhanced ACE2 likely plays an important role.

An additional player that may contribute to the vulnerability
of patients with heart failure to SARS-CoV-2 is furin, also

Fig. 1. The initial step after the invasion of Severe Acute Respiratory Syndrome (SARS)-CoV-2 is binding to membranal angiotensin-converting enzyme 2
(ACE2) widely expressed in cardiac cells including endothelial cells, smooth muscle cells in the myocardial vasculature and in cardiac myocytes. ACE2 is
responsible for the conversion of ANG II to Ang-(1–7) that exerts beneficial effects on the cardiac tissue such as vasodilation, antifibrosis, and anti-inflammation
via Mas receptor (MasR). The binding of SARS-CoV-2 to ACE2 is preceded by furin-mediated exposure of the viral receptor binding protein (RBP) localized
to S-glycoprotein (S1 domain of the viral spike). Furin is abundant in the heart both intracellulary and in the circulation as a free enzyme, making it a key factor
in the uncovering of RBP and eventually in SARS-CoV-2 transmission. In addition, furin enhances the affinity of the virus to ACE2 by not only exposing the
viral binding site on S1 domain but also revealing the effusion site on the S2 domain in the viral spike. Consequently, the virus undergoes endocytosis and massive
replication accompanied by profound activation by cathespsin L (CatL) and the abundant intracellular furin. The activated intracellular SARS-CoV-2 undergoes
exocytosis where it binds again to ACE2 elsewhere, thus creating a vicious feed-forward devastating cycle. Importantly, heart failure is characterized by enhanced
expression of myocardial ACE2, which is further upregulated by ACE-I, angiotensin receptor blockers (ARBs), and mineralocorticoid-receptor (MR) antagonists,
thus sensitizing ACE2 expressing target organs to SARS-CoV-2. ADAM metallopeptidase domain 17 (ADAM 17) is responsible for shading of ACE2, a process
stimulated by ANG II type 1 receptors (AT1-R) and may explain why renin-angiotensin-aldosterone system inhibitors augment ACE2 expression. ER,
endoplasmic reticulum.
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termed paired basic amino acid-cleaving enzyme (PACE).
Furin is essential for permeating viral functionality as it cleaves
viral envelope trimeric transmembrane glycoprotein (S) (12,
14, 29). This S-glycoprotein, vital for the entry of the virus into
the cell, contains two functional domains: an ACE2-binding
domain (also called receptor-binding domain (RBD) and a
second domain essential for fusion of the viral and cell mem-
branes (23, 33, 35). Furin activity exposes the binding and
fusion domains essential for the entry of the virus into the cell
(32). Furin presents mainly intracellularly and to a lesser extent
in the circulation (16) (Fig. 1), where it converts ventricular
proBNP to active BNP, an important physiological process in
heart failure subjects. Patients with heart failure are specifically
characterized by upregulation of cardiac furin, providing an
additional potential explanation for their vulnerability Co-
vid-19 infection (17) (Fig. 1). Moreover, furin is detected in
circulating T cells that are activated during infections (27).
This may form a feed-forward loop of furin-facilitated coro-
navirus replication that may be responsible for hypersensitive
immunological response (cytokine storm) in some patients,
leading to fulminant myocarditis, devastating lung injury, and
lethal multiorgan failure.

Collectively, evidently ACE2 exerts beneficial effects on car-
diac function under normal conditions and particularly in the
presence of heart failure. Moreover, some of the cardioprotective
effects of ACE inhibitors, ARBs, and MR blockers are mediated
by their positive impact on ACE2 abundance in cardiac tissues.
Nevertheless, in patients infected with SARS-CoV-2, ACE2 may
transform to a Trojan horse. Its binding with ACE2 neutralizes the
advantageous cardiac effects of this enzyme, especially in patients
with heart failure. The susceptibility of these subjects to life-
threatening SARS-CoV-2 infection could be attributed to the
simultaneous upregulation of both ACE2 and furin in the diseased
myocardium and to the wide use of RAAS inhibitors in this
population (Fig. 1). Therefore, temporary blockade of the viral
binding site on ACE2 or furin by immunological or pharmaco-
logical means in patients infected with SARS-CoV-2 may com-
pose new therapeutic strategies in combating this unprecedented
formidable viral threat.
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