1

Title Page

Running Title: Antiviral Agents in Children with COVID-19

Potential Effectiveness and Safety of Antiviral Agents in Children with Coronavirus Disease 2019: A Rapid Review and Meta-Analysis

Qianling Shi^{1,2*}, Qi Zhou^{1,2*}, Xia Wang^{3,4,5*} Jing Liao^{3,4,5}, Yang Yu⁶, Zijun Wang², Shuya Lu^{7,8}, Yanfang Ma², Yangqin Xun², Xufei Luo^{9,2}, Weiguo Li^{3,4,5}, Toshio Fukuoka^{10,11}, Hyeong Sik Ahn^{12,13}, Myeong Soo Lee^{14,15}, Zhengxiu Luo^{3,4,5}, Enmei Liu^{3,4,5}, Yaolong Chen^{2,16,17,18}, Qubei Li^{3,4,5#}, Kehu Yang^{1,2,18#}; on behalf of COVID-19 evidence and recommendations working group

- 1. The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- 3. Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- 4. National Clinical Research Center for Child Health and Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- 5. Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- 6. The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
- 7. Department of Pediatric, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
- 9. School of Public Health, Lanzhou University, Lanzhou 730000, China
- 10. Emergency and Critical Care Center, the Department of General Medicine, Department of Research and Medical Education at Kurashiki Central Hospital, Japan
- 11. Advisory Committee in Cochrane Japan, Japan
- 12. Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
- 13. Korea Cochrane Centre, Korea
- 14. Korea Institute of Oriental Medicine, Daejeon, Korea
- 15. University of Science and Technology, Daejeon, Korea
- 16. Lanzhou University, an Affiliate of the Cochrane China Network, Lanzhou 730000, China
- 17. Chinese GRADE Center, Lanzhou 730000, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou 730000, China
- * These authors contributed equally to this work.

Correspondence to: Kehu Yang. Department of the First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China. Email: <u>kehuyangebm2006@126.com</u>; Qubei Li. Department of the Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China. Email: <u>liqubei@126.com</u>.

Abstract

Background: The COVID-19 outbreak presents a new, life-threatening disease. Our aim was to assess the potential effectiveness and safety of antiviral agents for COVID-19 in children.

Methods: Electronic databases from their inception to March, 31 2020 were searched for randomized controlled trials, clinical controlled trials and cohort studies of interventions with antiviral agents for children (less than 18 years of age) with COVID-19.

Results: A total of 23 studies of indirect evidence with 6008 patients were included. The risks of bias in all studies were moderate to high in general. The effectiveness and safety of antiviral agents for children with COVID-19 is uncertain: For adults with COVID-19, lopinavir/ritonavir had no effect on mortality (risk ratio [RR]= 0.77, 95% confidence interval [CI] 0.45 to 1.30) and probability of negative PCR test (RR=0.98, 95 CI% 0.82 to 1.18). Arbidol had no benefit on probability of negative PCR test (RR=1.27, 95% CI 0.93 to 1.73). Hydroxychloroquine was not associated with increasing the probability of negative PCR result (RR=0.93, 95% CI 0.73 to 1.18). For adults with SARS, interferon was associated with reduced corticosteroid dose (weighted mean difference [WMD]=-0.14 g, 95% CI -0.21 to -0.07) but had no effect on mortality (RR=0.72, 95% CI 0.28 to 1.88); ribavirin did not reduce mortality (RR=0.68, 95% CI % 0.43 to 1.06) and was associated with high risk of severe adverse reactions; and oseltamivir had no effect on mortality (RR=0.87, 95% CI 0.55 to 1.38). Ribavirin

combined with interferon was also not effective in adults with MERS and associated with adverse reactions.

Conclusions: There is no evidence showing the effectiveness of antiviral agents for children with COVID-19, and the clinical efficacy of existing antiviral agents is still uncertain. We do not suggest clinical routine use of antivirals for COVID-19 in children, with the exception of clinical trials.

Keywords: Antiviral agents; children; COVID-19; meta-analysis; rapid review.

Background

A novel coronavirus, later named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first detected on December 8, 2019, when several cases of pneumonia of unknown etiology were reported in Wuhan, Hubei province, China. (1-3) Due to the rapidly increasing numbers of infections and deaths, World Health Organization (WHO) subsequently declared the outbreak as a Public Health Emergency of International Concern (PHEIC) on January 30, 2019 and officially named the disease as "Corona Virus Disease hyphen one nine" (COVID-19) on February 11, 2020.(4-6) As of April 12, a total of 1,696,588 confirmed cases had been reported in more than 200 countries, and the number of cases abroad was still rapidly increasing, creating global alarm and concerns about the impact on health care and economy of the affected areas (7). On February 28, WHO increased the level of risk of spread and impact of COVID-19 on the global level to very high and declared COVID-19 as a global pandemic on March 11, 2020. (8) However, there is so far no effective treatment or vaccine against the SARS-CoV-2.

At present, guidelines suggest that the use of lopinavir/ritonavir (LPV/r), interferon (IFN) and chloroquine may help to some extent against COVID-19 in adults.(9-11) Seven recently published systematic or rapid reviews suggested that LPV/r, IFN, chloroquine and hydroxychloroquine (HCQ) can be used as an experimental therapy for COVID-19 in adults as the initial treatment, (12-18) but the effectiveness and safety of other antiviral agents (such as ribavirin [RBV], remdesivir and oseltamivir) is uncertain.

Although the course of COVID-19 is usually milder in children than adults, children with undeveloped immune system, such as the youngest case confirmed only 30 hours after birth, are at substantial risk of severe infection. (19) Antiviral therapy against SARS-CoV-2 in children is therefore urgently needed, but so far the evidence and literature on the topic remain limited. (20-21)

The objective of this rapid review is to perform a comprehensive literature search and summarize the current evidence on effectiveness and safety of antiviral agents for children with COVID-19. The findings will provide evidence for the development of guideline and the clinical treatment of children with COVID-19.

Methods

Search Strategy

Two researchers (Q Shi and X Wang) searched the following electronic databases from their inception until March 31, 2020: MEDLINE (via PubMed), Embase, Web of Science, the Cochrane library, China Biology Medicine (CBM), China National Knowledge Infrastructure (CNKI), and Wanfang Data.(22) We also searched three clinical trial registry platforms (the WHO Clinical Trials Registry Platform, US National Institutes of Health Trials Register and the International Standard Randomized Controlled Trial Number [ISRCTN] Register), Google Scholar, the official websites of WHO and Centers for Disease Control (CDC), and the preprint platforms BioRxiv, MedRxiv, and SSRN. In addition, we searched the reference lists of the identified systematic reviews for further potential studies. Finally, we contacted experts in the field to identify studies that may have been missed.

The search strategy was also peer reviewed by an external specialist. We systematically searched by combining the MeSH and free words. The keywords and terms in the MEDLINE including "COVID-19", "SARS-CoV-2", "Novel coronavirus", "2019-novel coronavirus", "2019-nCoV", "antiviral agents", "antiviral*", "ribavirin", "interferon", "oseltamivir", "remdesivir", "lopinavir", "ritonavir", "LPV/r" and their derivatives. The details of the search strategy can be found in the *Supplementary Material 1*.

Inclusion and exclusion criteria

We primarily searched for studies on children less than 18 years of age diagnosed with COVID-19. We made no restrictions on gender, race, or geographical location or setting. COVID-19 was defined according to the WHO interim guidance. (23) If direct evidence on children was unavailable, we also searched indirect evidence from COVID-19 in adults, or from children or adults infected with severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) which have similar gene sequences with SARS-CoV-2.

We included all randomized controlled trials (RCTs), clinical controlled trials (CCTs) and cohort studies that compared the effectiveness and safety of antiviral agents (including but not limited to IFN, oseltamivir, LPV/r, RBV, HCQ and remdesivir) with placebo, or comparing the combination of antiviral agents and symptomatic treatment

with symptomatic treatment alone. Studies comparing different types and different administration mode of antiviral agents were also included. In vitro studies, animal experiments and basic researches were excluded. Duplicates, articles written in languages other than English or Chinese, conference abstracts and studies where full text could not be retrieved or data were missing were also excluded.

The primary outcomes were mortality and the risk of serious adverse effects (defined as hemolytic anemia, bradycardia and other side effects on cardiovascular system and drug-induced liver injury). The secondary outcomes included the probability of negative PCR test (defined as the rate of negative PCR of SARS-CoV-2 after discharge from the hospital or after receiving antiviral agents which differed in studies), mean or reduction in the dose of corticosteroids, remission of the main clinical symptoms, risk of Acute Respiratory Distress Syndrome (ARDS), duration of disease (defined as the duration (in days) of total stay from symptom onset to recovery), probability of admission to intensive care unit (ICU) and other adverse reactions. All the reasons for exclusion of ineligible studies were recorded, and the process of study selection was documented using a PRISMA flow diagram.

Study selection

After eliminating duplicates, two researchers (Q Shi and X Wang) independently screened first the titles and abstracts, and then the full-texts of potentially relevant articles, using pre-defined criteria. The specific bibliographic software EndNote was

used, and discrepancies were discussed, or solved with a third researcher (Q Zhou). The reasons for exclusion of ineligible studies were recorded. The process of study selection was documented using a PRISMA flow diagram. (23)

Data extraction

Four researchers (Q Shi, X Wang, Q Zhou and J Liao) extracted data independently in pairs with a pre-determined form, and disagreements were resolved by consensus. We extracted the following data: 1) basic information; 2) participants: baseline characteristics and inclusion/exclusion criteria; 3) details of the intervention and control strategies; and 4) outcomes (for dichotomous data, the number of events and total participants in per group; for continuous data, means, standard deviations (SD), and the number of total participants in per group).

Risk of bias assessment

Two researchers (Y Yu and Z Wang) independently assessed the potential bias in each included study. Discrepancies were resolved by discussion and consensus to a third researcher (S Lu). For RCTs we used the Cochrane Risk-of-Bias (RoB) assessment tool consisting seven domains: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective outcome reporting, and other bias. (24) We graded each potential source of bias as "Low", "Unclear" or "High". For included CCTs, we used

ROBINS-I tool, (25) which consists of seven domains: bias due to confounding, bias in selection of participants, bias in classification of interventions, bias due to departures from intended interventions, bias due to missing data, bias in outcome measurement, and bias in selective reporting. The risk of each type of bias was graded as "Low", "Moderate", "Serious", "Critical", and "No information". For both RoB and ROBINS-I, the overall risk of bias within each study was based on the results of all the individual domains. For cohort studies, we used Newcastle-Ottawa Scale (NOS) consisting of three domains (selection of exposure, comparability and assessment of outcome). (26) The maximum score was nine, and scores of seven or more was graded as high quality while less than seven scores as low quality.

Data synthesis

We performed Meta-analyses of outcomes for which the data that were sufficiently compatible. For outcomes with too heterogeneous data, a qualitative synthesis was done. We processed the data according to the Cochrane Handbook by using a random-effects model. (27) For dichotomous data, we calculated risk ratios (RR) with 95% confidence intervals (CI); for continuous data, we calculated weighted mean difference (WMD) with 95% CI. Two-sided *P* values < 0.05 were considered statistically significant. (28) Analyses were performed by Stata 14 software (Stata Corp LLC).

For missing SDs, standard errors (SE) were converted to SDs when SE was presented, and if both were missing, we estimated SDs from P values or 95% CI. For

missing means, we estimated them from interquartile ranges and medians. (29) Statistical heterogeneity was assessed using the chi-square and the I^2 statistic, with P < 0.10 was considered to be consistent with statistically significant heterogeneity and I^2 statistic > 50% indicating substantial heterogeneity. (28) If we detected heterogeneity, we performed subgroup analyses (route, dose, frequency or administration of antivirals) or sensitivity analyses (excluding studies with low-quality or high risk of bias; excluding studies in which mean or SD, or both of them were imputed for missing data) to explore the reasons. Publication bias was assessed by examining the symmetry of the funnel-plot.

Quality of the evidence assessment

We assessed the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, and classified the evidence quality as "high", "moderate", "low" and "very low". (30-31) We also produced "Summary of Findings" tables. Direct evidence from RCTs starts at high quality, and evidence from observational studies at low quality. In the next step, the quality can be downgraded for five different reasons (study limitations, consistency of effect, imprecision, indirectness, and publication bias) and upgraded for three reasons (large magnitude of effect, dose-response relation and plausible confounders or biases).

Results

Study and Patient Characteristics

We identified 4095 references from the databases, and six records from additional searches. A total of 1216 records were excluded as duplicates, after screening for titles, abstract and full texts, no direct evidence for children with COVID-19 was found. Finally, a total of 23 studies (six RCTs and 17 cohort studies) with 6008 patients of indirect evidence were included (*Figure 1*) (32-54). These studies were published between 2003 and 2020 and the sample size ranged from 22 to 1701, of which, seven studies were on COVID-19, 13 studies on SARS and three studies on MERS. Another study of Cai 2020 was found but in temporary removal condition, therefore it was not included (55).

The risk of bias in the included three RCTs were high, as they did not perform allocation concealment and blindness for patients and clinicians. The other three RCTs had low risk of bias (n=3). More than half of the cohort studies (n=9) had a high risk of bias, the main reasons were being the lack of controlling for important factors that would influence the primary study results, lack of long enough follow-up for outcomes to occur, and inadequate outcome ascertainment. Study characteristics and risk of bias are illustrated in *Table 1*.

Efficacy and Safety of Existing Antiviral Agents

The results of the Meta-analysis for each type of antiviral agent are shown in *Table 2*. The details of primary data from each retrieved study can be found in *Supplementary*

12

Material 2. The details of GRADE for each outcome can be found in *Supplementary Material 3*. Due to the small number of studies for each outcome, we were unable to evaluate publication bias.

Lopinavir/ritonavir

Three studies with a total of 327 patients (32-34) reported the effectiveness and safety of LPV/r in adult patients with COVID-19. There was no statistically significant difference in the mortality (RR =0.77, 95% CI 0.45 to 1.30, low-quality evidence, *Figure 2*) and probability of negative PCR test (RR=0.98, 95 CI% 0.82 to 1.18, very low-quality evidence) between the intervention and control groups. There was also no statistically significant difference in the incidence of adverse reactions (RR=1.24, 95 CI% 0.67 to 2.28, very low-quality evidence) and serious adverse reactions (RR=0.62, 95 CI% 0.38 to 1.01, moderate-quality evidence) between the two groups, of which, the most common side effects were gastrointestinal reaction (including nausea and vomiting, diarrhea and abnormal liver function).

Two cohort studies with a total of 830 patients (35,36) reported the effectiveness and safety of LPV/r in adult patients of SARS. The results showed that LPV/r therapy decreased the risk of death (RR=0.16, 95% CI 0.03 to 0.77, low-quality evidence, *Figure 2*) and ARDS (RR=0.11, 95% CI 0.02 to 0.77, very low-quality evidence) compared with the control group. However, no statistically significant difference was found in the dose of corticosteroids (WMD=-0.82 g, 95% CI -2.03 to 0.40) with

considerable heterogeneity of the *I*-squared was 86.4%, because both means and SDs of the two studies were imputed from missing data. In addition, patients in the LPV/r group were more often nosocomially infected (RR=0.05, 95% CI 0.00 to 0.75), and had a higher risk of adverse reactions such as diarrhea (RR=0.39, 95% CI 0.23 to 0.69) or recurrent fever (RR=0.65, 95% CI 0.43 to 0.98). The overall quality of evidence was very low.

Arbidol

Three studies with a total of 138 patients (33-34,37) reported the effectiveness and safety of arbidol in adult patients of COVID-19. There was no statistically significant difference in the probability of having a negative PCR result (RR=1.27, 95% CI 0.93 to 1.73), probability of radiographic abnormalities remission (RR=1.23, 95% CI 0.63 to 2.40) and duration of disease (WMD=-1.70 days, 95% CI -3.28 to -0.12) between patients with arbidol therapy and control group. Because of the large heterogeneity in the radiographic abnormalities remission, we performed a subgroup analysis of study design, and we still found no significant association in neither cohort studies (RR=1.58, 95% CI 0.97 to 2.59) nor RCTs (RR=0.71, 95% CI 0.47 to 1.06). There was also no statistically significant difference in the incidence of adverse reactions (RR=1.06, 95% CI 0.25 to 4.43) between the two groups. The overall quality of evidence was very low.

Interferon

Four cohort studies with a total of 2013 patients (38-41) reported the effectiveness and safety of intramuscular or subcutaneous injection of IFN in adult patients with SARS. The results showed that IFN therapy decreased the dose of corticosteroids dose (WMD=-0.14 g, 95% CI -0.21 to -0.07) and promoted the remission of radiographic abnormalities. No statistically significant difference was found in mortality (RR=0.72, 95% CI 0.28 to 1.88, *Figure 2*). No obvious adverse reactions were reported in any of the above four studies. The quality of evidence was very low.

One cohort study with a total of 24 patients (43) compared the effectiveness of different types of IFN in adult patients with SARS. The results showed that there was no statistically significant difference in the risk of death (RR=1.33, 95% CI 0.80 to 2.20) between patients treated with IFN- α and IFN- β . The quality of evidence was very low.

Ribavirin

Six cohort studies with a total of 3481patients (40,43-47) reported the effectiveness and safety of RBV in adult patients with SARS. The results showed that RBV therapy significantly decreased the duration of corticosteroid use (WMD =-5.60 g, 95% CI -7.94 to -3.26, very low-quality evidence), and increased the duration of disease (WMD=1.04 d, 95% CI -0.44 to 2.52, very low-quality evidence) compared with the control group. There was no statistically difference in the risk of death (RR=0.68, 95% CI % 0.43 to 1.06, *Figure 2*). In addition, the use of RBV was associated with an increased risk of adverse reactions, including anemia (RR=1.67, 95% CI 1.07 to 2.61, low-quality

15

evidence), bradycardia (RR=2.02, 95% CI 1.30 to 3.12, low-quality evidence), and hypomagnesemia (RR=10.19, 95% CI 4.61 to 22.55, high-quality evidence).

Oseltamivir

Three cohort studies with a total of 2007 patients (40-41,48) reported the effectiveness and safety of oseltamivir in adult patients with SARS. The results showed that there was no statistically significant difference in the risk of death (RR=0.87, 95% CI 0.55 to 1.38, *Figure 2*) between oseltamivir therapy and the control group. The use of oseltamivir prolonged the duration of disease (WMD=3.91d, 95% CI 2.28 to 5.54, very low-quality evidence) and duration of fever (WMD=2.60 d, 95% CI 0.50 to 4.70, very low-quality evidence).

One RCT with a total of 127 patients (49) compared the effectiveness of oseltamivir between early use alone and use alone in adult patients with SARS. The results showed that early use alone was not associated with the risk of death (RR=1.62, 95% CI 0.33 to 8.05), ARDS (RR=2.60, 95% CI 0.30 to 22.57) or the duration of disease (WMD=-2.50 d, 95% CI -7.45 to 2.45). The quality of evidence was low.

Combination of ribavirin and interferon

Two cohort studies with a total of 393 patients (50-51) reported the effectiveness and safety of a combination of RBV and IFN for adult patients with MERS. The results showed that combination therapy of RBV and IFN could increase the mean reduction in

hemoglobin (WMD=2.18 g/L, 95% CI 0.86 to 3.50, very low-quality evidence) and the need of blood transfusion (RR=1.42, 95% CI 1.06 to 1.91, low-quality evidence). But there was no statistically significant difference in the risk of death (RR=1.04, 95% CI 0.74 to 1.46, *Figure 2*) between the two groups.

Favipiravir

One study with a total of 236 patients (52) reported the effectiveness and safety of favipiravir for adult patients with COVID-19. The results showed that when comparing to arbidol, favipiravir had lower incidence of dyspnea after taking medicine (RR=0.30, 95% CI 0.10 to 0.87), but there was no differnce in clinical recovery (RR=1.18, 95% CI 0.95 to 1.48) or the incidence of adverse reactions (RR=1.37, 95% CI 0.90 to 2.08). The overall quality of evidence was low.

Hydroxychloroquine

Two studies with a total of 92 patients (53-54) reported the effectiveness and safety of hydroxychloroquine for adult patients with COVID-19. The results showed that HCQ had no benefit on the negative PCR result (RR=0.93, 95% CI 0.73 to 1.18), but was effective for shortening the duration of fever (WMD=-0.90 days, 95% CI -1.48 to -0.31). In addition, there was no statistically significant difference in the incidence of adverse reactions (RR=1.65, 95% CI 0.50 to 5.50) between HCQ therapy and the control group. The overall quality of evidence was low.

Discussion

Our rapid review identified a total of 23 studies. No direct evidence for the effectiveness and safety of antiviral agents for children with COVID-19 was available. Based on the analysis of indirect evidence from adult patients with COVID-19, very low to low-quality evidence indicated that LPV/r, arbidol and hydroxychloroquine were not effective. For adult patients with SARS or MERS, very low to low-quality evidence indicated that LPV/r, IFN, RBV and oseltamivir had no clinical effectiveness on mortality, corticosteroids dose, or other main outcomes. Certain medications, such as LPV/r and RBV, were likely to lead to adverse reactions (such as gastrointestinal reaction, abnormal liver function, anemia, bradycardia, or hypoxemia).

Most viral diseases are self-limiting illnesses that do not require specific antiviral therapy. At present, no antiviral agent has been confirmed to be effective against COVID-19, and vaccination are currently under development, so symptomatic and supportive treatments are crucial. However, children are less likely than adults to have complications or develop into critical conditions, and their clinical manifestations are less atypical, complicating the diagnosis. (56-58) Guidelines recommend antiviral agents such as LPV/r, IFN, arbidol and chloroquine to treat COVID-19 in adults, while children (especially critically illness) can be treated reference to the regimen of adults. (9-11) Up to now, almost all COVID-19 patients (adults and children) have received antiviral therapy.(59) Several case reports or series (60-61) have also highlighted the

potential efficacy of antivirals in children with SARS-CoV-2 infection and found no obvious adverse reactions, but the number was too small to draw any conclusions. More studies are needed to further evaluate the risks and benefits that antiviral agents may bring.

LPV/r is one of the first medications that were taken into clinical practice after the beginning of the COVID-19 outbreak, and it is recommended for treatment of COVID-19 patients in the latest version of China national practice guideline (released on March 4, 2020) without any reference. (9) Our rapid review however demonstrates that LPV/r is unlikely to be effective for COVID-19 in adults with numerous obvious adverse reactions, which was the same as recent studies. (62-63) Two rapid reviews conducted in 2020 (12-13) examined that early use of LPV/r can reduce the mortality and steroid dosing in patients with SARS and MERS, and suggested that it could be used as a component for an experimental regimen to treat COVID-19. But no quantitative analysis or evidence grading was performed, and therefore the reliability of the conclusions is questionable. Although LPV/r could reduce the mortality of adult SARS patients, the quality of evidence was low. Therefore, LPV/r should not be recommended in clinical practice guidelines.

The results on other antivirals were similar to those identified in other systematic reviews. Among patients with COVID-19, the use of HCQ was effective for clinical recovery which is the same as published reviews (17-18), but we found HCQ had no benefit on probability of viral load disappearance, this is not the same as previous

studies due to the retraction of Philippe 2020 (64). All trials for HCQ included in this study had small sample size to draw robust conclusions. IFN had no benefit on mortality and the effect did not differ between IFN- α and IFN- β : the results are in line with another recent rapid review. (14) RBV and oseltamivir were not shown effective for treating adults with SARS, and the use of RBV was even related to a high risk of serious side effects, and oseltamivir prolonged the duration of disease. These results were also observed by recent and previous systematic reviews. (15, 65-66) One study demonstrated that the concentration of RBV required to effectively inhibit the activity of SARS-CoV or MERS-CoV was beyond the clinically acceptable range, so routine use of the drug would have no effect. (67) One recent case of COVID-19 in the United States suggested a promising clinical response to remdesivir, (68) and study by Wang et al. revealed that remdesivir was highly effective in the control of SARS-CoV-2 in vitro, (69) but the evidence quality was low and the newest results of clinical research suggested no significant effect for patients hospitalized of severe COVID-19, (70) and the clinical trials of remdesivir therapy are still ongoing. The outbreak of COVID-19 has imposed a great socioeconomic, public health, and clinical burden on the affected countries and regions, especially for the low-and middle-income countries. Therefore, priority should be given for the research and implementation of agents with promising outcomes.

Strengthens and Limitations

This study is to our knowledge the first systematic and comprehensive rapid review for

the effectiveness and safety of antiviral agents in children with COVID-19. It can therefore be considered the best evidence at the moment for the management of COVID-19 in children, and help to respond to the current public health emergency. Our study was also performed and reported in accordance with Cochrane Handbook and PRISMA checklist, and included Meta-analyses and grading of evidence to draw quantitative conclusions with scientific and rigorous methods. However, our study had also some limitations: First, this rapid review was unable to identify direct evidence for antiviral use in children with COVID-19 and only summarized the indirect evidence, mainly from adults patients with COVID-19, SARS or MERS. The reported treatment effects should be interpreted with caution due to the lack of high-quality RCTs and direct evidence. Second, due to the heterogeneity of the reviewed studies in terms of the wide range of treatment dosages, frequencies and routes of administration, we were unable to perform a quantitative analysis from these aspects for each antiviral. This is a major obstacle to a clear interpretation of the results of this review. Third, because of the specificity and urgency of PHEIC, our study protocol was not registered on the Prospective Register of Systematic Reviews Platform.

Further Suggestions

We suggest for the further actions on the basis of our study. First, high-quality clinical research should be carried out in a timely and effective manner, following the randomization, control and bind principles of evidence-based medicine, trying to adopt objective and representative outcomes for evaluation, so that unbiased research results

can be ensured. Second, health workers need high-quality, unbiased and evidence-based recommendations to guide clinical practice. Health workers should accumulate clinical experience and be encouraged to interpret the evidence with professionalism by cooperating with researchers, avoid conflicts of interest, and thus reduce the possibly harmful impact on children with COVID-19. Third, health policy decisions should be made based on the best available evidence and make full use of the limited resources to make decisions that are valid, rational and based on up-to-date scientific knowledge.

Conclusions

In conclusion, there is no direct evidence for antiviral agents in children with COVID-19 so far. Very low to low-quality indirect evidence indicated that antiviral agents were not effective for reducing mortality, and the effectiveness and safety of antivirals for children with COVID-19 are uncertain. Therefore, we cannot suggest routine use of these agents for the treatment of COVID-19 in children, with the exception of clinical trials after thorough ethical assessment.

Author contributions

(I) All the authors contributed to the conception and design of the study as follows; (II) Administrative support: Y Chen; (III) Provision of study materials or patients: Q Shi, Q Zhou and X Wang; (IV) Collection and assembly of data: Q Shi, Q Zhou, X Wang, J Liao; (V) Data analysis and interpretation: Q Shi, Q Zhou and X Wang, J Liao, Y Yu, Z

Wang, S Lu; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Acknowledgments

We thank Janne Estill, Institute of Global Health of University of Geneva for providing guidance and comments for our review. We thank all the authors for their wonderful collaboration

Funding

This work was supported by grants from National Clinical Research Center for Child Health and Disorders (Children's Hospital of Chongqing Medical University, Chongqing, China) (grant number NCRCCHD-2020-EP-01) to [Enmei Liu]; Special Fund for Key Research and Development Projects in Gansu Province in 2020, to [Yaolong Chen]; The fourth batch of "Special Project of Science and Technology for Emergency Response to COVID-19" of Chongqing Science and Technology Bureau, to [Enmei Liu]; Special funding for prevention and control of emergency of COVID-19 from Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province (grant number No. GSEBMKT-2020YJ01), to [Yaolong Chen].

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

23

Ethical Statement: The authors are accountable for all aspects of the work in ensuring

that questions related to the accuracy or integrity of any part of the work are

appropriately investigated and resolved.

References :

- 1. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382:727-33.
- 2. Paules CI, Marston HD, Fauci AS. Coronavirus Infections—More Than Just the Common Cold. JAMA 2020; 323(8):707-8.
- 3. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223):497-506.
- WHO Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020. 2020 [cited 2020 Apr 2]. Available online: <u>https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020.</u>
- 5. Munster VJ, Koopmans M, van Doremalen N, et al. A novel coronavirus emerging in China—key questions for impact assessment. N Engl J Med 2020; 382(8):692-4.
- 6. Phelan AL, Katz R, Gostin LO. The Novel Coronavirus Originating in Wuhan, China: Challenges for Global Health Governance. JAMA 2020; 323(8):709-10.
- World Health Organization (WHO).Coronavirus disease 2019 (COVID-19) Situation Report-83. Geneva: WHO; 2020.[cited 2020 Apr 13]. Available online: <u>https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200412-s</u> itrep-83-covid-19.pdf?sfvrsn=697ce98d_4.
- 8. WHO Director-General's opening remarks at the media briefing on COVID-19 28 February 2020 [cited 2020 Apr 2] Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-atthe-media-briefing-on-covid-19---28-february-2020.
- 9. National Health Commission and National Administrative Office of Chinese Tradition Medicine. National Recommendations for Diagnosis and Treatment of pneumonia caused by 2019-nCoV (the 7th edition). [cited 2020 Apr 2]. Available online:

http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989. shtml.

- 10. Jin Y, Cai L, Cheng Z. et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020; 7(1): 4.
- 11. The Society of Pediatrics, Chinese Medical Association. Recommendations for Diagnosis and Prevention of 2019 novel Coronavirus Infection in Children (Trial version 1). Chin J Pediatr 2020; 58(3):169-74.

- 12. Jiang H, Deng H, Wang Y, et al. The possibility of using Lopinave/Litonawe (LPV/r) as treatment for novel coronavirus 2019-nCov pneumonia: a quick systematic review based on earlier coronavirus clinical studies. Chin J Emerg Med 2020; 29: 182-6.
- 13. Yao T, Qian J, Zhu W, et al. A Systematic Review of Lopinavir Therapy for SARS Coronavirus and MERS Coronavirus-A Possible Reference for Coronavirus Disease-19 Treatment Option. J Med Virol 2020; 27 [Epub ahead of print].
- 14. Chen M, Tong R, Bian Y, et al. Evidence-based Rapid Review on Possibility of Treatment of 2019-nCoV with Subcutaneousα-interferon. Her Med 2020.
- 15. Luo T, Na Y, Tan L, et al. The Possibility of Ribavirin as in the Treatment of the Coronavirus Disease 2019: A Systematic Review. China Pharmaceuticals 2020; 29(5).
- 16. Hong D, Wang R, Ye Z, et al. The effect of interferon combined with ribavirin on the risk of death in patients with Severe Coronavirus Infection: A Systematic Review based on previous MERS-CoV studies. Chin J Hosp Pharm 2020; [Epub ahead of print].
- Krishan MK, Aanandita K. Role of Chloroquine and Hydroxychloroquine in the Treatment of COVID-19 Infection- A Systematic Literature Review. 2020; MedRxiv 2020. [cited 2020 Apr 2]. Available online: https://www.medrxiv.org/content/10.1101/2020.03.24.20042366v1
- 18. Cortegiani A, Ingoglia G, Ippolito M, et al. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020:3-7
- 19. Zeng L, Tao X, Yuan W, et al. First case of neonate infected with novel coronavirus pneumonia in China. Chin J Pediatr 2020; 58(00): E009-E009.
- 20. Coronavirus latest: children are as susceptible as adults, study suggests. Nature 2020; [cited 2020 Apr 2]. Available online: https://www.nature.com/articles/d41586-020-00154-w.
- 21. Wei M, Yuan J, Liu Y, et al. Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China. JAMA 2020; [Epub ahead of print].
- 22. Li, L, Tian J, Tian H, et al. Network meta-analyses could be improved by searching more sources and by involving a librarian. J Clin Epidemiol 2014; 67(9): 1001-7.
- 23. World Health Organization. Clinical management of severe acute respiratory infection when Novel coronavirus (nCoV) infection is suspected: Interim Guidance. Jan 28, 2020. [cited 2020 Apr 2]. Available online: https://www.who.int/internal-publications-detail/clinical-managementof-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.
- 24. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011; 343(oct18 2): d5928-d5928.
- 25. Sterne JAC, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016; 355: i4919.
- 26. Wells GA, Shea B, O'Connell D, et a1. The Newcastle Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses [EB/ OL]. [cited

2020 Apr 2]. Available online: <u>http://www.ohri.ca/programs</u> /

clinical-epidemiology/oxford. htm

- 27. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 2007; 28(2): 105-14.
- 28. Higgins JPT, Thomas J, Chandler J, et al. Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, 2019. Available from www.training.cochrane.org/handbook.
- 29. Furukawa T A, Barbui C, Cipriani A, et al. Imputing missing standard deviations in meta-analyses can provide accurate results. J Clin Epidemiol, 2006, 59(1): 7-10.
- Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011; 64(4):383-94.
- 31. Norris, SL, Meerpohl JJ, Akl EA, et al. The skills and experience of GRADE methodologists can be assessed with a simple tool. J Clin Epidemiol 2016; 79: 150-8.
- 32. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020. [Epub ahead of print].
- 33. Li Y, Xie Z, Lin W, et al. An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). 2020; [medRxiv preprint]
- 34. Chen J, Ling Y, Xi X, et al. Efficacies of lopinavir/ritonavir and abidol in the treatment of novel coronavirus pneumonia. Chin J Infect Dis 2020; 38(00): E008-E008.
- 35. Chan K, Lai S, Chu C, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: A multicentre retrospective matched cohort study. Hong Kong Med J 2003; 9(6):399-406.
- 36. Chu C, Cheng V, Hung I, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
- Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infec 2020; pii: S0163-4453(20)30113-4. [Epub ahead of print]
- Loutfy MR, Blatt LM, Siminovitch KA, et al. Interferon Alfacon-1 Plus Corticosteroids in Severe Acute Respiratory Syndrome: A Preliminary Study. JAMA 2003; 290(24): 3222-8.
- 39. Li J, Wu H, Huang Z, et al. Clinical study on treatment of severe acute respiratory syndrome with interferon-alpha. Clin Med Chin 2005; 21(2):109-10.
- Liu D, Ouyang J, Zou M, et al. Antiviral Agents in Treating Severe Acute Respiratory Syndrome: A Multi-factorial Analysis. Chin J Nosocomiol 2009; 19(4): 434-6.
- 41. Xu M, Cai W, Jia W. Therapeutic efficacy in patients with infectious atypical pneumonia: comparison of different protocols. Chin J Pract Intern Med 2003;

23(12):21-3.

- 42. Shalhoub S, Farahat F, Al-Jiffri A, et al. IFN-alpha2a or IFN-beta1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study. J Antimicrob Chemother 2015; 70(7): 2129-32.
- 43. Leong HN, Ang B, Earnest A, et al. Investigational use of ribavirin in the treatment of severe acute respiratory syndrome, Singapore, 2003. Trop Med Int Health 2004; 9(8):923-7.
- 44. Chiou HE, Liu C, Buttrey MJ, et al. Adverse Effects of Ribavirin and Outcome in Severe Acute Respiratory Syndrome. Chest 2005; 128(1):263-72.
- 45. Lau EH, Cowling BJ, Muller MP, et al. Effectiveness of ribavirin and corticosteroids for severe acute respiratory syndrome. Am J Med 2009; 122(12): 1150. e11-1150. e21.
- 46. Wang J, Li D, Li J, et al. Effects of anti-virus agents for the dosing period of glucorticoids in SARS patients. Chin J New Drug 2005; 14(1):109-10.
- 47. Muller MP, Dresser L, Raboud J, et al. Adverse events associated with high-dose ribavirin: evidence from the Toronto outbreak of severe acute respiratory syndrome. Pharmacotherapy 2007; 27(4): 494-503.
- 48. Guo L, Han Y, Li J, et al. Long-term outcomes in patients with severe acute respiratory syndrome treated with oseltamivir: A 12-year longitudinal study. Int J Clin Exp Med 2019; 12(10): 12464-71.
- 49. Xu Y, Chen S, Jiang M. Clinical observation of oseltamivir phosphate in the treatment of severe acute respiratory syndrome. Chin J Clinical Rational Drug Use 2011; 4(7B):68-9.
- 50. Omrani AS, Saad MM, Baig K, et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis, 2014, 14(11):1090-5.
- 51. Arabi YM, Shalhoub S, Mandourah Y, et al. Ribavirin and Interferon Therapy for Critically Ill Patients with Middle East Respiratory Syndrome: A Multicenter Observational Study. Clin Infect Dis 2019; 25. pii: ciz544.
- 52. Chen C, Huang J, Cheng Z, et al. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. 2020; MedRxiv 2020. [cited 2020 Apr 2]. Available online: <u>https://www.medrxiv.org/content/10.1101/2020.03.17.20037432v3</u>
- 53. Chen J, Liu D, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J ZHEJIANG UNIVERSITY.2020; published online Mar 9.
- 54. Chen Z, Hu J, Zhang Z, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. MedRxiv 2020. [cited 2020 Apr 2]. Available online: https://www.medrxiv.org/content/10.1101/2020.03.22.20040758v3
- 55. Cai Q, Yang M, Liu D, et al. TEMPORARY REMOVAL: Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering 2020.
- 56. Yang B , Zhu Y. Epidemiology and treatment of novel coronavirus pneumonia

(COVID-19) in children and adults. Journal of Xi'an Jiaotong University (Medical Sciences) 2020.

57. She J , Liu W. Epidemiological characteristics and prevention and control measures

of Corona Virus Disease 2019 in children. Journal of Tropical Medicine 2020.

- 58. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med 2020; Mar 5;382(10):970-1.
- 59. Lai C, Shih T, Ko W, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020; 17:105924.
- 60. Chen F, Liu Z, Zhang F, et al. Frist case of severe childhood novel coronavirus pneumonia in China. Chin J Pediatr 2020; 58(3):179-82.
- 61. Wang D, Ju X, Xie F, et al. Clinical analysis of 31 cases of 2019 novel coronavirus infection in children from six provinces (autonomous region) of northern China. Chin J Pediatr 2020; 58(4).
- 62. Zhenyu F, Li P, Jun L, et al. Clinical Features of COVID-19 Related Liver Damage. 2020; MedRxiv 2020. [cited 2020 Apr 2]. Available online: https://www.medrxiv.org/content/10.1101/2020.02.26.20026971v2
- 63. Barnaby EY, Sean WX, Shirin K, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA 2020; 3(3).
- 64. Philippe G, Jean-Christophe L, Philippe P, et al. Retracted: Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020; 105949.
- 65. Falzarano D, Wit E, Rasmussen AL, et al. Treatment with interferon-alpha 2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med 2013; 19(10):1313-7.
- 66. Stockman LJ, Bellamy R, Garner P. SARS: Systematic Review of Treatment Effects. PLoS Med 2006; 3(9): e343.
- 67. Hart BJ, Dyall J, Postnikova E, et al. Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. J Gen Virol 2014; 95:571–7.
- 68. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; Jan 31 [Epub ahead of print].
- 69. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; Feb 4 [Epub ahead of print].
- 70. Jonathan G, Norio O, Daniel S, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med 2020; Apr 10 [Epub ahead of print].

29

Supplementary Material 1-Search strategy PubMed

- #1 "COVID-19" [Supplementary Concept]
- #2 "Severe Acute Respiratory Syndrome Coronavirus" [Supplementary Concept]
- #3 "Middle East Respiratory Syndrome Coronavirus" [Mesh]
- #4 "Severe Acute Respiratory Syndrome" [Mesh]
- #5 "SARS Virus" [Mesh]
- #6 "COVID-19" [Title/Abstract]
- #7 "SARS-COV-2" [Title/Abstract]
- #8 "Novel coronavirus" [Title/Abstract]
- #9 "2019-novel coronavirus" [Title/Abstract]
- #10 "coronavirus disease-19" [Title/Abstract]
- #11 "coronavirus disease 2019" [Title/Abstract]
- #12 "COVID19" [Title/Abstract]
- #13 "Novel CoV" [Title/Abstract]
- #14 "2019-nCoV" [Title/Abstract]
- #15 "2019-CoV" [Title/Abstract]
- #16 "Wuhan-Cov" [Title/Abstract]
- #17 "Wuhan Coronavirus" [Title/Abstract]
- #18 "Wuhan seafood market pneumonia virus" [Title/Abstract]
- #19 "Middle East Respiratory Syndrome" [Title/Abstract]
- #20 "MERS" [Title/Abstract]
- #21 "MERS-CoV" [Title/Abstract]
- #22 "Severe Acute Respiratory Syndrome" [Title/Abstract]
- #23 "SARS" [Title/Abstract]
- #24 "SARS-CoV" [Title/Abstract]
- #25 "SARS-Related" [Title/Abstract]
- #26 "SARS-Associated" [Title/Abstract]
- #27 #1-#26/ OR
- #28 "Antiviral Agents" [Mesh]
- #29 "Ribavirin" [Mesh]
- #30 "Interferon" [Mesh]
- #31 "GS-5734" [Supplementary Concept]
- #32 "Oseltamivir " [Mesh]
- #33 "Lopinavir" [Mesh]
- #34 "Ritonavir" [Mesh]
- #35 "lopinavir-ritonavir drug combination" [Supplementary Concept]
- #36 "Antiviral*" [Title/Abstract]
- #37 "Ribavirin" [Title/Abstract]
- #38 "Virazole" [Title/Abstract]
- #39 "Interferon" [Title/Abstract]
- #40 "Remdesivir" [Title/Abstract]
- #41 "GS-5734" [Title/Abstract]

30

#42 "Oseltamivir" [Title/Abstract]
#43 "Lopinavir" [Title/Abstract]
#44 "Ritonavir" [Title/Abstract]
#45 "Kaletra" [Title/Abstract]
#46 "LPV/r" [Title/Abstract]

#47 #28-#46/ OR

#48 #27 AND #47

Embase

- #1 'middle east respiratory syndrome coronavirus'/exp
- #2 'severe acute respiratory syndrome'/exp
- #3 'sars coronavirus'/exp
- #4 'COVID-19':ab,ti
- #5 'SARS-COV-2':ab,ti
- #6 'novel coronavirus':ab,ti
- #7 '2019-novel coronavirus':ab,ti
- #8 'coronavirus disease-19':ab,ti
- #9 'coronavirus disease 2019':ab,ti
- #10 'COVID19':ab,ti
- #11 'novel cov':ab,ti
- #12 '2019-ncov':ab,ti
- #13 '2019-cov':ab,ti
- #14 'wuhan-cov':ab,ti
- #15 'wuhan coronavirus':ab,ti
- #16 'wuhan seafood market pneumonia virus':ab,ti
- #17 'middle east respiratory syndrome':ab,ti
- #18 'middle east respiratory syndrome coronavirus':ab,ti
- #19 'mers':ab,ti
- #20 'mers-cov':ab,ti
- #21 'severe acute respiratory syndrome':ab,ti
- #22 'sars':ab,ti
- #23 'sars-cov':ab,ti
- #24 'sars-related':ab,ti
- #25 'sars-associated':ab,ti
- #26 #1-#25/ OR
- #27 'Antiviral Agent'/exp
- #28 Antiviral*[ti, ab]
- #29 Ribavirin [ti, ab]
- #30 Virazole [ti, ab]
- #31 Interferon [ti, ab]
- #32 Remdesivir [ti, ab]
- #33 GS-5734 [ti, ab]
- #34 Oseltamivir [ti, ab]

- #35 Lopinavir [ti, ab]
- #36 Ritonavir [ti, ab]
- #37 Kaletra [ti, ab]
- #38 "LPV/r"[ti, ab]
- #39 #27-#38/ OR
- #40 #26 AND #39
- #41 [medline]/lim in #40
- #42 #40 NOT #41

Web of science

- #1 TOPIC: "COVID-19"
- #2 TOPIC: "SARS-COV-2"
- #3 TOPIC: "Novel coronavirus"
- #4 TOPIC: "2019-novel coronavirus"
- #5 TOPIC: "coronavirus disease-19" [Title/Abstract]
- #6 TOPIC: "coronavirus disease 2019" [Title/Abstract]
- #7 TOPIC: "COVID19" [Title/Abstract]
- #8 TOPIC: "Novel CoV"
- #9 TOPIC: "2019-nCoV"
- #10 TOPIC: "2019-CoV"
- #11 TOPIC: "Wuhan-Cov"
- #12 TOPIC: "Wuhan Coronavirus"
- #13 TOPIC: "Wuhan seafood market pneumonia virus"
- #14 TOPIC: "Middle East Respiratory Syndrome"
- #15 TOPIC: "MERS"
- #16 TOPIC: "MERS-CoV"
- #17 TOPIC: "Severe Acute Respiratory Syndrome"
- #18 TOPIC: "SARS"
- #19 TOPIC: "SARS-CoV"
- #20 TOPIC: "SARS-Related"
- #21 TOPIC: "SARS-Associated"
- #22 #1-#21/OR
- #23 TOPIC: ("Antiviral*")
- #24 TOPIC: ("Ribavirin")
- #25 TOPIC: ("Virazole")
- #26 TOPIC: ("Interferon")
- #27 TOPIC: ("Remdesivir")
- #28 TOPIC: ("GS-5734")
- #29 TOPIC: ("Oseltamivir")
- #30 TOPIC: ("Lopinavir")
- #31 TOPIC: ("Ritonavir")
- #32 TOPIC: ("Kaletra")
- #33 TOPIC: ("LPV/r")

32

#34 #23-#33/ OR #35 #22 AND #34

Cochrane Library

- #1 MeSH descriptor: [Middle East Respiratory Syndrome Coronavirus] explode all trees
- #2 MeSH descriptor: [Severe Acute Respiratory Syndrome] explode all trees
- #3 MeSH descriptor: [SARS Virus] explode all trees
- #4 "COVID-19":ti,ab,kw
- #5 "SARS-COV-2":ti,ab,kw
- #6 "Novel coronavirus":ti,ab,kw
- #7 "2019-novel coronavirus" :ti,ab,kw
- #8 "Novel CoV" :ti,ab,kw
- #9 "2019-nCoV" :ti,ab,kw
- #10 "2019-CoV" :ti,ab,kw
- #11 "coronavirus disease-19" :ti,ab,kw
- #12 "coronavirus disease 2019" :ti,ab,kw
- #13 "COVID19" :ti,ab,kw
- #14 "Wuhan-Cov" :ti,ab,kw
- #15 "Wuhan Coronavirus" :ti,ab,kw
- #16 "Wuhan seafood market pneumonia virus" :ti,ab,kw
- #17 "Middle East Respiratory Syndrome" :ti,ab,kw
- #18 "MERS":ti,ab,kw
- #19 "MERS-CoV":ti,ab,kw
- #20 "Severe Acute Respiratory Syndrome":ti,ab,kw
- #21 "SARS" :ti,ab,kw
- #22 "SARS-CoV" :ti,ab,kw
- #23 "SARS-Related":ti,ab,kw
- #24 "SARS-Associated":ti,ab,kw
- #25 #1-#24/ OR
- #26 MeSH descriptor: [Antiviral agents] explode all trees
- #27 ("Antiviral*"): ti, ab, kw
- #28 ("Ribavirin"): ti, ab, kw
- #29 ("Virazole"): ti, ab, kw
- #30 ("Interferon"): ti, ab, kw
- #31 ("Remdesivir"): ti, ab, kw
- #32 ("GS-5734"): ti, ab, kw
- #33 ("Oseltamivir"): ti, ab, kw
- #34 ("Lopinavir"): ti, ab, kw
- #35 ("Ritonavir"): ti, ab, kw
- #36 ("Kaletra"): ti, ab, kw
- #37 ("LPV/r"): ti, ab, kw
- #38 #26-#37/ OR

33

#39 #25 AND #38

CNKI

- #1 主题:("新型冠状病毒")
- #2 主题:("COVID-19")
- #3 主题:("SARS-COV-2")
- #4 主题:("2019-nCoV ")
- #5 主题:("2019-CoV")
- #6 主题:(" 武汉冠状病毒")
- #7 主题:("中东呼吸综合征")
- #8 主题:("严重急性呼吸综合征")
- #9 主题:("SARS")
- #10 主题:("MERS")
- #11 主题:("MERS-CoV ")
- #12 #1-#11/ OR
- #13 主题:("抗病毒")
- #14 主题:("干扰素")
- #15 主题:("利巴韦林")
- #16 主题:("病毒唑")
- #17 主题:("三氮唑核苷")
- #18 主题:("尼斯可")
- #19 主题:("瑞德西韦")
- #20 主题:("奥司他韦")

34

- #21 主题:("达菲")
- #22 主题:("特敏福")
- #23 主题:("克流感")
- #24 主题:("洛匹那韦")
- #25 主题:("利托那韦")
- #26 主题:("利托纳韦")
- #27 主题:("克力芝")
- #28 #13-#27/ OR
- #29 #12 AND #28

CBM

- #1 "新型冠状病毒"[常用字段:智能]
- #2 "COVID-19"[常用字段:智能]
- #3 "SARS-COV-2"[常用字段:智能]
- #4 "2019-nCoV"[常用字段:智能]
- #5 "2019-CoV"[常用字段:智能]
- #6 "武汉冠状病毒"[常用字段:智能]
- #7 "中东呼吸综合征冠状病毒"[不加权:扩展]
- #8 "中东呼吸综合征"[常用字段:智能]
- #9 "MERS"[常用字段:智能]
- #10 "MERS-CoV"[常用字段:智能]
- #11 "严重急性呼吸综合征"[不加权:扩展]
- #12 "SARS 病毒"[不加权:扩展]

#13 "严重急性呼吸综合征"

#14 "SARS"[常用字段:智能]

#15 #1-#14 / OR

#16 "抗病毒药" [不加权:扩展]

#17 "抗病毒"[常用字段:智能]

#18 "干扰素"[常用字段:智能]

#19 "利巴韦林"[常用字段:智能]

#20 "病毒唑"[常用字段:智能]

#21 "三氮唑核苷"[常用字段:智能]

#22 "尼斯可"[常用字段:智能]

#23 "瑞德西韦"[常用字段:智能]

#24 "奥司他韦"[常用字段:智能]

#25 "达菲"[常用字段:智能]

#26 "特敏福"[常用字段:智能]

#27 "克流感"[常用字段:智能]

#28 "洛匹那韦"[常用字段:智能]

#29 "利托那韦"[常用字段:智能]

#30 "克力芝"[常用字段:智能]

#31 #16-#30/ OR #32 #15 AND #31

Wanfang

#1 主题:("新型冠状病毒")

#2 主题:("COVID-19")

- #3 主题:("SARS-COV-2")
- #4 主题:("2019-nCoV")
- #5 主题:("2019-CoV")
- #6 主题:(" 武汉冠状病毒")
- #7 主题:("中东呼吸综合征")
- #8 主题:("严重急性呼吸综合征")
- #9 主题:("SARS")
- #10 主题:("MERS")
- #11 主题:("MERS-CoV ")
- #12 #1-#11/ OR
- #13 主题:("抗病毒")
- #14 主题:("干扰素")
- #15 主题:("利巴韦林")
- #16 主题:("病毒唑")
- #17 主题:("三氮唑核苷")
- #18 主题:("尼斯可")
- #19 主题:("瑞德西韦")
- #20 主题:("奥司他韦")
- #21 主题:("达菲")
- #22 主题:("特敏福")
- #23 主题:("克流感")
- #24 主题:("洛匹那韦")

37

#25 主题:("利托那韦")

#26 主题:("利托纳韦")

#27 主题:("克力芝 ")

#28 #13-#27/ OR

#29 #12 AND #28

Supplementary Material 2. Data extraction (Table 1-8)

	Table 1. Evidence summary of LPV/r									
Study	Design	Size	Disease	Compare	Primary outcomes	Secondary outcomes	Conclusion			
Cao	RCT	199	COVID-	LPV vs	Mortality: 19.2% vs	Negative PCR result (%) at	The use of LPV/r			
2020			19	no LPV	25.0%	28 day: 59.3 vs 57.7	had no effects on			
(33)			(severe)		Any adverse	Time until clinical symptoms	mortality and			
					reactions (%): 48.4	improved (d): 15 \pm 3 vs 16 \pm 2	negative PCR result			
					vs 49.5	Duration of hospitalization	for adult patients			
					Serious adverse	(d): 14.3 \pm 3.7 vs 15.7 \pm 3.8	with severe			
					reactions (%): 20.0		COVID-19			
					vs 32.3					
Li	RCT	28	COVID-	LPV vs	Adverse reactions: 5	Rate of received oxygen	LPV/r seems little			
2020			19	no LPV	vs 0	therapy: 18 (85.7%) vs 6	benefit for			
(34)			(mild/mo		Negative PCR result	(85.7%)	improving			
			derate)		at day 7 (%):42.9%	Rate of clinical symptoms	the clinical outcome			
					vs 71.4%	improvement: 13/21 vs 6/7	of COVID-19			
					Negative PCR result	Rate of improvement on				
					at day 14 (%): 76.2	chest CT (%):16/19(84.2%)				
					vs 71.4	vs 6/6 (100%)				
Chen	Cohort	134	COVID-	LPV vs	Duration of disease	Radiographic abnormalities	The use of LPV/r			
2020			19 (all)	no LPV	(d): 4.0 (2.5-7.0) vs	remission (%):	had no effects on			
(35)				(both	5 (3.0-8.5) P=0.20	42.3 (n=22) vs 52.1 (n=25)	relieving symptoms			
				groups	Adverse reactions	P=0.30	or accelerating virus			
				received	(%): 17.3 (n=9) vs	Negative PCR result (%):	clearance.			
				Interferon	8.3 (n=4) P=0.33	71.8 (28/39) vs 77.1 (27/35)				
				and		P=0.79				
				supportiv		Median time to temperature				
				e		normalization after				
				treatment		admission (d): 6 vs 4 P=0.31				
)						
Chan	Cohort	678	SARS	LPV vs	Mortality:	Intubation (%):	The addition of LPV			
2003				no LPV	2.3 (0-6.8) vs 15.6	0 vs 11.0 (7.7-15.3) (P <	to a standard			
(36)				(both	(9.8-22.8) (P <	0.005)	treatment protocol			

1. Lopinavir/ ritonavir (LPV/r)

38

				groups	0.005)	Risk of oxygen desaturation	for SARS could
				groups	0.005)	Kisk of oxygen desaturation	
				received	Mean	episodes (%):	reduce overall death
				methylpr	methylprednisolone	68.2(52.3-81.8) vs 84.5	rate, intubation rate
				ednisolon	dose (g):	(74.4-95.2) (P=NS)	and the dose of
				e and oral	1.6 (1.1-2.0) vs 3.0	Elevated serum transaminase	methylprednisolone
				ribavirin)	(2.8-3.2)(P < 0.005)	levels (%): 9.1 (0-18.2) vs	
						6.9 (4.5-9.9) (P=NS)	
						Elevated serum amylase level	
						(%):	
						5 (0-15) vs 2.4 (0-4.8)	
						(P=NS)	
Chu	Cohort	152	SARS	LPV vs	Mortality:	ARDS:	There was no effect
2003				no LPV	0 (0%) vs 7 (6.3%)	1 (2.4%) vs 25 (22.5%) (no	on the ARDS rate,
(37)				(both	(no P-value)	P-value)	mortality and dose
				groups	Methylprednisolone	Radiographic abnormalities	of
				received	does (g):	worsened:51.2% vs 81.1% (P	methylprednisolone
				methylpr	2.0 (0-3.0) vs 1.5	< 0.001)	in SARS with LPV,
				ednisolon	(1.0–3.0) (P=0.477)	Nosocomial infection:0% vs	and it could cause
				e and		25.2% (P=0.048)	adverse reactions.
				ribavirin)		Diarrhea: 24.4% vs 62.2% (P	
						< 0.001)	
						Recurrent fever:	
						39% vs 60.4% ($P = 0.0027$)	
						·····(1 010027)	

PCR: Polymerase Chain Reaction

ARDS: Acute respiratory distress syndrome

2. Arbidol

Table 2. Evidence summary of Arbidol

Study	Design	Size	Disease	Compare	Primary outcomes	Secondary outcomes	Conclusion			
Chen	Cohort	82	COVID-	Arbidol vs	Duration of disease	Radiographic	The use of Arbidol had			
2020			19	no Arbidol	(d): 3.5 (2.0-6.0) vs	abnormalities remission	no effects on relieving			
(35)				(both	5 (3.0-8.5) P=0.20 (%):		symptoms or			
				groups	Adverse reactions	35.3 (n=12) vs 52.1	accelerating virus			
				received	(%)	(n=25) P=0.30	clearance.			
				Interferon	8.8 (n=3) vs 8.3	Negative PCR result (%)				
				and	(n=4) P=0.33	82.6 (19/23) vs 77.1				
				supportive		(27/35) P=0.79				
				treatment)		Median time to				
						temperature				
						normalization after				
						admission (d):				
						6 vs 4 P=0.31				

39

Deng	Cohort	33	COVID-	Arbidol	Negative PCR result	Improvement of chest	Arbidol plus LPV/r
2020			19	plus LPV/r	(%):15 /16 (94%) vs	CT scans:	could increase the rate
(38)				vs no	9/17 (52.9%)	11/16 (69%) vs 5/17	of negative PCR and
				LPV/r		(29%)	chest improvement
Li	RCT	23	COVID-	Arbidol vs	Adverse reactions: 0	Rate of received oxygen	Arbidol seems little
2020			19	no Arbidol	vs 0	therapy: 11 (68.8%) vs 6	benefit for improving
(34)					Negative PCR result	(85.7%)	the clinical outcome of
					at day 7 (%):62.5 vs	Rate of clinical	COVID-19
					71.4	symptoms improvement:	
					Negative PCR result	14/16 vs 6/7	
					at day 14 (%): 87.5	Rate of improvement on	
					vs 71.4	chest CT	
						(%):10/15(66.7%) vs 6/6	
						(100%)	

PCR: Polymerase Chain Reaction

3. Interferon (IFN)

Table 3. Evidence summary of IFN

Study	Design	Size	Disease	Compare	Primary outcomes	Secondary outcomes	Conclusion
Loutfy	Cohort	22	SARS	IFN-a plus	Mortality:	Mechanical ventilation:	IFN-a plus
2003				corticostero	0 (0%) vs 2(15.39%)	1 (11.1%) vs 3 (23.1%) no	corticosteroids could
(39)				ids vs	no P-value	P-value	increase oxygen
				corticostero		Transferred to ICU: 3	saturation, shorten
				ids alone		(33.3%) vs 5 (38.5%) no	the time for
				(IFN was		P-value	resolution of
				given by		Median time of needing	radiographic lung
				subcutaneo		supplemental oxygen	abnormalities, and
				us)		resolved (d): 10 vs 16	improve clinical
						(P=0.02)	symptoms.
						Median time until 50%	
						radiographic abnormalities	
						resolved significantly (d): 4	
						vs 9 (P=0.001)	
Li	Cohort	87	SARS	IFN-a vs	Corticosteroids dose	Duration of hospitalization	IFN-a could reduce
2005				no IFN-a	(mg):	(d):	duration of
(40)				(2 groups	$272.94 \pm 154.59 \text{ vs}$	16.06 \pm 6.27 vs 20.47 \pm	hospitalization, time
				all received	$414.12 \pm 192.32 \; (P$	2.16 (P < 0.05)	to X-ray results
				antibiotic	< 0.05)	Time until X-ray results	improved and
				and IFN		improved (d):	dosage of
				was given		11.12 \pm 2.86 vs 15.79 \pm	corticosteroids, but
				by		1.35 (P < 0.05)	without any effect
				intramuscul		Duration of fever (d):	on duration of fever.

40

				ar or		5.71 ± 3.55 vs 6.64 ± 2.73	
				subcutaneo		(P > 0.05)	
				us)			
Liu	Cohort	1701	SARS	IFN vs no	Mortality:	Duration of disease (d):	There was no effec
2009				IFN	2.0% vs 5.0%	21.93 ± 11.61 vs 22.73 \pm	of interferon on
(41)					(P=0.504)	14.83 (P=0.799)	mortality and
							duration of disease
							in patients with
							SARS.
Xu	Cohort	185	SARS	IFN-a vs no	Death(n): 4 vs 7 (P	Intubation (n): 3 vs 6 (P	IFN had no efficac
2003				IFN-a (2	> 0.05)	> 0.05)	on mortality,
(42)				groups all		Time until clinical	duration of fever,
				received		symptoms improved (d):	clinical symptoms
				ribavirin)		$6.9 \pm 2.8 \ vs \ 6.3 \pm 2.6 (P$	improvement,
						> 0.05)	resolution of lung
						Average duration of	radiographic
						hospitalization (d) : 19.8 \pm	abnormalities,
						6.9 vs 21.1 ± 7.3 (P > 0.05)	incidence of
						Time of pulmonary shadow	intubation.
						resolved significantly (d):	
						11.5 ± 4.1 vs 11.2 ± 3.9	
						(P > 0.05)	
						Duration of fever (d): 7.2 \pm	
						3.3 vs 6.5 \pm 2.9 (P >	
						0.05)	
Shalho	Cohort	24	MERS	IFN-α vs	Mortality:	Intubation:	There was no
ıb				IFN- β (2	85% vs 64%	10 (77%) vs 6 (55%)	significant
2015				groups all	(P=0.24).	P=0.24	difference on
(43)				received		Survival days (d): 21.3	intubation rate,
				ribavirin,		(95% CI 14.1-28.5) vs 21.4	mortality and
				and IFN		(95% CI 12.4-30.4) (P	survival days in
				was given		=0.977)	MERS compared
				by			IFN- α with IFN- β .
				subcutaneo			
				us)			

ICU: Intensive care unit

4. Ribavirin (RBV)

	Table 4. Evidence summary of RBV									
Study	Design	Size	Disease	Compare	Primary outcomes	Secondary outcomes	Conclusion			
Leong	Cohort	229	SARS	RBV vs	Crude death rate:	Admitted to ICU:	There was no effect of			
2004 (44)				no RBV	10 (10.3%) vs 17	19 (19.6%) vs 27	ribavirin on crude			
					(12.9%) (P =0.679)	(20.5%) (P>0.999)	death rate, numbers of			

					Anemia:	Myocardial injury:	admitted to ICU, and
					24 (24.7%) vs 27	3 (3.1%) vs 4 (3.0%)	adverse reaction in
					(20.5%) (P=0.521)	(P >0.999)	patients with SARS.
Chiou	Cohort	51	SARS	RBV vs	Hypoxemia:	Peak CRP level (mg/dL):	Ribavirin could
2005 (45)				no RBV	39% vs 14% (P	10.3 \pm 11.6 vs 5.8 \pm 6.2	increase LDH levels
					=0.398)	(P > 0.05)	and risk of anemia in
					Anemia:	Peak LDH level (IU/L):	SARS, but had no
					73% vs 14% (P=	392.8 \pm 307.5 vs 162.5 \pm	effect on CRP level
					0.006)	98.0 (P=0.017)	and the occurrence of
							hypoxemia.
Lau 2009	Cohort	1104	SARS	RBV vs	Mortality (%):	None	Early treatment of
(46)				no RBV	Hong Kong: 17.0		SARS with ribavirin
					(95% CI 6.5-27.8)		had no effect on
					vs 15.4 (95% CI		mortality.
					13.2-17.6) (P=0.77);		
					Toronto: 13.4 (95%		
					CI 0-33.0) vs 16.6		
					(95% CI 0-44.9)		
					(P=0.85)		
Wang	Cohort	90	SARS	RBV vs	Duration of	None	Ribavirin could reduce
2005 (47)				no RBV	corticosteroids use		the duration of
					(d):		corticosteroids use, but
					21.5 ± 7.4 vs 2 7.1 \pm		the time length of
					3.8 (P< 0. 0 1)		ribavirin was not
							associated with the
							reduction.
Muller	Cohort	306	SARS	RBV vs	Death:	Mechanical ventilation:	High-dose ribavirin
2007 (48)				no RBV	20 (11%) vs 10	15% vs 15% (P=0.88)	was associated with
					(8%) (P=0.42)	Bradycardia:	serious adverse
					Hemolytic anemia:	34% vs 17% (P=0.0009)	reactions in SARS, but
					57% vs 30% (P	Hyperamylasemia:	had no effect on
					<0.0001)	11% vs 3% (P=0.032)	mortality.
						Hypocalcemia:	
						55% vs 38% (P=0.0038)	
						Hypomagnesemia:	
						50% vs 5% (P<0.0001)	
Liu 2009	Cohort	1702	SARS	RBV vs	Mortality:	Duration of disease	Ribavirin cannot
(41)				no RBV	4.4% vs 5.4%	(d):	reduce the mortality,
					(P=0.340)	23.23±14.45 vs 22.19 ±	but prolong the
						15.01 (P=0.044)	duration of disease.

CRP: C-reactive protein

LDH: Lactate dehydrogenase

ICU: Intensive care unit

41

42

5. Oseltamivir

	Table 5. Evidence summary of Oseitamivir									
Study	Design	Size	Disease	Compare	Primary outcomes	Secondary outcomes	Conclusion			
Xu 2011	Cohort	127	SARS	Oseltamivir	Mortality:	Duration of disease	Oseltamivir as initial			
(50)				(early use	5(6.5) vs 2(4.0) (P >	(d):	treatment had no effect			
				alone) vs	0.05)	30.4 \pm 11.2 vs 32.0 \pm	on mortality, reducing			
				Oseltamivir	ARDS:	15.4 (P > 0.05)	duration of fever,			
				(use alone)	4(5.2%) vs 1(2.0) (P	Duration of fever (d):	duration of disease and			
					> 0.05)	11.17 \pm 2.2 vs 12.6 \pm	rate of ARDS.			
						3.2 (P > 0.05)				
Guo	Cohort	103	SARS	Oseltamivir	Mortality:	Mechanical	Oseltamivir could			
2019 (49)				vs no	3 (9%) vs 4 (6%)	ventilation:	increase the rate of			
				Oseltamivir	(P=0.682)	25 (74%) vs 19 (28%)	mechanical ventilation			
					ARDS:	(P=0.000)	and PA, but had no			
					7 (21%) vs 11 (16%)	Quality of life : (P>	effect on mortality,			
					(P=0.588)	0.05)	ARDS rate, other			
						Pulmonary artery	cardio-pulmonary			
						(PA/mm): 21.00 ±	function and quality of			
						1.323 vs 19.31 ± 1.795	life.			
						(P<0.001)				
						Cardiopulmonary				
						function:				
						(P > 0.05)				
						Radiological				
						abnormalities				
						(P > 0.05)				
						Cardiac ultrasound				
						(P > 0.05)				
Liu 2009	Cohort	1701	SARS	Oseltamivir	Mortality:	Duration of disease	Oseltamivir cannot			
(41)				vs no	4.2% vs 5.2%	(d):	reduce mortality, but			
				Oseltamivir	(P=0.415)	25.55 ± 14 .30 vs	may prolong the			
						21.64 ± 14.77 (P=	duration of disease.			
						0.000)				
Xu 2003	Cohort	83	SARS	Oseltamivir	Death (n):	Intubation (n):	Oseltamivir improved			
(42)				vs no	$1 \text{ vs } 4 (P \ge 0.05)$	$0 \text{ vs } 3 (P \ge 0.05)$	fever clearance time.			
				Oseltamivir		Average duration of	but had no effect on			
				(2 groups		hospitalization (d)	mortality, intubation			
				all received		12.2 ± 5.1 vs 19.8 +	rate, duration of			
				IFN and		69 (P > 0.05)	hospitalization and			
				RBV)		Time to clinical	improvement of other			
				,		symptoms improved	symptoms and			
						symptoms improved	symptoms allu			

4	3
	~

(d):	imaging.
9.5 ± 6.0 vs 6. 9 ± 6.8	
(P > 0.05)	
Time of pulmonary	
shadow resolved	
significantly (d): 12.2	
\pm 5.8 vs 11.5 \pm 4.1	
(P > 0.05)	
Duration of fever (d):	
9.8 \pm 4.2 vs 7.2 \pm 3.3	
(P < 0.05)	

ARDS: Acute respiratory distress syndrome

6. Combination of IFN and RBV Table 6. Evidence summary of Combination

Study	Design	Size	Disease	Compare	Primary outcomes	Secondary outcomes	Conclusion		
Omrani 2014	Cohort	44	MERS	RBV plus	14-day survival rate:	Invasive ventilation:	Ribavirin combined		
(51)				INF vs no	70% vs 29%	95% vs 92% (P =1.0)	with interferon could		
				RBV/IFN	(P=0.004)	Mean minimum	improve the 14-day		
					28-day survival rate:	absolute neutrophil	survival rate and		
					30% vs 17%	count (×10 \Box /L):	reduce hemoglobin		
					(P=0.054)	2.90 (1.87) vs 4.43	level and neutrophil		
						(1.89) (P=0.017)	count in MERS, but		
						Mean drop in	had no effect on		
						hemoglobin (g/L):	28-day survival rate		
						4.32 ± 2.47 vs 2.14 \pm	and other adverse		
						1.9 (P=0.002)	effects.		
Arabi 2019	Cohort	349	MERS	RBV plus	Hospital mortality:	Mechanical	Ribavirin combined		
(52)				IFN vs no	74.3% vs 63.4%	ventilation:	with interferon had no		
				RBV/IFN	(P=0.03)	58.3% vs 63.4%	effect on 28-day		
					28-d mortality:	(P=0.34)	mortality, rate of		
					67.4% vs 58.0%	Invasive ventilation:	mechanical		
					(P=0.08)	87.5% vs 83.4%	ventilation, invasive		
					90-d mortality:	(P=0.29)	ventilation and adverse		
					73.6% vs 61.5% (P	Blood transfusions:	effects in MERS, but		
					=0.02)	40.3 vs 28.3% (P	increased 90-day		
					Adverse effects	=0.02)	mortality and hospital		
					no differences		mortality.		
					between groups				

AST: Aspartate aminotransferase

ALT: Alanine aminotransferase

INR International normalized ratio

44

WBC: White blood cell

7. Favipiravir

Table 7. Evidence summary of Favipiravir													
Study	Design	Size	Disease	Compare	Primary outcomes	Secondary outcomes	Conclusion						
Chen	RCT	236	COVID-	Favipiravir	clinical recovery	auxiliary oxygen therapy	favipiravir can be						
2020			19	vs Arbidol	rate of day 7:	or noninvasive	considered as a preferred						
(53) ^b					61.21% (71/116) vs	mechanical	treatment for moderate						
					51.67% (62/120)	ventilation rate: 22.5%	COVID-19						
					Adverse reactions:	(27/120) vs 18.1%							
					37/116 vs 28/120	(21/116)							
						new dyspnea: 4/116 vs							
						14/120							
						respiratory failure: 4/116							
						vs 4/120							

8. Hydroxychloroquine (HCQ)

	Table 8. Evidence summary of HCQ											
Study	Design	Size	Disease	Compare	Primary outcomes	Secondary outcomes	Conclusion					
Chen 2020	RCT	30	COVID-	Hydroxychl	Rate of virological	Time until negative	Hydroxychloroquine has					
(54)			19	oroquine vs	cured at 7 days: 86.7	result (d): 4 (1-9) vs 2	little benefit for					
				none (two	vs 93.3	(1-4) $P > 0.05$	COVID-19 patients					
				groups all	Adverse reactions:	Duration of fever (d):						
				received	4 (26.7%) vs 3	1(0-2) vs 1(0-3)						
				IGN)	(20.0%) P > 0.05							
Chen 2020	RCT	62	COVID-	Hydroxychl	Adverse reactions:	Duration of fever (d):	HCQ can be					
(55)			19	oroquine vs	2 vs 0	2.2 ± 0.4 vs 3.2 ± 1.3	considered as a preferred					
				none		Rate of improved	treatment for moderate					
						pneumonia: 80.6%,	COVID-19					
						(25/31) vs 54.8% (17 of						
						31)						
						Incidence of clinical						
						symptom improvement:						
						31 vs 27						

45

Supplementary Material 3. GRADE evidence profile (Table 1-8)

			Certainty a	assessment			№ of patients			
№ of studies	Risk of bias	Inconsis tency	Indirect ness	Impreci sion	Other considerations	Sample	Intervention	Control	Effect Value (95% CI)	Certainty
COVID-19										
Risk of death	(%)									
RCT (1)	serious ¹	not serious	not serious	serious ³	none	199	19/99	25/100	RR =0.77 (0.45 to 1.30)	⊕⊕⊖⊖ LOW
Negative PCR	result (%)								
RCT (2) +CS (1)	serious ¹	not serious	not serious	serious ³	none	232	79/119	73/113	RR 0.98 (0.82 to 1.18)	⊕○○○ VERY LOW
Duration of d	isease (d)									
CS (1)	serious ¹	not serious	not serious	not serious	none	100	52	48	WMD -1.00 (-2.51 to 0.51)	⊕○○○ VERY LOW
Adverse react	ions (%)									
RCT (2) +CS (1)	serious ¹	not serious	not serious	serious ³	none	322	60/168	53/154	RR 1.24 (0.67 to 2.28)	⊕○○○ VERY LOW
Serious adver	se reaction	ns (%)								
RCT (1)	serious ¹	not serious	not serious	not serious	none	194	19/95	32/99	RR 0.62 (0.38 to 1.01)	$\oplus \oplus \oplus \bigcirc$ MODERAT E
Radiographic	abnorma	ities remiss	ion (%)							
RCT (1) +CS (1)	serious ¹	not serious	not serious	serious ³	none	125	46/71	29/54	RR 1.02 (0.70 to 1.48)	⊕○○○ VERY LOW
Time until cli	nical symp	toms impro	oved (d)							
RCT (1)	serious ¹	not serious	not serious	serious ³	none	199	99	100	WMD -1.00 (-1.71 to -0.29)	⊕⊕⊖⊖ LOW
Duration of h	ospitalizat	ion (d)								
RCT (1)	serious1	not serious	not serious	serious ³	none	199	99	100	WMD -1.40 (-2.44 to -0.36)	⊕⊕⊖⊖ LOW

Table 1. lopinavir/ ritonavir (LPV/r)

SARS

Risk of death (%)

46

				Tab	ole 1. lopinavir/ rite	onavir (LP	V/r)			
		(Certainty a	ssessment		÷	№ of patients			•
№ of studies	Risk of bias	Inconsis tency	Indirect ness	Impreci sion	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty
CS (2)	not serious	not serious	not serious	not serious	none	830	1/85	106/745	RR 0.16 (0.03 to 0.77)	⊕⊕⊖⊖ LOW
Corticosteroid	ls dose (g)									
CS (2)	not serious	serious ²	not serious	not serious	none	830	85	745	WMD -0.82 (-2.03 to 0.40)	⊕○○○ VERY LOW
Intubation (%))									
CS (1)	not serious	not serious	not serious	not serious	none	678	0/44	70/634	RR 0.100 (0.01 to 1.59)	⊕⊕⊖⊖ LOW
ARDS (%)										
CS (1)	serious ¹	not serious	not serious	not serious	none	152	1/41	25/111	RR 0.11 (0.02 to 0.77)	⊕○○○ VERY LOW
Elevated seru	m transam	inase level	(%)							
CS (1)	not serious	not serious	not serious	serious ³	none	678	4/44	44/634	RR 1.31 (0.49 to 3.48)	⊕○○○ VERY LOW
Elevated seru	m amylase	level (%)								
CS (1)	not serious	not serious	not serious	serious ³	none	678	2/44	15/634	RR 1.92 (0.45 to 8.14)	⊕○○○ VERY LOW
Risk of oxyger	n desaturat	ion episod	es (%)							
CS (1)	not serious	not serious	not serious	not serious	none	678	30/44	536/634	RR 0.81 (0.66 to 0.99)	⊕⊕⊖⊖ LOW
Nosocomial in	fection (%)								
CS (1)	serious ¹	not serious	not serious	not serious	none	152	0/41	28/111	RR 0.05 (0.00 to 0.75)	⊕○○○ VERY LOW
Diarrhea (%)										
CS (1)	serious ¹	not serious	not serious	not serious	none	152	10/41	69/111	RR 0.39 (0.23 to 0.69)	⊕○○○ VERY LOW
Recurrent fev	er (%)									
CS (1)	serious ¹	not	not	not	none	152	16/41	67/111	RR 0.65	€000

47

Table 1. l	opinavir/	ritonavir	(LPV/r)
------------	-----------	-----------	---------

			(Certainty a	ssessment			№ of patients		Effect Value	·
№ of studies	Risk bias	of	Inconsis tency	Indirect ness	Impreci sion	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty
			serious	serious	serious					(0.43 to 0.98)	VERY
											LOW
Radiographic	abnori	mali	ties worser	ned (%)							
			not	not	not					PP 0 63	⊕000
CS (1)	serio	us ¹	sorious	sorious	sorious	none	152	21/41	90/111	(0.46 to 0.86)	VERY
			serious	serious	serious					(0.40 10 0.80)	LOW
CI: Confidence	e Interv	al; R	R: Risk Ra	tio; WMD:	Weighted M	lean Difference; CS	: Cohort st	udy;			

PCR: Polymerase Chain Reaction; ARDS: Acute respiratory distress syndrome

					Table 2.	Arbidol				
N⁰ of		C	Certainty as	sessment			№ of patients		Effect Value	
studies	Risk of bias	Inconsis tency	Indirect ness	Imprecis ion	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty
COVID-19										
Duration of	disease (d	l)								
CS (1)	not serious	not serious	not serious	serious ³	none	82	34	48	WMD -1.70 (-3.28 to -0.12)	⊕⊖⊖⊖ VERY LOW
Negative PO	CR result ((%)								
RCT (1) + CS (2)	not serious	serious ²	not serious	not serious	none	114	48/55	41/59	RR 1.27 (0.93 to 1.73)	⊕⊖⊖⊖ VERY LOW
Adverse rea	ctions (%)	1								
CS (1)	not serious	not serious	not serious	serious ³	none	82	3/34	4/48	RR 1.06 (0.25 to 4.43)	⊕⊖⊖⊖ VERY LOW
Radiograph	ic abnorm	alities remi	ission (%)							
RCT (1) + CS (2)	not serious	not serious	not serious	serious ³	none	136	43/65	34/71	RR 1.23 (0.63 to 2.40)	⊕○○○ VERY LOW
Incidence of	receiving	oxygen the	erapy (%)							
RCT (1)	serious ¹	not serious	not serious	serious ³	none	23	11/16	6/7	RR 0.80 (0.51 to 1.26)	⊕⊕⊕⊖ MODERATE
Incidence of	clinical sy	mptoms in	nprovemer	nt						
RCT (1)	serious ¹	not serious	not serious	serious ³	none	23	14/16	6/7	RR 1.02 (0.72 to 1.46)	⊕⊕⊕⊖ MODERATE

48

Table 2. Arbidol

N⁰	of		C	ertainty as	sessment			№ of patients		Effect Value	
studies		Risk of bias	Inconsis tency	Indirect ness	Imprecis ion	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty
~ ~							~~ ~ .				

CI: Confidence Interval; RR: Risk Ratio; WMD: Weighted Mean Difference; CS: Cohort study;

					Table 3. Interfer	on (IFN)				
		Certainty	assessment				№ of patients			
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty
SARS (IFN vs N	lone)									
Risk of death										
CS (3)	serious ¹	not serious	not serious	not serious	none	1908	5/125	92/1783	RR 0.72 (0.28 to 1.88)	⊕○○○ VERY LOW
Duration of hos	pitalization	(d)								
CS (2)	not serious	serious ²	not serious	not serious	none	272	106	166	WMD -2.76 (-5.80 to 0.28)	⊕⊖⊖⊖ VERY LOW
Duration of feve	er (d)									
CS (2)	not serious	serious ²	not serious	not serious	none	272	106	166	WMD -0.04 (-1.64 to1.55)	⊕⊖⊖⊖ VERY LOW
Corticosteroids	dose (g)									
CS (1)	not serious	not serious	not serious	serious ³	none	87	41	46	WMD -0.14 (-0.21 to -0.07)	⊕⊖⊖⊖ VERY LOW
Duration of dise	ase (d)									
CS (1)	serious ¹	not serious	not serious	not serious	none	1518	45	1473	WMD -0.80 (-4.28-2.68)	⊕⊖⊖⊖ VERY LOW
Mechanical vent	ilation (%)									
CS (1)	not serious	not serious	not serious	serious ³	none	22	1/9	3/13	RR 0.48 (0.06 to 3.92)	⊕⊖⊖⊖ VERY LOW
Transferred to I	CU (%)									
CS (1)	not serious	not serious	not serious	serious ³	none	22	3/9	5/13	RR 0.87 (0.27 to 2.74)	⊕○○○ VERY LOW
Intubation (%)										
CS (1)	not serious	not serious	not serious	serious ³	none	185	3/65	6/120	RR 0.92 (0.24 to 3.57)	⊕○○○ VERY LOW

Time of needing supplemental oxygen resolved (d)

49

					Table 3. Interfer	on (IFN)				
	÷	Certainty a	assessment				№ of patients			
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty
CE (1)	not	not	not			22	0	12	WMD -4.00	⊕000
CS (1)	serious	serious	serious	serious	none	22	9	15	(-9.05 to 1.05)	VERY LOW
Time until clinic	cal sympton	ns improvo	ed (d)							
66.43	. 1	not	not	not		107		120	WMD 0.60	€000
CS (1)	serious	serious	serious	serious	none	185	65	120	(-0.22 to 1.42)	VERY LOW
Time until 50%	radiograph	iic abnorn	alities res	olved (d)						
	not	not	not						WMD -5.00	€000
CS (1)	serious	serious	serious	serious ³	none	22	9	13	(-6.46 to -3.54)	VERY LOW
Time of pulmon	ary shadow	v resolved :	significant	tly (d)						
		not	not	not					WMD 0.30	€000
CS (1)	serious1	serious	serious	serious	none	185	65	120	(-0.92 to 1.52)	VERY LOW
Time until X-ra	v results im	proved (d)							
	not	not	not						WMD -4 67	$\Theta \cap \cap \cap$
CS (1)	serious	serious	serious	serious ³	none	87	41	46	(-5.93 to -3.41)	VERY LOW
MERS (IFN-a v	s IFN-B)									
Rick of death	~ (p)									
									DD 1 22	~ ~~~~
CS (1)	not	not	not	serious ³	none	24	11/13	7/11	KK 1.55	UEBY LOW
	serious	serious	serious						(0.80 to 2.20)	VERY LOW
Intubation (%)										
CS(1)	not	not	not	serious ³	none	24	10/13	6/11	RR 1.41	⊕000
C5 (1)	serious	serious	serious	serious	none	2 -†	10/13	0/11	(0.76 to 2.61)	VERY LOW

CI: Confidence Interval; RR: Risk Ratio; WMD: Weighted Mean Difference; CS: Cohort study;

ICU: Intensive care unit

Table 4. Ribavirin (RBV)

			Certainty	assessment			№ of patients		Effect Value		
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty	
SARS											
Risk of death											
CS (4)	not serious	serious ²	not serious	not serious	none	2236	67/1116	74/1120	RR 0.68 (0.43 to 1.06)	⊕○○○ VERY LOW	

50

					Table 4. Ribavirin	(RBV)				
			Certaintv	assessment			№ of patients		, ,	
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Other considerations	Sample	Intervention	Control	Effect Value (95% CI)	Certainty
Duration of cor	ticosteroids	use (d)								
CS (1)	serious ¹	not serious	not serious	not serious	none	90	53	37	WMD -5.60 (-7.94 to -3.26)	⊕○○○ VERY LOW
Duration of dise	ease (d)									
CS (1)	serious ¹	not serious	not serious	not serious	none	1518	749	769	WMD 1.04 (-0.44 to 2.52)	⊕⊖⊖⊖ VERY LOW
Mechanical vent	tilation (%)									
CS (1)	not serious	not serious	not serious	serious ³	none	306	27/183	19/123	RR 0.96 (0.56 to 1.64)	⊕○○○ VERY LOW
Admitted to ICU	U (%)									
CS (1)	not serious	not serious	not serious	serious ³	none	229	19/97	27/132	RR 0.96 (0.57 to 1.62)	⊕○○○ VERY LOW
Anemia (%)										
CS (3)	not serious	not serious	not serious	not serious	none	586	160/324	65/262	RR 1.67 (1.07 to 2.61)	⊕⊕⊖⊖ LOW
Bradycardia (%)									
CS (1)	not serious	no serious	no serious	no serious	none	306	63/183	21/123	RR 2.02 (1.30 to 3.12)	⊕⊕⊖⊖ LOW
Hypoxemia (%)										
CS (1)	serious ¹	not serious	not serious	not serious	none	51	17/44	1/7	RR 2.71 (0.42 to 17.24)	⊕○○○ VERY LOW
Hyperamylasem	nia (%)									
CS (1)	not serious	not serious	not serious	not serious	none	306	20/183	5/123	RR 2.69 (1.04 to 6.97)	⊕⊕⊖⊖ LOW
Hypocalcemia (%)									
CS (1)	not serious	not serious	not serious	not serious	none	306	96/183	50/123	RR 1.29 (1.00 to 1.66)	⊕⊕⊖⊖ LOW

Hypomagnesemia (%)

51

Table 4.	Ribavirin	(RBV)

			Certainty	assessment			№ of patients		Effect Volue		
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty	
CS (1)	not serious	not serious	not serious	not serious	large magnitude of effect ⁴	306	91/183	6/123	RR 10.19 (4.61 to 22.55)	⊕⊕⊕⊕ HIGH	
Myocardial injury	y (%)										
CS (1)	not serious	not serious	not serious	serious ³	none	229	3/97	4/132	RR 1.02 (0.23 to 4.46)	⊕⊖⊖⊖ VERY LOW	
Peak CRP level (r	ng/dL)										
CS (1)	serious ¹	not serious	not serious	not serious	none	51	44	7	WMD 4.50 (-1.23 to 10.23)	⊕○○○ VERY LOW	
Peak LDH level ((U/L)										
CS (1)	serious ¹	not serious	not serious	not serious	none	51	44	7	WMD 230.30 (114.00 to 346.60)	⊕⊖⊖⊖ VERY LOW	
										20.1	

CI: Confidence Interval; RR: Risk Ratio; WMD: Weighted Mean Difference; CS: Cohort study;

CRP: C-reactive protein; LDH: Lactate dehydrogenase; ICU: Intensive care unit

Table 5. Oseltamivir										
		С	ertainty as	sessment			№ of patients		Effect Value	
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impre cision	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty
SARS (Oseltamivir v	vs None)									
Risk of death										
CS (3)	not serious	not serious	not serious	serious 3	none	1887	23/502	73/1385	RR 0.87 (0.55 to 1.38)	⊕⊖⊖⊖ VERY LOW
Mechanical ventilati	on (%)									
CS (1)	not serious	not serious	not serious	not serious	none	103	25/34	19/69	RR 2.67 (1.73 to 4.12)	⊕⊕⊖⊖ LOW
Intubation (%)										
CS (1)	serious ¹	not serious	not serious	not serious	none	83	0/18	3/65	RR 0.50 (0.03 to 9.19)	⊕⊖⊖⊖ VERY LOW

ARDS (%)

52

					Table 5. Oseltan	nivir				
		С	ertainty as	sessment			№ of patients			
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impre cision	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty
CS (1)	not serious	not serious	not serious	serious 3	none	103	7/34	11/69	RR 1.29 (0.55 to 3.03)	⊕○○○ VERY LOW
Duration of disease	(d)									
CS (1)	serious ¹	not serious	not serious	not serious	none	1518	413	1105	WMD 3.91 (2.28 to 5.54)	⊕○○○ VERY LOW
Duration of hospita	lization (d)									
CS (1)	serious ¹	not serious	not serious	not serious	none	83	18	65	WMD -7.60 (-10.49 to -4.71)	⊕⊖⊖⊖ VERY LOW
Time until clinical s	ymptoms in	nproved (d	l)							
CS (1)	serious1	not serious	not serious	not serious	none	83	18	65	WMD 2.60 (-0.25 to 5.45)	⊕○○○ VERY LOW
Duration of fever (d	l)									
CS (1)	serious ¹	no serious	no serious	no serious	none	83	18	65	WMD 2.60 (0.50 to 4.70)	⊕⊖⊖⊖ VERY LOW
Pulmonary artery v	vide (mm)									
CS (1)	not serious	not serious	not serious	serious 3	none	103	34	69	WMD 1.69 (1.08 to 2.30)	⊕○○○ VERY LOW
Time of pulmonary	shadow reso	olved signi	ficantly (1)						
CS (1)	serious1	not serious	not serious	not serious	none	83	18	65	WMD 0.70 (-2.16 to 3.56)	⊕⊖⊖⊖ VERY LOW
SARS (Oseltamivir	early use al	one vs Ose	ltamivir u	ise alone)						
Risk of death										
RCT (1)	serious ¹	not serious	not serious	serious 3	none	127	5/77	2/50	RR 1.62 (0.33 to 8.05)	⊕⊕⊖⊖ LOW
ARDS (%)										
RCT (1)	serious ¹	not serious	not serious	serious 3	none	127	4/77	1/50	RR 2.60 (0.30 to 22.57)	⊕⊕⊖⊖ LOW
Duration of disease	(d)									
RCT (1)	serious ¹	not serious	not serious	serious 3	none	127	77	50	WMD -2.50 (-7.45 to 2,45)	⊕⊕⊖⊖ LOW
Duration of fever (d	l)									
RCT (1)	serious1	not serious	not serious	serious 3	none	127	77	50	WMD -0.90 (-1.91 to 0.11)	⊕⊕⊖⊖ LOW

53

					Table 5. Oseltan	nivir				
	·	Ce	ertainty as	sessment			№ of patients		Effect Value	
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impre cision	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty

CI: Confidence Interval; RR: Risk Ratio; WMD: Weighted Mean Difference; CS: Cohort study; RCT: Randomized controlled trial.

ARDS: Acute respiratory distress syndrome

Table 6. Ribavirin (RBV) plus Interferon (IFN)

Certainty asses		assessment		№ of patients		T (2) T (1)				
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty
MERS										
Risk of death										
CS (2)	not serious	serious ²	not serious	not serious	none	393	120/164	146/229	RR 1.04 (0.74 to 1.46)	⊕○○○ VERY LOW
Invasive ventilation	n (%)									
CS (2)	not serious	not serious	not serious	serious ³	none	393	145/164	193/229	RR 1.05 (0.97 to 1.13)	⊕○○○ VERY LOW
Mechanical ventilat	ion (%)									
CS (1)	not serious	not serious	not serious	serious ³	none	349	84/144	130/205	RR 0.92 (0.77 to 1.09)	⊕○○○ VERY LOW
Blood transfusions ((%)									
CS (1)	not serious	not serious	not serious	not serious	none	349	58/144	58/205	RR 1.42 (1.06 to 1.91)	⊕⊕⊖⊖ LOW
Mean drop in haem	oglobin (g/	L)								
CS (1)	not serious	not serious	not serious	serious ³	none	44	20	24	WMD 2.18 (0.86 to 3.50)	⊕⊖⊖⊖ VERY LOW
Mean minimum abs	solute neut	rophil cou	nt (×10□/	L)						
CS (1)	not serious	not serious	not serious	serious ³	none	44	20	24	WMD -1.43 (-2.55 to -0.32)	⊕⊖⊖⊖ VERY LOW

CI: Confidence Interval; RR: Risk Ratio; WMD: Weighted Mean Difference; CS: Cohort study;

54

		C	Certainty assessment				№ of patients		Effect Value	~ .
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty
Favipiravir vs Arbi	idol (COVI	D-19)								
Rate of clinical rec	overy of da	ıy 7(%)								
DCT (1)	corrious ¹	not	not	corious ³	2020	226	71/116	62/120	RR 1.18	⊕⊕⊖⊖
KC1 (1)	serious	serious	serious	serious	none	250	/1/110	02/120	(0.95 to 1.48)	LOW
Adverse reactions ((%)									
RCT (1)	serious ¹	not	not	serious ³	none	236	37/116	28/120	RR 1.37	⊕⊕⊖⊖
	serious	serious	serious	serious	none	250	5//110	(0.90 to 2.0		LOW
Dyspnea after takin	g medicine	e (%)								
RCT (1)	serious ¹	not	not	serious ³	none	236	4/116	12/120	RR 0.30	$\oplus \oplus \bigcirc \bigcirc$
		serious	serious						(0.10 to 0.87)	LOW
Respiratory failure	(%)									
RCT (1)	serious ¹	not	not	serious ³	none	236	4/116	4/120	RR 1.03	$\oplus \oplus \bigcirc \bigcirc$
		serious	serious				÷		(0.26 to 4.04)	LOW

Table 7. Favipiravir

CI: Confidence Interval; RR: Risk Ratio; WMD: Weighted Mean Difference; CS: Cohort study;

						-				
		C	Certainty as	ssessment			№ of patients		Effect Value	
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Other considerations	Sample	Intervention	Control	(95% CI)	Certainty
COVID-19										
Negative PCR resu	ılt (%)									
RCT (1)	serious ¹	not serious	not serious	serious ³	none	30	13/15	14/15	RR 0.93 (0.73 to 1.18)	⊕⊕⊖⊖ LOW
Radiographic abno	rmalities r	emission (%)							
RCT (1)	serious ¹	not serious	not serious	serious ³	none	62	25/31	17/31	RR 1.47 (1.02 to 2.11)	⊕⊕⊖⊖ LOW
Duration of fever (d)									
RCT (2)	serious ¹	not serious	not serious	serious ³	none	69	37	32	WMD -0.90 (-1.48 to -0.31)	⊕⊕⊖⊖ LOW

Table 8. HCQ

Time until negative PCR result (d)

55

	Table 8. HCQ										
		C	Certainty as	sessment			№ of patients	E.C			
№ of studies	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	preci Other Sample Intervention		Intervention	Control	(95% CI)	Certainty	
RCT (1)	serious ¹	not serious	not serious	serious ³	none	30	15	15	WMD 2.34 (-1.19 to 5.87)	⊕⊕⊖⊖ LOW	
Adverse reactions ((%)										
RCT (2)	serious ¹	not serious	not serious	serious ³	none	92	6/46	3/46	RR 1.65 (0.50 to 5.50)	⊕⊕⊖⊖ LOW	

CI: Confidence Interval; RR: Risk Ratio; WMD: Weighted Mean Difference; CS: Cohort study;

HCQ: hydroxychloroquine

Explanations

- 1. downgrade one level: The risk of bias is high due to the limitations of study design.
- 2. downgrade one level: Heterogeneity of data synthesis results, $I^2 > 50\%$.
- 3. downgrade one level: Sample size is less than optimal information sample (OIS).
- 4. upgrade two levels: Large magnitude of effect, RR>5.

FIGURE LEGENDS

Figure 1. Flow diagram of the literature search.

Abbreviations: CBM: China Biology Medicine; CNKI: China National Knowledge Infrastructure; WHO: World Health Organization; CDC: Centers for Disease Control; COVID-19: Corona Virus Disease hyphen one nine; SARS: Severe Acute Respiratory Syndrome ; MERS: Middle East respiratory syndrome; ARDS: Acute Respiratory Distress Syndrome.

Figure 2. Forest plot of mortality for included studies comparing antivirals with no antivirals.

Abbreviations: COVID-19: Corona Virus Disease hyphen one nine; SARS: Severe Acute Respiratory Syndrome ; MERS: Middle East respiratory syndrome.

The results of Meta-analysis indicated that lopinavir/ritonavir had no effect on mortality in adults with COVID-19 (risk ratio [RR]= 0.77, 95% confidence interval [CI] 0.45 to 1.30), but could decrease the mortality in adults with SARS (RR=0.16, 95% CI 0.03 to 0.77), and interferon (RR=0.72, 95% CI 0.28 to 1.88), ribavirin (RR=0.68, 95% CI % 0.43 to 1.06), oseltamivir (RR=0.87, 95% CI 0.55 to 1.38) did not reduce the mortality in adults with SARS, while combination of ribavirin and interferon was not efficieve for reducing the mortality in adults with MERS (RR=1.04, 95% CI 0.74 to 1.46).

56

Table 1. Baseline	Characteristic	cs of 23 Inc	luded Stud	lies							
Study	Country	Design	Sampl	Disease	Sample	size	Age (y	ear)†	Sex (Male/I	Female)	Risk
			e		Intervention	Control	Intervention	Control	Intervention	Control	of bias
Cao 2020 (33)	China	RCT	199	COVID-	99	100	58.7 ±13.5	$58.0 \pm \! 15.0$	61/38	59/41	High
				19							
Chen 2020 (53)	China	RCT	236	COVID-	116	120	NR	NR	59/57	51/69	High
				19							
Li 2020 (34)	China	RCT	44	COVID-	37	7	49.4 ±	14.9	21/2	3	Low
Cl		DCT	20	19 COMP	15	15	50.5 . 2.9	167.26	07	12/15	11.1
Chen 2020 (54)	China	KUI	30	10	15	15	50.5 ± 3.8	46.7 ± 3.0	9/7	12/15	High
Chen 2020 (55)	China	RCT	67	COVID	31	31	<i>11</i> 1 + 16 1	45.2 ± 14.7	14/17	15/16	Low
Chen 2020 (33)	Ciina	KC1	02	19	51	51	44.1 ± 10.1	43.2 ± 14.7	14/17	15/10	Low
Xu 2011 (50)	China	RCT	127	SARS	77	50	44.4 ± 16.3	34.8 ± 12.8	59/68	8	Unclea
											r
Chen 2020 (35)	China	Cohort	134	COVID-	86	48	48 (35	5-62)	69/6	5	5
				19							
Deng 2020 (38)	China	Cohort	33	COVID-	16	17	$41.8 \pm \! 14.08$	$47.25 \pm$	7/9	10/7	7
				19				17.25			
Chan 2003 (36)	China	Cohort	678	SARS	44	634	NR	NR	12/32	NR	7
Chu 2003 (37)	China	Cohort	152	SARS	41	111	39.4 ± 15.2	42.1 ± 14.7	10/31	48/63	6
Loutfy 2003 (39)	Canada	Cohort	22	SARS	9	13	44.8 ± 9.7	46.5 ± 20.9	3/6	3/10	7
Leong 2004 (44)	Singapore	Cohort	229	SARS	97	132	34.4 ± 14.3	42.6 ± 17.7	22/75	51/81	7
Guo 2019 (49)	China	Cohort	103	SARS	34	69	29.9 ± 10.1	37.0 ± 13.2	11/23	33/36	7
Muller 2007 (48)	Canada	Cohort	306	SARS	183	123	44 (34–56)	45 (36–57)	73/110	41/82	7
Chiou 2005 (45)	China	Cohort	51	SARS	44	7	36.4 ± 15.7	49.8 ± 26.1	11/33	2/5	6
Lau 2009 (46)	China	Cohort	1104	SARS	309	795	NR	NR	125/184	395/400	6
Liu 2009 (41)	China	Cohort	1701	SARS	1200	501	42.3 ±	14.8	801/90	00	5
Wang 2005 (47)	China	Cohort	90	SARS	53	37	36.7 ± 13.7	39.6 ± 16.0	60/3	C	5
Li 2005 (40)	China	Cohort	87	SARS	41	46	29.3 ± 10.6	26.7 ± 8.2	8/33	8/38	7
Xu 2003 (42)	China	Cohort	203	SARS	83	120	41.1 ±	17.7	123/13	38	5
Omrani 2014	Saudi	Cohort	44	MERS	20	24	67.4 ± 18.5	64.0 ± 18.1	16/4	16/8	8
(51)	Arabia										
Arabi 2019 (52)	Saudi	Cohort	349	MERS	144	205	58 (47-70)	58.0	101/43	140/65	6
	Arabia							(41-70)			
Shalhoub 2015	Saudi	Cohort	24	MERS	13	11	65 (33–84)	67 (25–88)	10/3	4/7	6
(43)	Arabia										

Abbreviations: NR: Not Reported; RCT: Randomized Controlled Trial; COVID-19: Corona Virus Disease hyphen one nine; SARS: Severe Acute Respiratory Syndrome; MERS: Middle East respiratory syndrome.

†Ages were reported either as mean ± standard deviation, or median (interquartile range); Sex (Male/Female) was reported as number

57

Table 2. Summary of evidence for the effectiveness and safety of antiviral agents

Outcome	No. of studies/ design	Sample	Quality of the evidence	Relative effect
		size		(95% CI)
LPV/r vs no antivirals (COVID-19)				
Mortality	1 RCT	199	LOW	RR 0.77
				(0.45 to 1.30)
Negative PCR result (%)	1 cohort study	232	VERVIOW	RR 0.98
	and 2 RCTs		VERTLOW	(0.82 to 1.18)
Duration of disease (d)	1 cohort study	100	VERY LOW	WMD -1.00
				(-2.51 to 0.51)
Adverse reactions (%)	1 cohort study	322	VEDV LOW	RR 1.24
	and 2 RCTs		VERTLOW	(0.67 to 2.28)
Serious adverse reactions (%)	1 RCT	194	MODEDATE	RR 0.62
			MODERALE	(0.38 to 1.01)
Radiographic abnormalities remission (%)	1 cohort study	125	VEDV LOW	RR 1.02
	and 1 RCT		VERTLOW	(0.70 to 1.48)
Time until clinical symptoms improved (d)	1 RCT	199	LOW	WMD -1.00
			LOW	(-1.71 to -0.29)
Duration of hospitalization (d)	1 RCT	199	LOW	WMD -1.40
			LOW	(-2.44 to -0.36)
LPV/r vs no antivirals (SARS)				
Mortality	2 cohort studies	830	LOW	RR 0.16
			LOW	(0.03 to 0.77)
Corticosteroid dose (g)	2 cohort studies	830	VEDV LOW	WMD -0.82
			VERTLOW	(-2.03 to 0.40)
Intubation (%)	1 cohort study	678	VEDV LOW	RR 0.10
			VERTLOW	(0.01 to 1.59)
ARDS (%)	1 cohort study	152	VEDV LOW	RR 0.11
			VERTLOW	(0.02 to 0.77)
Elevated serum transaminase level (%)	1 cohort study	678	VEDV LOW	RR 1.31
			VERTLOW	(0.49 to 3.48)
Elevated serum amylase level (%)	1 cohort study	678	VERVIOW	RR 1.92
			VERTLOW	(0.45 to 8.14)
Risk of oxygen desaturation episodes (%)	1 cohort study	678	LOW	RR 0.81
			LOW	(0.66 to 0.99)
Nosocomial infection (%)	1 cohort study	152	VEBVIOW	RR 0.05
			VEKI LUW	(0.00 to 0.75)
Diarrhea (%)	1 cohort study	152	VEDVIOW	RR 0.39
			VEKILUW	(0.23 to 0.69)

58

Recurrent fever (%)	1 cohort study	152	VERY LOW	RR 0.65
Radiographic abnormalities worsened (%)	1 cohort study	152	VERY LOW	RR 0.63 (0.46 to 0.86)
Arbidol vs no antivirals (COVID-19)				
Duration of disease (d)	1 cohort study	82	VERY LOW	WMD -1.70
				(-3.28 to -0.12)
Negative PCR result (%)	2 cohort studies and 1	114	VERY LOW	RR 1.27
	RCT			(0.93 to 1.73)
Adverse reactions (%)	1 cohort study	82	VERY LOW	RR 1.06
				(0.25 to 4.43)
Radiographic abnormalities remission (%)	2 cohort studies and 1	136	VERY LOW	RR 1.23
	RCT			(0.63 to 2.40)
Incidence of receiving oxygen therapy (%)	1 RCT	23	MODERATE	RR 0.80
				(0.51 to 1.26)
Incidence of clinical symptoms improvement	1 RCT	23	MODERATE	RR 1.02
		20		(0.72 to 1.46)
IFN vs no antivirals (SARS)				
Death (%)	3 cohort studies	1980	VERY LOW	RR 0.72
				(0.28 to 1.88)
Duration of hospitalization (d)	2 cohort studies	272	VERY LOW	WMD -2.76
				(-5.80 to 0.28)
Duration of fever (d)	2 cohort studies	272	VERY LOW	WMD -0.04
				(-1.64 to1.55)
Corticosteroid dose (g)	1 cohort study	87	VERY LOW	WMD -0.14
				(-0.21 to -0.07)
Duration of disease (d)	1 cohort study	1518	VERY LOW	WMD -0.80
				(-4.28 to -2.68)
Mechanical ventilation (%)	1 cohort study	22	VERY LOW	RR 0.48
				(0.06 to 3.92)
Intubation (%)	1 cohort study	185	VERY LOW	RR 0.92
				(0.24 to 3.57)
Admitted to ICU (%)	1 cohort study	22	VERY LOW	RR 0.87
				(0.27 to 2.74)
Time of needing supplemental oxygen resolved (d)	1 cohort study	22	VERY LOW	WBD -4.00
				(-9.05 to 1.05)
Time until clinical symptoms improved (d)	1 cohort study	185	VERY LOW	WMD 0.60
				(-0.22 to 1.42)
Time until 50% radiographic abnormalities resolved (d)	1 cohort study	22	VERY LOW	WMD -5.00
				(-6.46 to -3.54)
Time of pulmonary shadow resolved significantly (d)	1 cohort study	185	VERY LOW	WMD 0.30

59

				(-0.92 to 1.52)
Time until X-ray results improved (d)	1 cohort study	87	VERY LOW	WMD -4.67
				(-5.93 to -3.41)
IFN-α vs IFN-β (MERS)				
Death (%)	1 cohort study	24	VERY LOW	RR 1.33
				(0.80 to 2.20)
Intubation (%)	1 cohort study	24	VERY LOW	RR 1.41
				(0.76 to 2.61)
RBV vs no antivirals (SARS)				
Death (%)	4 cohort studies	2236	VERY LOW	RR 0.68
				(0.43 to 1.06)
Duration of corticosteroid use (d)	1 cohort study	90	VERY LOW	WMD -5.60
				(-7.94 to -3.26)
Duration of disease (d)	1 cohort study	1518	VERY LOW	WMD 1.04
				(-0.44 to 2.52)
Mechanical ventilation (%)	1 cohort study	306	VERY LOW	RR 0.96
				(0.56 to 1.64)
Admitted to ICU (%)	1 cohort study	229	VERY LOW	RR 0.96
				(0.57 to 1.62)
Anemia (%)	1 cohort study	586	LOW	RR 1.67
				(1.07 to 2.61)
Bradycardia (%)	1 cohort study	306	LOW	RR 2.02
				(1.30 to 3.12)
Hypoxemia (%)	1 cohort study	51	VERY LOW	RR 2.71
				(0.42 to 17.24)
Hyperamylasemia (%)	1 cohort study	306	LOW	RR 2.69
				(1.04 to 6.97)
Hypocalcemia (%)	1 cohort study	306	LOW	RR 1.29
				(1.00 to 1.66)
Hypomagnesemia (%)	1 cohort study	306	HIGH	RR 10.19
				(4.61 to 22.55)
Myocardial injury (%)	1 cohort study	229	VERY LOW	RR 1.02
				(0.23 to 4.46)
Peak CRP level (mg/dL)	1 cohort study	51	VERY LOW	WMD 4.50
				(-1.23 to 10.23)
Peak LDH level (IU/L)	1 cohort study	51	VERY LOW	WMD 230.30
				(114.0 to 346.6)
Oseltamivir vs no antivirals (SARS)				
Death (%)	3 cohort studies	1887	VERY LOW	RR 0.87
				(0.55 to 1.38)

Mechanical ventilation (%)	1 cohort study	103	LOW	RR 2.67
				(1.73 to 4.12)
Intubation (%)	1 cohort study	83	VERY LOW	RR 0.50
				(0.03 to 9.19)
ARDS (%)	1 cohort study	103	VERY LOW	RR 1.29
				(0.55 to 3.03)
Duration of disease (d)	1 cohort study	1518	VERY LOW	WMD 3.91
				(2.28 to 5.54)
Duration of hospitalization (d)	1 cohort study	83	VERY LOW	WMD -7.60
				(-10.49 to -4.71)
Time until clinical symptoms improved (d)	1 cohort study	83	VERY LOW	WMD 2.60
				(-0.25 to 5.45)
Duration of fever (d)	1 cohort study	83	VERY LOW	WMD 2.60
				(0.50 to 4.70)
Pulmonary artery wide (mm)	1 cohort study	103	VERY LOW	WMD 1.69
				(1.08 to 2.30)
Time of pulmonary shadow resolved significantly (d)	1 cohort study	83	VERY LOW	WMD 0.70
				(-2.16 to 3.56)
Oseltamivir (early use alone) vs Oseltamivir (use alone) (SA	RS)			
Death (%)	1 cohort study	127	LOW	RR 1.62
				(0.33 to 8.05)
ARDS (%)	1 cohort study	127	LOW	RR 2.60
				(0.30 to 22.57)
Duration of disease (d)	1 cohort study	127	LOW	WMD -2.50
				(-7.45 to 2,45)
Duration of fever (d)	1 cohort study	127	LOW	WMD -0.90
				(-1.91 to 0.11)
RBV plus IFN vs no antivirals (MERS)				
Death (%)	2 cohort studies	393	VERY LOW	RR 1.04
				(0.74 to 1.46)
Invasive ventilation (%)	2 cohort studies	393	VERY LOW	RR 1.05
				(0.97 to 1.13)
Mechanical ventilation (%)	1 cohort study	349	VERY LOW	RR 0.92
				(0.77 to 1.09)
Blood transfusion (%)	1 cohort study	349	LOW	RR 1.42
				(1.06 to 1.91)
Mean drop in haemoglobin (g/L)	1 cohort study	44	VERY LOW	WMD 2.18
				(0.86 to 3.50)
Mean minimum absolute neutrophil count (×10□/L)	1 cohort study	44	VERY LOW	WMD -1.43
				(-2.55 to -0.32)

Favipiravir vs Arbidol (COVID-19)				
Rate of clinical recovery of day 7(%)	1 RCT	236	LOW	RR 1.18
				(0.95 to 1.48)
Adverse reactions (%)	1 RCT	236	LOW	RR 1.37
				(0.90 to 2.08)
Dyspnea after taking medicine (%)	1 RCT	236	LOW	RR 0.30
				(0.10 to 0.87)
Respiratory failure (%)	1 RCT	236	LOW	RR 1.03
				(0.26 to 4.04)
HCQ vs none (COVID-19)				
Negative PCR result (%)	1 RCT	30	LOW	RR 0.93
				(0.73 to 1.18)
Radiographic abnormalities remission (%)	1 RCT	62	LOW	RR 1.47
				(1.02 to 2.11)
Duration of fever (d)	2 RCTs	69	LOW	WMD -0.90
				(-1.48 to -0.31)
Time until negative PCR result (d)	1 RCT	30	LOW	WMD 2.34
				(-1.19 to 5.87)
Adverse reactions (%)	2 RCTs	92	LOW	RR 1.65
				(0.50 to 5.50)

Abbreviations :

LPV/r: Lopinavir/ ritonavir; IFN: Interferon; RBV: Ribavirin. HCQ: hydroxychloroquine

CI: Confidence Interval; RR: Risk Ratio; WMD: Weighted Mean Difference; RCT: Randomized Controlled Trial;

COVID-19: Corona Virus Disease hyphen one nine; SARS: Severe Acute Respiratory Syndrome ; MERS: Middle East respiratory syndrome ARDS: Acute Respiratory Distress Syndrome

PCR: Polymerase Chain Reaction; ICU: Intensive Care Unit; CRP: C-reactive Protein; LDH: Lactate Dehydrogenase

62

Figure 1. Flow diagram of the literature search.

Study ID	RR (95% CI)	%
ID	RR (95% CI)	
		Weight
Lopinavir/ ritonavir(COVID-19)		
Cao 2020	0.77 (0.45, 1.30)	100.00
Subtotal (I-squared = .%, p = .)	0.77 (0.45, 1.30)	100.00
Lopinavir/ ritonavir(SARS)		
Chan 2003	0.15 (0.02, 1.02)	68.06
Chu 2003	0.18 (0.01, 3.04)	31.94
Subtotal (I-squared = 0.0%, p = 0.909)	0.16 (0.03, 0.77)	100.00
Interferon (SARS)		
Loutfy 2003	0.28 (0.02, 5.22)	10.77
Liu 2009	0.39 (0.06, 2.75)	24.20
Xu 2003	1.05 (0.32, 3.47)	65.03
Subtotal (I-squared = 0.0%, p = 0.542)	0.72 (0.28, 1.88)	100.00
Ribavirin (SARS)		
	0.80 (0.38, 1.67)	17.37
Lau 2009(a)	0.38 (0.24, 0.60)	24.27
Lau 2009(b)	0.47 (0.20, 1.07)	15.41
Muller 2007	1.34 (0.65, 2.77)	17.64
Liu 2009	0.81 (0.54, 1.24)	25.32
Subtotal (I-squared = 64.1%, p = 0.025)	0.68 (0.43, 1.06)	100.00
Oselkeminin (CARC)		
Guo 2019	1.52 (0.36, 6.42)	10.25
Liu 2009	0.81 (0.49, 1.34)	85.06
Xu 2003	0.90 (0.11, 7.58)	4.69
Subtotal (I-squared = 0.0%, p = 0.721)	0.87 (0.55, 1.38)	100.00
•		
Ribavirin+Interferon (MERS)		
Omrani 2014	0.84 (0.60, 1.18)	40.44
Arabi 2019	1.20 (1.03, 1.39)	59.56
Subtotal (I-squared = 72.1%, p = 0.058)	1.04 (0.74, 1.46)	100.00
NOTE: Weights are from random effects analysis		
	I	
.0104 1	96.3	

Figure 2. Forest plot of mortality for included studies comparing antivirals with no antivirals.