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Abstract and Executive Summary — When it comes to 
pandemics such as the currently present COVID-19 [1], various 
issues and problems arise for infrastructures and institutions. 
Due to possible extreme effects, such as hospitals potentially 
running out of beds or medical equipment, it is essential to lower 
the infection rate to create enough space to attend to the affected 
people and allow enough time for a vaccine to be developed. 
Unfortunately, this requires that measures put into place are 
upheld long enough to reduce the infection rate sufficiently.  

In this paper, we describe research simulating the influences 
of the contact rate on the spread of the pandemic using New York 
City as an example (Section IV) and especially already observed 
effects of contact rate increases during holidays [2-4] (Section V). 
In multiple simulations scenarios for Passover and Easter 
holidays, we evaluated 25%, 50%, 75%, and 100% temporary 
increases in contact rates using a scenario close to the currently 
reported numbers as reference and contact rates based on 
bioterrorism research as a “normal” baseline for NYC.  

The first general finding from the simulations is that singular  
events of increased visits/contacts amplify each other 
disproportionately if they are happening in close proximity (time 
intervals) together. The second general observation was that 
contact rate spikes leave a permanently increased and 
devastating infection rate behind, even after the contact rate 
returns to the reduced one. In case of a temporary sustained 
increase of contact rate for just three days in a row, the aftermath 
results in an increase of infection rate up to 40%, which causes 
double the fatalities in the long run.  

In numbers, given that increases of 25% and 50% seem to be 
most likely given the data seen in Germany for the Easter 
weekend for example [2, 3], our simulations show the following 
increases (compared to the realistic reference run): for a 
temporary 25% surge in contact rate, the total cases grew by 
215,880, the maximum of required hospitalizations over time 
increased to 63,063, and the total fatalities climbed by 8,844 
accumulated over 90 days. As for the 50% surge, we saw the total 
number of cases rise by 461,090, the maximum number of 
required hospitalizations increase to 79,733, and the total number 
of fatalities climb by 19,125 over 90 days in NYC. 

All in all, we conclude that even very short, temporary 
increases in contact rates can have disproportionate effects and 
result in unrecoverable phenomena that can hardly be reversed 
or managed later. The numbers show possible phenomena before 
they might develop effects in reality. This is important because 
phenomena such as the described blip can impact the hospitals in 
reality. Therefore, we warn that a wave of infections due to 
increased contact rates during Passover/Easter might come as a 
result! 

Keywords — COVID-19, Coronavirus, disease, SARS-CoV-2, 
pandemic, simulation, dynamic, complex, contact rate, infection, 
fatalities, hospitalization 

I. INTRODUCTION, SITUATION, PROBLEM 

“A Pandemic Is the Worldwide Spread of a New Disease” [5] 

The above mentioned definition by the WHO describes the 
current global situation in regard to the virus named 
COVID-19, that emerged world wide in the past months. As of 
the writing of this paper (April 13), there are 1,848,439 
confirmed COVID-19 cases world wide and 117,217 
confirmed deaths in over 200 countries [1]. The virus is 
confirmed to be transmissible from human to human [6, 7] and 
has constantly been spreading due to contact between 
individuals.  

The problem with the spread is though, that while it seems 
like a simple mathematical model, it is dynamic complex 
system which does not necessarily behave in a linear way. 
Thus, predictions can be difficult and the actual behavior of the 
whole system, and therefore the outcome such as fatalities and 
infrastructure strain, is hard to evaluate. One way to conduct 
such evaluations is to design a representative model which 
simulates and mimics the real world phenomena as close as 
possible. With such a model, certain parameters and influences 
can be assessed by modifying the model and observing its 
reaction, which is what this paper is about. 

Due to the importance of the above described transmission 
from human to human and the involved contact, the research 
presented in the following paragraphs took a look at the 
effective contact rates between humans in a theoretical 
dynamic simulation using New York City as an example, in 
order to determine what factors play what role and how certain 
influences interact. Therefore, various simulations and 
scenarios were assessed in order to discovered different 
behaviors and potential emergent phenomena based on and 
dependent on different factors.  

The second section will describe the research methodology, 
the model utilized for the simulations, and how the specific 
simulations were conducted. Section III describes the 
assumptions that were made in order to design and set up the 
model as well as the involved parameter as a result. Section IV 
and V then demonstrate and discuss scenarios possible and 
likely in order to show the behavior of the system and certain 
emergent phenomena. Lastly, Section VI will summarize and 
discuss the outcomes and also give an outlook how research 
might continue. 
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II. MODEL AND METHODOLOGY 
When looking at models for the spread of diseases, SIR 

models present a simple and easy to adapt starting point for 
such situations. SIR stands for “susceptible–infective-
removed” and was first proposed by Kermack and McKendrick 
in 1927 [8]. The model is described as a differential system in 
which multiple factors depend on each other to determine the 
behavior of the three levels S, I, and R. The equations herein 
were as follows [also see 9]: 

(I) Susceptible Population: 
  with  

(II) Infectious Population: 
  with  

(III) Removed Population: 
  with  
 so that   and   

With these equations, a simulation system was be derived 
that models the current situation of the COVID-19 spread in a 
simplified way. Since the aforementioned infrastructure and 
hospital strain was of importance for the Coronavirus 
pandemic, the model was modified to include time delays due 
to incubation and a portion of the infected people who would 
not go directly from “infected” to “removed” and rather move 
to hospitalization. From hospitalization then there were two 
options, either a delayed demise of the individual, or a delayed 
recovery, which adds the individual back to R. These additions 
modify the equations above as follows and add equations (IV) 
and (VIII): 

(IV) Susceptible Population: 
  with   

(V) Infectious Population: 
  with   

(VI) Removed Population (delayed): 
  with  

(VII) Hospitalized Population (delayed): 
  with  

(VIII) Deceased Population (delayed): 
  with   

 so that   

 and   

The simulation model based on these parameters was setup 
in Vensim [10] with time  and calculation steps of one day. A 
flowchart of the model is depicted in Figure 1 on the right. 

Based on the equations and the structure shown in Figure 1, 
the model was designed in order to allow for a flexible 
adjustment of the parameters, which will be described in 
Section 3. With the model then, the chosen research 

methodology was applied as described by Maria [11]. Herein, 
after the above described problem definition in a first step, the 
parameters of the model were set to yield an adequate and 
verifiable outcome. Such a verification was conducted by 
comparing the model results to real world data that was 
reported during the current pandemic. 

 
Figure 1 - Simulation Flowchart (* marks delay impacts)  

Wirth the set parameters (also see next section), multiple 
scenarios were simulated and examined based on various 
conditions that were chosen, always derived from real and 
current circumstances. These scenarios will be described in the 
fourth and fifth section. The outcomes were compared as far as 
the different levels of the simulations components go. For 
example, the infection rates and total cases could be compared 
to determine the speed of the spread and therefore the rise of 
the total case number over time. Another option is the 
comparison and evaluation of fatality numbers and hospital 
strain over time to assess how different scenarios effect the end 
results and possibly discover potential shortages at certain 
times. 

These scenarios then allowed for a general evaluation and 
also the discovery of the main focus of this paper, the 
phenomenon we called the “Easter Blip” (Section V). Based on 
the results, predictions of possible behaviors of the current 
pandemic were deduced to potentially support governing and 
regulating decision in order to avoid and mitigated unwanted 
situations such as high fatality numbers or collapse of medical 
support for example. The next section will describe the 
assumptions the model was based upon to allow for 
simulations that mimic the current real world behavior as far as 
feasible. 

III. ASSUMPTIONS AND PARAMETER 
In order to design a model that could mimic and simulate 

the real world pandemic, the factors, described in the equations 
(IV) through (VIII) above, had to be set so that the simulation 
results would be in accordance with real world situations and 
data. Therefore, this section will outline the assumptions that 
were made to achieve the accordance. Hence, the following 
sub-sections will describe one parameter each based on New 
York City (NYC) in 2020, with a population of 8,398,748 
people [12]. 

·S = − βS S(0) = So ≥ 0

·I = βS − γI I(0) = Io ≥ 0

·R = γI R(0) = Ro ≥ 0
S(t ) + I(t ) + R(t ) = N ·S + ·I + ·R = 0

·S = − βS S(0) = So ≥ 0

·I = βS − γI − λ I I(0) = Io ≥ 0

·R = γI + α H R(0) = Ro ≥ 0

·H = λ I − δH − α H R(0) = Ro ≥ 0

·D = δH R(0) = Ro ≥ 0

S(t ) + I(t ) + R(t ) + H(t ) + D (t ) = N
·S + ·I + ·R + ·H + ·D = 0

S(t) I(t) R(t)

H(t)D(t)

βS γI *

λI *
αH *

δH *
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The Parameter β - the Infection Rate 
The infection rate of the model, which describes at what 

rate the susceptible population will be infected, was defined 
depending on two factors: infectivity (i) and effective contact 
rate (c). These two factors together with the infectious 
population (I) and the susceptible population (S) allow the 
calculation of the infection rate according to the following 
formula: 

  

The infectivity (i) was defined as a constant based on the 
likelihood of  infection when people interact and hence was 
derived from various sources and set to 5% [13, 14] due to the 
higher population density of NYC compared to the locations of 
the source data. The constant infectivity allowed a modulation 
and adjustment of the infection rate based on the second 
component, the effective contact rate. This rate was 
furthermore used to model and simulate real word behavior as 
circumstances like social distancing for example impact the 
effective contact rate of the population and therefore were ideal 
to be modeled this way. For the general magnitude of the 
effective contact rate, the amount of average contacts of people 
per day in NYC was researched in order to enable a realistic 
starting point without any measures such as social distancing. 

Based on literature sources, the researched contact rate in 
NYC ranged from 5 for people who do not use the subway up 
to at least 10 for people who do utilize the subway [15]. Since 
this data was obtained and measured in 2003 and the 
population of NYC increased by 5% since then, this would 
yield contact rates of 5.25 and 12.5 today. Given that the 
number of subway users in NYC is higher than in any other 
city in the United States [16], it was assumed that 70% of the 
NYC population take the subway on a daily basis and therefore 
are more active and effectively have more contact, also through 
surfaces. Together with the number of contacts for non-subway 
users, this would yield an average effective contact rate without 
restrictions or social distancing of 10.325. 

All in all, the infection rate therefore was defined by the 
following equation: 

  with    

The Parameters γ and λ - the Recovery and Hospitalization Rate 
The parameters for the hospitalization and recovery rate 

were assumed to be directly connected as an infected person 
would either recover or be hospitalized (see Figure 1). 
Therefore, the recovery rate was exactly the opposite portion of 
the hospitalization rate, yielding 

 

Since the numbers of hospitalizations strongly vary by age 
group and therefore depend on demographics, an average 
hospitalization rate was calculated based on official data by the 
City of New York [17] to allow for the use of a constant. The 
resulting probability was 0.27 for hospitalizations and thus 
0.73 for recovery.  

    and     

The Parameters α and δ - the Hospital Recovery and Mortality 
Similar to the last sub-section, the parameters for the 

hospital recovery and death rate were also assumed directly 
connected as a hospitalized person would either recover or 
decease. Therefore the hospital recovery rate was exactly the 
opposite portion of the death rate, yielding 

 

Since the death rate for people already hospitalized is much 
higher than the death rate of the virus in general, it was 
calculated based on the number of confirmed deaths and 
hospitalizations also provided by the City of New York [17], 
which resulted in a death rate of 0.223 and hence a hospital 
recovery rate of 0.777. 

    and     

Final Assumption - Unknown Numbers 
The first positive COVID-19 case was reported in New 

York City on March 1st. Unfortunately, this is only the first 
confirmed positive case and not necessarily or likely the first 
case in general. Throughout the spread of the virus, only cases 
tested positive were reported and therefore a lack of people 
who carry the virus, but are not aware, has to continuously be 
assumed. This is further exacerbated by the fact that it is 
possible to carry the virus without ever showing symptoms [see 
18]. Thus, the number of COVID-19 cases resulting from a 
simulation has to be way higher than what the real data 
represents. Actual numbers and estimation for the unknown 
numbers are hard to find and estimations range from over 70 
percent unknown cases [19] to ten times the confirmed number 
or more [20]. Therefore, the number of unknown cases in the 
model was adjusted so that the model aligned from March 1st to 
March 20th with the reported real time data. In order to achieve 
this, the model was set to 15 infections at the time of the first 
reported case. This lead to a realistic outcome of the simulation 
and also served as verification of the design as the fatality rate 
and the case numbers correlated with the data when taken into 
consideration the unknown cases. 

 With these settings and parameters, the scenarios for the 
simulation could be run and evaluated. Since the measures and 
regulations that were put into place are hard to quantify, the 
first scenarios will address the effects of such measures and 
show how they could have affected the numbers. Then, the 
ensuing scenarios will evaluate possible future occurrences and 
possibilities. The following fourth section will cover these 
scenarios and therein discuss the general effects of the variable 
in the simulation, the effective contact rate. The fifth section 
then will discuss and show a possible and presumably likely 
phenomenon that could await in the near future, including its 
implications.  

IV. BASELINE SCENARIOS AND GENERAL EFFECTS 
As described above, the first baseline scenario to assess is 

to figure out what trajectory the real world data most likely 
followed in order to understand what the measures that were 
put into place changed and how they affected the model. As 
mentioned, the variable to be manipulated will be the effective 
contact rate which directly affects the infection rate. 

β ⋅ S = c ⋅ S(t ) ⋅
I(t )

N − D (t )
⋅ i

β ⋅ S = c (t ) ⋅ S(t ) ⋅
I(t )

N − D (t )
⋅ i c0 = 10.325

γ + λ = 1

γ = 0.27 λ = 0.73

δ + α = 1

δ = 0.223 α = 0.777
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Scenario 1 - Immediate Social Distancing and Bans Policy 
The first measure that was put in place in NYC was social 

distancing and the closing of certain institutions and stores to 
be implemented immediately. This was accompanied by 
companies moving employees to work from home or stopping 
work all together. Official orders for example went into place 
on March 16th and March 21st after the national emergency was 
declared on March 13th  [see 21]. Therefore, the scenario below 
was constructed for the simulation to evaluate the effects. In a 
first run, the two dates were utilized to introduce step 
reductions in the effective contact rate of various heights and 
the effects on the infection rate were compared in form of a 
graph. Figure 2 and 3 below show the outcome for a period of 
90 days, which corresponds to the time from March 1 through 
the End of May. 

 
Figure 2 - Scenario 1: Infection Rate Over Time 

 
Figure 3 - Scenario 1: Fatalities Over Time 

Looking at the outcome, we see that the different effective 
contact rate steps flatten the curve significantly and stretch out 
the infections. Looking at the data as of April 10, which would 
correspond to the day 41 in the simulation, the fatality count in 
NYC was 5,429, which corresponds to the run above that 
included two steps with a reduction of 2 each time. 

Unfortunately, as Figure 2 and 3 show, this version of 
Scenario 1 does not do well as far as the reduction of the 
infection rate goes over time and the fatalities keep increasing 
exponentially despite the measures. This is due to the fact that 
the reductions are not significant enough overall to have a 
helpful impact. Furthermore, such a scenario, while plausible 
and possible, is not realistic since measures put in place do not 
go into effect at once and everyone adheres to them 
immediately at the time they go into effect. Therefore, a 
continuous reduction is more realistic, which is why such a 
scenario will be presented and evaluated in Scenario 2. 

Scenario 2 : Gradual Social Distancing and Bans Policy 
The second scenario, as above alluded to, will evaluate the 

effects of gradually reduced effective contact rates over a 
number of days. This way, the rates decrease over time until 
they reach certain events or a limit, which is more realistic 
since people adjust to new circumstances and in this case 
regulations gradually over time. Thus, the starting point of the 
regulations mentioned in the previous scenario was used to 
introduce effective contact rate reductions with a delay of one 
day. For example, the blue line in Figure 4 indicates a 
reduction of 1 for the effective contact rate after day 16 for 9 
consecutive days until the rate reaches 1.325. 

 
Figure 4 - Scenario 2: Infection Rate Over Time 
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Figure 5 - Scenario 2: Total Fatalities over Time 

With this data, we can see that the run with the steps of 0.5 
down to 1.825 is closest to reality and approaches the fatality 
number currently reported. Furthermore, we see that the 
gradual reduction of the effective contact rate leads to a peak in 
the infection rate which then introduces a downswing and 
successive upswing albeit the latter with a lower gradient of the 
Infection Rate over time. Therefore, we can say that the 
gradual reduction of the effective contact rate is an effective 
measure to control the epidemic and can even hedge the 
upswing of the virus spread, as shown by Figure 4. 

V. THE EASTER AND PASSOVER BLIP 
So far, we have looked at baseline scenarios which behave 

the same way over time and have changes that are linear or 
follow a gradient. Unfortunately, this is not at all the case in 
reality, as singular or short term relaxation in rules or 
temporarily making exceptions can cause major changes to the 
effective contact rate for a brief period of time. Such events can 
be short ones that increase the effective contact rate 
momentarily, but also longer time periods that show an 
increase or decrease, such as seasons, for example [see 22]. 
Since the increases are more critical than the decreases, we 
want to take a look at them in this section.  

At the time of this writing (April 12, 2020), Easter is 
happening and during these times, various other religious 
holidays have happened or are coming up in the near future. 
During such holidays, people tend to congregate, visit religious 
gatherings such as masses, and visit family members. After a 
prolonged period of solitude, the perceived need and yearning 
for such close contacts increases understandably and there have 
already been reports of planned gatherings [4], measured 
significantly increased mobility in Germany [2, 3], and people 
(including two of the authors) have witnessed Good Friday 

gatherings at homes in New Jersey and New York, for 
example.  

These phenomena raise the question what could happen if 
people are giving in to their yearnings and defy 
recommendations and regulations. Hence, this section will look 
at possibilities in two scenarios to estimate the implications of 
such defiance in order to enable a prediction regarding the 
outcome if the cause cannot be prevented. Scenario 3 will 
assess the possibility of increased effective contact rates on 
separate occasions and Scenario 4 will assess short periods of 
increases. As a basis for the scenarios, the trajectory closest to 
reality of Scenario 3 will be utilized. 

Scenario 3: Isolated Increases in Effective Contact Rate 
To utilize a real life example we simulated the Run from 

Scenario 2 with the steps of 0.5 down to 1.325 and 
implemented two short increases in effective contact rate for 
Good Friday and Easter Sunday. In order to simulate various 
severities of increases, four runs were conducted with 
increments of 25% yielding the last run as a return all the way 
back to the effective contact rate c0 of 10.325. The results are 
depicted in Figure 6 through 9 on the next pages and discussed 
hereinafter. 

The figures 6 through 9 on the next two pages demonstrate 
the effects that short outbursts can have and a few takeaways 
have to be mentioned and pointed out. First, a return to the 
effective contact rates of a “normal” state can increase the 
infection rates temporarily by 980% as the first day with 
increased effective contact rates amplifies the second one. This 
is due to the decrease in between those two dates not being 
sufficient for the measures to fight back the short upswing in a 
limited time. Therefore, these two increases could yield 
hundreds of thousands of new infections and thus could also 
even double the number of hospitalized patients. Second, in the 
long run, these short increases in effective contact rates can 
have detrimental impacts when it comes to the fatality numbers 
as a result of the increased hospitalizations. In the worst case, 
this could lead to an increase in fatality numbers of 60% after 
90 days, not taking into consideration that hospitals might be 
overloaded and forced into triage procedure where limited 
resources have to be allocated and decisions have to be made 
which patients can receive treatments at all. 

Overall, this scenario shows that singular increases already 
can have detrimental impacts and make the difference between 
hospitalization infrastructure  being overloaded or able to 
handle the demand. In addition, the simulation shows the 
numbers immediately, whereas in reality, the incubation time 
might lead to a delay and thus the individuals infected over 
Easter could potentially affect the medical infrastructure one 
week to two weeks later. 

With these aspects in mind, the last scenario will assess the 
worst possible option, a temporarily sustained increase, 
beginning on page 8. 
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Figure 6 - Scenario 3: Isolated Increases in Effective Contact Rate - Infection Rate showing the two peaks for the contact rate increases on day 
40 and 42 with the latter ones being higher and amplified by the first one. Day 43 and later show the infection rates which are permanently 
increased due to the aftermath of the spikes prior to it. 

 

Figure 7 - Scenario 3: Isolated Increases in Effective Contact Rate - Total Cases showing the effects of the two peaks on day 40 and 42 and the 
impact of the permanently increased infection rates over time in form of higher gradients for the simulated runs. 
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Figure 8 - Scenario 3: Isolated Increases in Effective Contact Rate - Hospitalizations showing how many people require hospitalization for 
Scenario 3 each day after the delay of the incubation. This represents the required hospitalizations, which may exceed the real capacities of the 
hospitals and therefore cause shortage and possible even triage situations as described before. The predicted hospitalization numbers allow for 
estimation of necessary resources for the simulated area. 

 

Figure 9 - Scenario 3: Isolated Increases in Effective Contact Rate - Fatalities that show the increasing deaths over time with the different 
gradients based on the height of the peaks shown in the infection rates.  
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Scenario 4: Temporarily Sustained Increase in Effective Contact Rate 
The above descried scenario assessed short singular 

increases, which might happen again in the future for certain 
events. This leaves the question though, since the last scenario 
already showed an interplay between two singular increases, 
how sustained increases, even if temporarily limited to various 
days, affect the numbers and if the reciprocity effects multiply. 
Therefore, this last scenario assesses a constant increase over 
Easter weekend, for example, if people would spend multiple 
days with family or other gathers, which is not unusual. Again, 
in order to simulate various severities of increases, four runs 
were conducted with  differences of 25% yielding the past run 
as a return all the way to the effective contact rate of 10.325 for 
three days (Good Friday through Easter Sunday). The results 
are depicted in Figure 10 through 13 on the next pages and 
discussed thereinafter. Figure 14 shows the hospitalizations 
over 180 days for demonstration purposes. 

The figures resulting from the last scenario show that the 
effects are partially as to be expected based on Scenario 3 since 
the infection rate steadily rises with every day the increase 
persists and therefore the impact that the measures have when 
they are back in effect is also reduced. For example, for the 
infection rate on the first day after the increased period, the 
numbers are between 10% to 40% higher than they were in the 

respective runs of Scenario 3. This means that each day the 
increase persists will have permanent effects on the infection 
rates even once the effective contact rate goes back down. This 
permanent influence can have extreme ripple effects for the 
hospitalization and fatality numbers as shown by Figures 12 
and 13 below: the hospitalization numbers are between 8.9% to 
34.9% higher than the respective runs of Scenario 3 and 
between 29% and 146% higher than the reference run; the 
fatality numbers are between 6.8% to 28.6% higher than the 
respective runs of Scenario 3 and between 21.4% and 106% 
higher than the reference run over 90 days. 

All in all, we can see that a temporarily sustained increase 
not only increases the numbers and therefore causes effects 
over the time of its existence, it also affects the numbers after 
its subsidence as it permanently increases the severity of the 
pandemic. This allows for two conclusions: one, it is 
imperative to prevent such increases at any costs and two, if 
they are inevitable, they have to be kept as low and short as 
possible to minimize the permanent impact they have. 

This concludes the simulations and scenarios assessed in 
this research. The last section will give a overview and 
summary including a conclusion and outlook regarding future 
research opportunities and plans.  

 

Figure 10 - Scenario 4: Temporarily Sustained Increase in Effective Contact Rate - Infection Rate per day showing the constantly extremely 
increasing rates from day 40 through 42. These days each amplify the following one due to the sustained increased contact rates. This also 
exacerbates the effect after the subsidence of the peaks as the reaming infection rate is even more elevated that the one observed in Scenario 3. 
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Figure 11 - Scenario 4: Temporarily Sustained Increase in Effective Contact Rate - Total Cases showing the effects of the rapidly increasing 
infections from day 40 through 43 and the impact of the permanently increased infection rates over time in form of higher gradients for the 
simulated runs.  

 

Figure 12 - Scenario 4: Temporarily Sustained Increase in Effective Contact Rate - Hospitalizations showing even higher numbers of people 
requiring hospitalization after the delay of the incubation compared to Scenario 3. This results in even bigger loads for the hospitals and other 
infrastructure and presents an increased threat of collapse. 
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Figure 13 - Scenario 4: Temporarily Sustained Increase in Effective Contact Rate - Fatalities over time showing the even higher numbers and 
gradients compared to Scenario 3 due to the sustained temporary increase in effective contact rates. 

 

Figure 14 - Scenario 4: Temporarily Sustained Increase in Effective Contact Rate - Hospitalization Rate over 180 Days showing the continued 
decline in required resources. This is dependent on a constant adherence to the measures and cannot be achieved with further deviations. It has 
to be noted though, that over the length of the simulation and with an increased time frame, the accuracy of the predictions declines due to 
possible unforeseen influences that are not included because they are not predictable. 
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VI. CONCLUSION AND OUTLOOK 
The previous sections have shown that the effects of such a 

dynamic and complex systems as this pandemic are by no 
means linear and predictable by mere extrapolation. Even with 
the measures and the current standings, short increase and 
maybe even returns to “normal” effective contact rates can 
have detrimental outcomes that cause permanent effects 
impossible to cure even when caught early. The two simulation 
scenarios 3 and 4 demonstrated that even single short increases 
can show these behaviors and temporarily sustained ones 
increase and amplify the impact through reciprocity. 

Our simulations have shown that increases permanently 
increase infection rates after subsidence by as much as 40% 
and higher surges, such as a return to “normal” and therefore 
100% increase of the effective contact rate would increase the 
infection rate temporarily by over 1,000%. These effects ripple 
through the system and impact hospitalizations and ultimately 
fatalities, increasing the former by as much as 146% at the 
peak and the latter by as much as 106% in the worst case 
compared to the references without contact increases. 

In numbers, given that increases of 25% and 50% seem to 
be most likely given the data seen in Germany for the Easter 
weekend for example [2, 3], our simulations show the 
following increases (compared to realistic reference run) for a 
temporary 25% surge in contact rate: the total cases grew by 
215,880, the maximum of required hospitalizations over time 
increased to 63,063, and the total climb in fatalities was 8,844 
accumulated over 90 days. As for the 50% surge, we saw the 
total number of cases rise by 461,090, the maximum number of 
required hospitalizations increase to 79,733, and the total 
number of fatalities climb by 19,125 over 90 days in NYC.  

In conclusion, the numbers and scenarios demonstrated that 
increases of any kind have to be prevent at any costs in order to 
not permanently impact the progress of the pandemic 
containment. If such increases cannot be prevented, it is 
imperative to keep them as short as possible and, if necessary, 
separate the peaks as much as possible in order to allow for 
regulation and mitigation in between. Furthermore, other 
mitigation strategies such as stricter  regulations could be a 
possibility to mitigate already happened singular increases. 

As described in the previous section, the results obtained in 
this simulation possess a certain predictive power within their 
numbers as they show possible phenomena, such as increases 
infection rates and their implications, before they develop 
effects in reality. This is especially important when it comes to 
the hospitalization rates, as increases infection rates or even 
short phenomena such as the described Easter Blip can 
significantly impact the hospitals in reality. Thus, the results 
allow a predictions to an extent when a wave as a result of an 
increase in infection numbers might come. This can allow 
authorities to assign resources accordingly or at least prepare 
for possible impacts especially since data seen in reality 
already shows the trajectory of the evaluated scenarios [2, 3]. 

As for future research and an outlook, other measures and 
effects, such as protective gear for the public can be assessed, 
as they might reduce the infectivity and or effective contact 
rate for example. This would allow for a selective use of such 
measures wherever necessary in order to purposefully utilize 
their effects. Moreover, other branches and population areas 
are planned to be researched, such as EMTs and police, as the 

impact of the pandemic on such forces is also important for the 
general public safety. 

We see that the current pandemic impacts all our lives and 
will most likely continue to do so for, as of the time of this 
writing, an unexpected future. Fortunately the research 
conducted allows simulation and mimicking of the reality with 
predictive power and we will continue to adjust our models to 
include any new and important occurrences. Staying home and 
social distancing are our most powerful weapons in fighting 
this pandemic, but they only work if everyone participates, 
wide spread individual exceptions cannot be granted nor 
accepted and they can sabotage the whole mission. Let’s all do 
our part and participate in the fight, everyone can and everyone 
has to! Stay safe, stay home, stay healthy! 
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