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ABSTRACT 
INTRODUCTION: The Coronavirus Disease 2019 (COVID-19) epidemic has caused extreme strains on 
health systems, public health infrastructure, and economies of many countries. A growing literature has 
identified key laboratory and clinical markers of pulmonary, cardiac, immune, coagulation, hepatic, and renal 
dysfunction that are associated with adverse outcomes. Our goal is to consolidate and leverage the largely 
untapped resource of clinical data from electronic health records of hospital systems in affected countries with 
the aim to better-define markers of organ injury to improve outcomes.  
  
METHODS: A consortium of international hospital systems of different sizes utilizing Informatics for 
Integrating Biology and the Bedside (i2b2) and Observational Medical Outcomes Partnership (OMOP) 
platforms was convened to address the COVID-19 epidemic. Over a course of two weeks, the group initially 
focused on admission comorbidities and temporal changes in key laboratory test values during infection. After 
establishing a common data model, each site generated four data tables of aggregate data as comma-separated 
values files. These non-interlinked files encompassed, for COVID-19 patients, daily case counts; demographic 
breakdown; daily laboratory trajectories for 14 laboratory tests; and diagnoses by diagnosis codes. 
  
RESULTS: 96 hospitals in the US, France, Italy, Germany, and Singapore contributed data to the consortium 
for a total of 27,927 COVID-19 cases and 187,802 performed laboratory values. Case counts and laboratory 
trajectories were concordant with existing literature. Laboratory test values at the time of viral diagnosis showed 
hospital-level differences that were equivalent to country-level variation across the consortium partners.  
  
CONCLUSIONS: In under two weeks, we formed an international community of researchers to answer critical 
clinical and epidemiological questions around COVID-19. Harmonized data sets analyzed locally and shared as 
aggregate data has allowed for rapid analysis and visualization of regional differences and global 
commonalities. Despite the limitations of our datasets, we have established a framework to capture the 
trajectory of COVID-19 disease in various subsets of patients and in response to interventions. 
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Introduction 
The Coronavirus Disease 2019 (COVID-19) pandemic has caught the world off guard, reshaping ways of life, 
the economy, and healthcare delivery all over the globe. The virulence and transmissibility of responsible virus 
(SARS-CoV-2) is striking. Crucially, there remains a paucity of relevant clinical information to drive response 
at the clinical and population levels. Even in an information technology-dominated era, fundamental 
measurements to guide public health decision-making remain unclear. Knowledge still lags on incidence, 
prevalence, case-fatality rates, and clinical predictors of disease severity and outcomes. While some of the 
knowledge gaps relate to the need for further laboratory testing, data that should be widely available in 
electronic health records have not yet been effectively shared across clinical sites, with public health agencies, 
or with policy makers. At the time of this writing, more than three months after the earliest reports of the 
disease in China, only 5.8% of US cases reported to the CDC have clinical details included 1. 

 

Even before trials are implemented to determine which therapies will provide, frontline clinicians are not yet 
benefitting from knowledge as basic as understanding the differences in the clinical course between male and 
female patients 2. Through case studies and series, we have learned that COVID-19 can have multi-organ 
involvement. A growing literature has identified key markers of cardiac,3 immune,4 coagulation,5 muscle,5,6 
hepatic,7 and renal8 injury and dysfunction, including extensive evidence of myocarditis and cardiac injury 
associated with severe disease. Laboratory perturbations in lactate dehydrogenase (LDH), C-reactive protein 
(CRP), and procalcitonin9 have been described. However, data from larger cohorts, linked to outcomes, remain 
unavailable. 
 
Because electronic health records (EHRs) are not themselves agile analytic platforms, we have been 
successfully building upon the open source and free i2b2 (for Informatics for Integrating Biology and the 
Bedside) toolkit 10–17 to manage, compute, and share data extracted from EHRs. In response to COVID-19, we 
have organized a global community of researchers, most of whom are or have been members of the i2b2 
Academic Users Group, to rapidly set up an ad hoc network that can begin to answer some of the clinical and 
epidemiological questions around COVID-19 through data harmonization, analytics, and visualizations. The 
Consortium for Clinical Characterization of COVID-19 by EHR (4CE)—pronounced “foresee”—comprises 
partner hospitals from five countries. 
 
Our early efforts aim to consolidate, share, and interpret data about the clinical trajectories of the infection in 
patients with a first focus on laboratory values and comorbidities. This initial report seeks (a) to establish the 
accessibility and suitability of data from electronic medical record for COVID-19 patients; (b) to learn about the 
clinical trajectories of patients; (c) to facilitate evaluation and communication of the utility of various laboratory 
tests and therapies; and (d) to contribute data, reproducible data mining and visualization workflows, and 
learnings to a global network and the broader public. 
 
Here, we report on initial results and the structure of a new, rapidly formed network designed to be a highly 
scalable system, now implemented at 21 sites. The international scope of our collaboration allows us to identify 
some of the similarities in clinical course and a few country-specific variations. We recognize that these early 
data are incomplete and are subject to many biases and limitations, which constrain the conclusions we can 
currently draw. However, we believe the sources of our data and the mechanism we have established for sharing 
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them are sound, reproducible, and scalable. We also hope our results to-date will encourage other sites to share 
data and contribute to this important research effort. 

Methods 

Selection of Laboratory Values 
Multiple studies have reported significant abnormalities in several laboratory tests in patients with COVID-19. 
Studies have shown abnormalities in cardiac, hepatic, renal, immune, and coagulation physiology. Those 
laboratory results are associated with both disease presentation and severity of disease. For this initial study, we 
decided to select a subset of laboratories that are commonly performed, as identified by the Regenstrief Institute 
responsible for the Logical Objects, Identifiers, Names and Codes (LOINC) standard,18 and had been previously 
associated with worse outcomes in COVID-19 positive patients. Based on the meta-analysis of Lippi and 
Plebani,19 we chose to focus on 14 laboratory studies that are commonly performed: alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), total bilirubin (Tbili), albumin, cardiac troponin (high sensitivity), 
lactate dehydrogenase (LDH), D-dimer, white blood cell count (WBC), lymphocyte count, neutrophil count, 
procalcitonin, and prothrombin time. LOINC codes were identified for each laboratory study as well as the units 
and reference ranges. 

Cohort Identification 
All patients who received a polymerase chain reaction (PCR) confirmed diagnosis of COVID-19 were included 
in the data collection. Some hospitals only included patients who were admitted to the hospital while others 
included all patients for whom the test was positive. 

Data Collection and Aggregation 
Sites obtained the data for their files in several ways. Most sites leveraged the open source i2b2 software 
platform already installed at their institution20 which supports query and analysis of clinical and genomics data. 
More than 200 organizations worldwide use i2b2 for a variety of purposes, including identifying patients for 
clinical trials, drug safety monitoring, and epidemiology research. Most 4CE sites with i2b2 used database 
scripts to directly query their i2b2 repository to calculate counts needed for data files. Institutions without i2b2 
used their own clinical data warehouse solutions and querying tools to create the files. In some cases, a hybrid 
method was used that leveraged different data warehouse platforms to fill in i2b2 gaps. For example, Assistance 
Publique – Hôpitaux de Paris (APHP), the largest hospital system in Europe, aggregates all EHR data from 39 
hospitals in Paris and its surroundings. APHP exported data from the Observational Medical Outcomes 
Partnership (OMOP) Common Data Model for transformation to the shared format. 
 
Each site generated four data tables, saved as comma-separated values (CSV) files. To protect patient privacy, 
the files we report contain only aggregate counts (no data on individual patients). In order to further protect 
patient identity, small counts were obfuscated (see below), since an aggregate count of “1” represents an 
individual patient. By computing these values locally and only sharing the aggregate data, sites were able to 
obtain institutional approval more rapidly.  
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The first file, DailyCounts.csv, contained one row per calendar date. Each row included the date, the number of 
new COVID-19 positive patients, the number of COVID-19 patients in an intensive care unit (ICU), and the 
number of new deaths from COVID-19.  
 
The second file, Demographics.csv, contained counts of the total number of COVID-19 positive patients, 
broken down by gender and age group (0-2, 3-5, 6-11, 12-17, 18-25, 26-49, 50-69, 70-79, and 80+ years old).  
 
The third file, Labs.csv, described the daily trajectories of select laboratory tests. Each row corresponded to a 
laboratory test (identified using a LOINC code) and the number of days since a patient had a positive COVID-
19 test, ranging from -6 (one week before the test result) to 1 (the day of the test result) to N (the day the file 
was created). The values in each row are the number of patients who have a test result on that day and the mean 
and standard deviation of the test results.  
 
The fourth file, Diagnoses.csv, lists all the diagnoses recorded in the EHR for COVID-19 positive patients, 
starting from one week before their positive COVID-19 test to the present, with the count of the number of 
patients with the corresponding ICD-9 or ICD-10 code.  
 
Sites can optionally obfuscate the values in any of these files by replacing small counts with “-1”. Sites can 
indicate missing data or data that they are unable to obtain (e.g., whether patients are in an ICU) with “-2”.  
 
Sites uploaded their files to a private shared folder. These files were then merged into four combined files that 
included the totals from the individual sites. Each value in the combined file has four components: (1) the 
number of sites with unmasked values; (2) the sum of those values; (3) the number of sites with obfuscated 
values; and (4) the sum of the obfuscation thresholds for those sites. For example, if five sites report values 25, 
15, -1 (between 00 and 9 patients), -1 (between 00 and 4 patients), -1 (between 00 and 4 patients), then the 
combined file lists two unmasked sites with a total of 40 patients and three masked sites with up to 9+4+4=17 
patients. From this, it can be inferred that there are between 40 and 57 patients. Given the large geographic 
distance between our sites, we assumed that each COVID-19 positive patient was only represented in one EHR. 
The combined Labs.csv file contains a weighted average (rather than the sum) of the unmasked mean test 
results from each site.  

ICD Mapping 
Diagnosis codes were submitted from the sites as either international clinical diagnosis (ICD)-9 or ICD-10 
billing codes. ICD-9 diagnosis codes were mapped to ICD-10 by first attempting to match the ICD-9 codes to 
child concepts of ICD-10 codes in the Accrual to Clinical Trials (ACT) ICD-10àICD-9 ontology.21 In the cases 
where no match was found in the ACT ontology, ICD-9 codes were matched to the ICD-10 codes that shared a 
common concept unique identifier (CUI) in the 2019 build of the US National Library of Medicine’s (NLM’s) 
Unified Medical Language System (UMLS).22 

Data Sharing and Visualization 
We created a website hosted at https://covidclinical.net to provide interactive visualizations of our datasets as 
well as direct access to all shareable data collected for this publication. Data aggregation and publication 
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processes are shown in Figure 1. Visualizations were implemented using Python and Altair (http://altair-
viz.github.io/) in Jupyter Notebooks (https://jupyter.org), all of which are freely available on the website. The 
Vega visualizations (http://vega.github.io) generated by Altair were embedded into a Jekyll-based site 
(http://jekyllrb.com/) that is hosted on Amazon Web Services.  

 
Figure 1. Overview of data collection and analysis. 

Data Availability 
Data files for daily counts, demographics, diagnosis, and labs datasets are available at https://covidclinical.net. 

Informed Consent/IRB Statement 
Each institution reported obtaining proper institutional review board approval for data sharing. Certifications of 
waivers or approval were collected by the Consortium. As data were transmitted in aggregate, no patient level 
data were available from any site. 
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Results 

 

 
Figure 2. (a) Patients by country and age group. (b) Patients by sex and age group.  
 

Demographic and Consortium Level Data 
Over a span of three weeks, 96 total hospitals in the US (45), France (42), Italy (5), Germany (3), and Singapore 
(1) contributed data to the consortium. This was represented by 21 data collaboratives across these five 
countries. A total of 27,584 patients with COVID-19 diagnosis were included in the dataset, with data covering 
January 1, 2020 through April 9th, 2020. We collected 187,802 laboratory values and harmonized them across 
sites. 13.0% of sites submitted complete data sets that included values for each laboratory (39.1% for at least 13, 
and 43.5% for at least 12 of the 14 laboratory measurements). Breakdown of country level data is shown in 
Table 1.  
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Table 1. Sites contributing data to the consortium.  

Healthcare System Acronym City Country Population Hospitals Beds 
Inpatient 
discharges/year 

Assistance Publique - Hôpitaux de 
Paris APHP Paris France 

Adult & 
Pediatric 39 20,098 1,375,538 

Bordeaux University Hospital FRBDX 
Bordeaux 

France 
Adult & 
Pediatric 3 2,676 130,033 

Erlangen University Hospital UKER Erlangen Germany 
Adult & 
Pediatric 1 1,400 65000 

Medical Center, University of 
Freiburg UKFR Freiburg Germany 

Adult & 
Pediatric 1 1,660 71,500 

University Medicine Mannheim UMM Mannheim Germany 
Adult & 
Pediatric 1 1,352 50,748 

ICSM Pavia Hospital ICSM1 Pavia Italy 

Adult 

1 426 8,616 

ICSM Lumezzane/Brescia Hospitals ICSM5 
Lumezzane/
Brescia Italy 

Adult 
1 149 1,296 

ICSM Milano Hospital ICSM20 Milan Italy 
Adult 

1 200 2,432 

Policlinico di Milano POLIMI Milan Italy 
Adult & 
Pediatric 1 900 40,000 

ASST Papa Giovanni XXIII 
Bergamo HPG23 Bergamo Italy 

Adult & 
Pediatric 1 1,080 45,000 

National University Hospital NUH Singapore Singapore 
Adult & 
Pediatric 1 1,556 100,977  

Boston Children’s Hospital BCH 
Boston, MA 

USA Pediatric 1 404 28,000 

Beth Israel Deaconess Medical 
Center BIDMC 

Boston, MA 
USA Adult 1 673 40,752 

Children’s Hospital of Philadelphia CHOP 
Philadelphia, 
PA USA Pediatric 1 564 25,406 

University of Kansas Medical Center KUMC 
Kansas City, 
KS USA 

Adult & 
Pediatric 1 794 54,659 

Mayo Clinic MAYOC 
Rochester, 
MN USA 

Adult & 
Pediatric 1 2,059 100,000 

Mass General Brigham (Partners 
Healthcare) MGB 

Boston, MA 
USA 

Adult & 
Pediatric 10 3,418 163,521 

Medical University of South 
Carolina MUSC 

Charleston, 
SC USA 

Adult & 
Pediatric 8 1,600 55,664 

University of Pennsylvania UPenn 
Philadelphia, 
PA USA Adult 5 2,469 118,188 

University of California, LA UCLA Los Angeles, USA Adult & 2 786 40,526 
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CA Pediatric 

University of Michigan UMICH 
Ann Arbor, 
MI USA 

Adult & 
Pediatric 3 1,000 49,008 

University of North Carolina at 
Chapel Hill UNC 

Chapel Hill, 
NC USA 

Adult & 
Pediatric 11 3,095 52,000 

UT Southwestern Medical Center UTSW Dallas, TX USA Adult 1 608 26,905 

    Total 96 45,352 2,444,792 

 
Demographic breakdown by age and gender is shown in Figure 2. Age distribution was different across 
countries and consistent with previously identified patterns. In particular, patients from Italy were more 
commonly over the age of 70 relative to other countries.23 US institutions, despite representing a large number 
of active infections, had the lowest percentage of elderly patients diagnosed with COVID-19. Germany, with its 
three included hospitals and relatively small number of patients, was more similar to the US and had an 
increased number of male patients in the 50-59 age group.  

 

 
Figure 3. Normalized change (relative to previous day) of new cases reported by 4CE contributors compared to 
new cases collected by the Johns Hopkins Center for Systems Science and Engineering (JHU CSSE) by country 
over time.  
  
We were able to capture the total number of identified new cases by site and date. To normalize across sites 
with a small number of total cases, we generated the rate of growth of total admissions by country. In Figure 3, 
we compared those values with Johns Hopkins-curated data24 over time. Rates of growth as extracted from EHR 
data from our sites were similar to population-level findings during the month of March. Of note, national data 
from Singapore did not track with EHR numbers. Our one site in Singapore had a small number of patients and 
is less likely to be representative of all hospitals in the country. 
 
Despite the limited amount of diagnosis code data submitted, consistent identified symptoms were 
recorded across institutions. Most common codes involved respiratory symptoms and infections. Cough, 
dyspnea, and hyperpyrexia were also commonly identified. Although there were differences in the most 
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common codes used by sites, symptoms were consistent with previous prospective studies.25,26 Rates and types 
of presenting symptoms were similar in the pediatric population. 

Laboratory Value Trajectories 
Our initial data extraction comprised 14 laboratory test values that have been strongly associated with poor 
outcomes in COVID-19 patients in previous publications. The set encompassed markers of cardiac, renal, 
hepatic, and immune dysfunction. Laboratory trajectories of each hospital at the population level are presented 
online at https://covidclinical.net. Given limitations of data harmonization and space, we focus on 5 laboratory 
trajectories that encompass immune, hepatic, coagulation, and renal function. Trajectory data were remarkably 
consistent for most institutions at day 1 (day when biological test positive) with growing differences with 
continued hospitalization. Extensive data harmonization was performed, but we must emphasize that data from 
each day represents a potentially different population as patients are discharged, die, or laboratory studies are no 
longer performed. Data values from each hospital were an average of all studied patients a specified number of 
days after diagnosis.  
 
Laboratory values reflected relatively moderate disease severity on presentation. Initial laboratory values 
were abnormal for all patients but were not indicative for organ failure. Major abnormal elevations were noted 
in C-reactive protein (CRP) and D-dimer on the day of diagnosis. As the number of days from diagnosis 
progressed, laboratory values collected significantly worsened; remaining patients who were not discharged or 
had died had worsening values. For nearly all 14 tests, trends toward progressively abnormal values were 
consistent with worsening disease as inpatient stays continued. Most importantly, the initial values and 
trajectories were highly consistent with previous findings in studies from China.19,27 
 
Creatinine, a measure of renal function and the most commonly performed laboratory test in our data set, was 
divergent over time across sites. This is consistent with an increased proportion of ill patients with significant 
acute kidney injury over time. Some sites did not have changes in creatinine over time. Hospitals in Italy, in 
particular, did not see a dramatic rise in creatinine in their hospitalized population. Conversely, the small 
number of French and German patients remaining in the hospital for two weeks had clear signs of acute kidney 
injury. This may represent a high mortality near the beginning of the hospitalization at Italian hospitals, severe 
right censoring of remaining patients, or a difference in practice.  
 
Total bilirubin, a measure of conjugation and function by the liver, was initially normal across most sites and 
showed increases—consistent with other hepatic laboratory tests—among persistently hospitalized patients. The 
other hepatic laboratory measurements, ALT and AST, were divergent across institutions and showed a more 
significant perturbation (see https://covidclinical.net). Hepatic impairment was not present in most patients on 
presentation and total bilirubin was only mildly elevated with continued hospitalization. 
 
On average, white blood cell count (WBC), a measure of immune response, was within normal limits on 
presentation. Patients who remained in the hospital and survived had increasing WBCs over time without severe 
leukocytosis. 27 Lymphocyte and neutrophil count trajectories can be seen on the website. Procalcitonin and 
LDH were not commonly tested in the total patient population, but results can also be seen online. 
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C-reactive protein (CRP), a measure of systemic inflammation, was notably elevated on presentation for all 
patients in the cohort with a very narrow confidence interval, consistent with previous findings.19 Although it is 
of unclear importance, populations of patients who remained in the hospital, survived, and had ongoing 
laboratory testing showed improvements over time. Interestingly, despite a decreasing trajectory during the first 
week, a mild leukocytosis is observed in counterbalance during the second week. The implication may be that 
CRP is not predictive of ongoing hospitalization or CRP is being checked for patient populations where the 
laboratory is more commonly improving. 
 
D-dimer, an acute phase reactant and measure of coagulopathy, was elevated across institutions and countries at 
presentation. It rose consistently in all populations who continued to be hospitalized with the disease. This is 
consistent with multiple studies that have shown a prothrombotic element to the disease. Most importantly, 
changes were consistent across all sites and highly abnormal. 

 
Figure 4. Laboratory tests representative of renal function (creatinine), systemic inflammation (C-reactive 
protein), coagulopathy (D-dimer), liver function (total bilirubin), and immune response (white blood cell count) 
visualized relative to date of diagnosis of COVID-19. The top row shows weighted means and 95% confidence 
intervals across all patients. The second row shows unweighted country- (thick lines) and site-level (thin lines) 
means. The third and fourth rows show the number of patients and sites, respectively, contributing laboratory 
tests of each type on a given day. 

Data Attrition 
There was a large drop in the number of laboratory tests performed after the first day. Drop off in tests 
performed could be a result of death, length of stay, or lack of interest in further data collection by the clinical 
team. From the maximum number of laboratory tests consistently checked on the first day after diagnosis, there 
was a rapid tapering in frequency of laboratory tests checked. These changes were particularly pronounced in 
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Italy and France. We identified the number of days until the number of tests checked were 20% of their initial 
maximum value. Values for laboratory study for each day are presented on https://covidclinical.net. Results 
varied for each laboratory value and site. There was no obvious country level pattern. Given that several of 
these tests, such as creatinine, are commonly checked nearly every day in ill patients, the implication is that 
patients were censored from the laboratory results because of discharge or death or changing practice pattern. 
Thus, for the purposes of this paper, we focused on trends in creatinine laboratory testing. We normalized the 
number of tests performed by day to the total performed on day 1. We then looked at the day when the number 
of tests performed was 20% of the maximum number performed for each site. For creatinine, for example, a 
drop-off in testing occurred between day 7 and 15 across institutions. Most patients who survived were 
likely discharged within this time frame or managed with much less monitoring. No country level differences 
were obvious for this test. Further results can be found online. 
 
 

 
Figure 5. Drop-off in laboratory tests reported for creatinine relative to the day with the largest number of 
laboratory tests reported.  

Differences at Admission 
There was greater between-hospital variation for laboratory test performance than between-country variation 
(Figure 6). At the time of diagnosis, there was significant variation between countries and between the hospitals 
in a specific country. There was no obvious signature presentation for a country for an individual laboratory 
value. For example, creatinine was a commonly performed laboratory study within a day of diagnosis. The 
overall standard deviation (SD) for test result values across countries was 1.47 while the SD within sites was 
1.39. Standard deviation for countries was 1.64, 1.31, 1.13, and 1.62 within France, Germany, Italy, and the US, 
respectively. France is a special case as 39 hospitals were reported together by AP-HP and then compared with 
three hospitals in Bordeaux. This is an important finding that could suggest that laboratory values, as individual 
results, will not be able to fully explain the mortality differences between countries.  
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Figure 6. Laboratory variation across countries and within sites for laboratory tests performed within a day of 
diagnosis. Values for mean value and standard deviation (SD) in creatinine level are shown. Large variations 
exist within sites and are often larger than the between country variation. The overall SD across countries was 
1.47 while the SD within sites was 1.39. Standard deviation for countries was 1.64, 1.31, 1.13, and 1.62 within 
France, Germany, Italy, and the US, respectively. 

Discussion 
A rapid mobilization of a multi-national consortium was able to harmonize and integrate data across 5 countries 
and 3 continents in order to begin to answer questions about comparative care of COVID-19 patients and 
opportunities for international learning. In just over 2 weeks, the group was able to define a question and data 
model, perform data extraction and harmonization, evaluate the data, and create a site for public evaluation of 
site level data. We aggregated EHR data from 96 hospitals, covering a total of 27,927 patients seen in these 
hospitals for COVID-19. In doing so, we relied upon prior investments made by various governments and 
institutions in turning the byproducts of clinical documentation into data useful for a variety of operational and 
scientific tasks, using i2b2 and other implementations, as documented in Table 1. Most importantly, at each site 
there were bioinformatics experts who understood both the technical characteristics of the data and their clinical 
relevance.  
 
Using automated data extraction methods, we were able to show results consistent with country-level 
demographic and epidemiological differences identified in the literature. Rates of total case rise in our study 
was consistent with international tracking sites.24 Age breakdown, with Italian sites reporting a larger proportion 
of older patients, was also reflective of recent publicly available resources.23  
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We were able to show that laboratory trajectories across many hospitals could be collected and were concordant 
with findings from the literature. In truth, the findings generate more questions than they answer; the ability to 
see consistencies that spanned many countries indicated that the pathophysiology of this disease is shared across 
countries, and that demographics and care characteristics will have a significant effect on outcomes. As an 
example, the fall of CRP among those who continued to be hospitalized with a continued rise in d-dimer could 
suggest that d-dimer may be more closely related to persistent illness than CRP. The limits of our data 
collection method, where these results are not tied to the patient level and can be associated across populations, 
highlights the need for caution with any conclusion related to changes in laboratory levels over time.  
 
Perhaps most importantly, our study did not show a unique laboratory signature at the country level at the time 
of diagnosis. Researchers around the world have been closely following the rapid spread of COVID-19 and its 
high mortality rate in certain countries such as Italy. One possible explanation would be that patients who 
presented to hospitals in Italy did so at a much more advanced stage of disease. Our results do not support this 
idea. There was as much in-hospital and between-hospital variation as between countries.  
 
The average of laboratory values at presentation did not indicate major organ failure. This may be due to a large 
proportion of healthier patients than those with advanced disease. Of course, respiratory failure could not be 
tracked within the limits of our data set. 
 
There were both logistic and data interoperability lessons that were very important to the success of the project 
and will be critical for future efforts. Logistically, to maximize the timeliness of this consortium’s first 
collaboration around COVID-19, we deliberately aggregated the data to expedite the institutional review board 
(IRB) process at each institution for such data sharing. This thereby constrained our analyses to count, rather 
than patient-level, data. While the latter would be optimal for deep analysis and identification of subtle patterns 
and perturbations of clinical courses, we feel that aggregated count data provide valuable information on the 
clinical course even as we seek IRB permission for analyses that are at the patient level.  
 
Regarding interoperability, large variations in units and data presentation required extensive data 
harmonization. The use of LOINC codes allowed for more rapid data extraction, but often institutions did not 
have internal mappings from their laboratory tests to LOINC codes. Manual interpretation of laboratory value 
descriptions were sometimes necessary. In future iterations, sites will perform unit conversion and ensure data 
consistency by presenting reference ranges and example data for a first-pass check of data at the site. Variations 
in ICD coding as well generation of codes used made code harmonization difficult. Frequencies of presenting 
codes were useful to show similar patterns to previous literature, but the current set of codes were too sparse for 
any further meaningful analysis. Future iterations of this project would encompass a much longer data capture 
timeline and would ensure comprehensive code collection across all sites. 
 
In addition, data alignment by a metric that indicates clinical status is necessary to better establish outcomes. 
Using day of diagnosis as an alignment strategy does not allow for clear identification of causes for temporal 
patterns. Similarly, outcomes need to be selected that represent clinically meaningful endpoints secondary to 
this initial data alignment. One reason for this difficulty was that Identification of level of care was not easily 
performed. Accordingly, it was not easy to follow patients into and out of ICUs at the site level and ICU data 
was not reliable. 
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Our group, the Consortium for Clinical Characterization of COVID-19 by EHR (4CE), is one of hundreds of 
US efforts (many of which are listed at HealthIT.gov) that are working hard to aggregate and curate data to 
inform clinicians, scientists, policy makers and the general public. Additionally, networks of healthcare 
organizations such as the CTSA’s ACT network28 and PCORnet29 are working with federal authorities to obtain 
data-driven population-level insights. Similar initiatives are active in the other countries participating in 4CE, 
including the German Medical Informatics Initiative.30 Disease-specific and organ-specific COVID-19 research 
collectives are also assembling, including ones for cancers (https://ccc19.org), inflammatory bowel disease 
https://covidibd.org), and rheumatology,31 among many others. The WHO maintains a directory of worldwide 
research efforts on COVID-19 including clinical data collection. 32 Finally, there are dozens of patient self-
reporting apps with hundreds of thousands of users worldwide that provide perspectives on the clinical course 
of the infection outside hospitals. 
   
There are a multitude of limitations to this study not least of which is that it is observational and subject to a 
variety of biases with perhaps the most severe being that its data are limited to those patients who were seen at 
or admitted to hospitals, due to severity of illness or other possibly biasing characteristics. Limitations also 
include heavy right censoring where patient absence can be due to death or discharge, variations in ICD 
annotations for conditions existing prior to the COVID-19-related admission, delays in updating billing codes or 
in uploading EHR data to the local analytic data repository. Furthermore, potentially confounding interactions 
between comorbidities, chronic diseases and their treatments and lifestyle or exposures were not taken into 
consideration. Again, because of these limitations we were careful to avoid making more than the basic and 
descriptive conclusions. Over the coming weeks we will be working on quantifying these biases and adjusting 
for them, if we can. This will include adding data types as well as disaggregating the data to the patient level if 
and when permitted by IRBs. For the present, with the current limited knowledge of the clinical course of 
patients suffering from COVID-19, these results add to this small knowledge-base. Our paper strikingly shows 
the power of harmonized data extraction from EHRs to rapidly study pandemics like COVID-19. 
 
We invite others to join the 4CE consortium by sending a note to 4CE@i2b2foundation.org. 
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