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 2 

ABSTRACT 1 

 2 

While genome-wide association studies have identified susceptibility variants for numerous 3 

traits, their combined utility for predicting broad measures of health, such as mortality, remains 4 

poorly understood. We used data from the UK Biobank to combine polygenic risk scores (PRS) 5 

for 13 diseases and 12 mortality risk factors into sex-specific composite PRS (cPRS). These 6 

cPRS were moderately associated with all-cause mortality in independent data: the estimated 7 

hazard ratios per standard deviation were 1.10 (95% confidence interval: 1.05, 1.16) and 1.15 8 

(1.10, 1.19) for women and men, respectively. Differences in life expectancy between the top 9 

and bottom 5% of the cPRS were estimated to be 4.79 (1.76, 7.81) years and 6.75 (4.16, 9.35) 10 

years for women and men, respectively. These associations were substantially attenuated after 11 

adjusting for non-genetic mortality risk factors measured at study entry. The cPRS may be 12 

useful in counseling younger individuals at higher genetic risk of mortality on modification of 13 

non-genetic factors. 14 

  15 
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 3 

INTRODUCTION 1 

 2 

Genome-wide association studies (GWAS) with increasingly large sample sizes have led to the 3 

discovery of thousands of genetic variants associated with individual traits, including complex 4 

diseases and risk factors for disease (1). Analyses of polygenicity of a variety of traits (2,3) have 5 

further indicated that many individual traits are likely to be associated with thousands to tens of 6 

thousands of genetic variants, each with very small effect. Thus, much attention has been paid 7 

to the utility of polygenic risk scores (PRS), which represent the genetic burden of a given trait, 8 

for developing strategies for risk-based intervention through lifestyle modification (4–8), 9 

screening (5,7–12), and medication (5,7,13,14). A PRS for a given trait is typically defined as a 10 

weighted sum of a set of germline single-nucleotide polymorphisms (SNPs), where the weight 11 

for each SNP corresponds to an estimate of the strength of association between the SNP and 12 

the trait (7). Recent studies indicate that while PRS tend to have modest predictive capacity 13 

overall, they have the potential to offer substantial stratification of a population into distinct 14 

levels of risk for some common diseases such as coronary artery disease (CAD) and breast 15 

cancer (4,15).  16 

 17 

There is ongoing debate regarding the utility of PRS in clinical practice (16–18). PRS can be 18 

more robust and cost-efficient tools for risk stratification than other biomarkers and risk factors. 19 

In particular, PRS do not change over time and thus need to be measured only once. 20 

Additionally, the risk associated with PRS for different traits appears in many cases to be fairly 21 

consistent over an individual’s life course (15,19) and time-varying lifestyle and clinical factors 22 

tend to act in a multiplicative way on baseline genetic risk (4,6,20,21). Further, if genome-wide 23 

genotype and/or sequencing data are available on an individual, the same data can be used to 24 

evaluate the PRS for a large number of traits simultaneously. Thus, beyond the use of PRS for 25 
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 4 

prevention of specific diseases, it is important to evaluate their utility for broad health outcomes, 1 

particularly if PRS are to be utilized in routine health care.  2 

 3 

The broad health impact of public health or clinical interventions is often measured in terms of 4 

their impact on all-cause mortality or lifespan (22–25). While a small number of genetic variants 5 

associated with lifespan have been identified (26–28), no study to date has systematically 6 

evaluated the ability of emerging PRS for life-threatening diseases and mortality risk factors to 7 

predict mortality. We used data from the UK Biobank, a large prospective cohort study, to 8 

assess the combined utility of PRS associated with 13 common diseases and 12 established 9 

risk factors for mortality. We used training data to combine the trait-specific PRS into sex-10 

specific composite PRS (cPRS) that are predictive of all-cause mortality. We then evaluated the 11 

association of these cPRS with all-cause mortality and their ability to stratify mortality risk in 12 

independent test data. We also assessed the degree to which mortality risk associated with the 13 

cPRS was accounted for by mortality risk factors measured at the time of entry into the study, 14 

i.e., middle age for most participants. Finally, we examined the potential clinical use of the 15 

cPRS, namely, counseling individuals at higher genetic risk of mortality on modification of non-16 

genetic risk factors such as body mass index (BMI) and smoking status.   17 

 18 

METHODS 19 

 20 

Causes of Death and Mortality Risk Factors 21 

 22 

We used the Centers for Disease Control (CDC) Wide-ranging ONline Data for Epidemiologic 23 

Research (WONDER) database to identify the top causes of death (organized by the 24 

International Classification of Diseases (ICD)-10 113 Causes List) in terms of the number of 25 
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 5 

deaths among non-Hispanic whites in the United States over the age of 40 in 2017, separately 1 

for men and women (29). We then determined the top 10 causes of death with some genetic 2 

basis, i.e., causes for which there is evidence of an association between one or more genetic 3 

variants and disease risk (Supplementary Table 1). These causes accounted for 70.3% and 4 

71.8% of deaths among women and men, respectively, in the CDC data.  5 

 6 

Several of these causes were very general categories of disease (e.g., “diseases of heart”), 7 

making it difficult to identify relevant trait-specific GWAS. Thus, we identified the specific cause 8 

within these categories associated with the highest number of deaths (with the exception of 9 

“malignant neoplasms”; here, we identified the top four cancers for each sex in terms of the 10 

number of deaths). The final list of diseases was: CAD, COPD, Alzheimer’s disease, stroke, 11 

type 2 diabetes, CKD, hypertension, alcoholic liver cirrhosis, Parkinson’s disease, pancreatic 12 

cancer, colorectal cancer, lung cancer, breast cancer (women only), and prostate cancer (men 13 

only) (Supplementary Table 1). These causes of death captured 44.4% and 44.9% of deaths 14 

among women and men, respectively, in the CDC data. The difference between these figures 15 

and those cited above (70.3% and 71.8% for women and men, respectively) are driven largely 16 

by deaths from non-CAD diseases of the heart and deaths from malignant neoplasms not 17 

included in our list of cancers. As our analysis involves UK Biobank data, we also used Office of 18 

National Statistics mortality data (30) to determine the top causes of death in the UK; these 19 

were nearly identical to those identified using the CDC data (Supplementary Table 1).  20 

 21 

Based on government statistics from the UK (31), we further identified major mortality risk 22 

factors that are known to have some genetic component (32,33). We included smoking status, 23 

alcohol consumption, SBP, BMI, total cholesterol, fasting plasma glucose, and eGFR. Beyond 24 

the risk factors highlighted by the UK government statistics, we included LDL cholesterol, HDL 25 
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 6 

cholesterol, triglycerides, DBP, and sleep duration. In particular, sleep duration was included on 1 

the basis of several studies showing clear links between sleep duration and all-cause mortality 2 

(34–36). 3 

 4 

Extraction of SNP Information from the GWAS Catalog and Publicly Available GWAS  5 

 6 

To generate a PRS for each disease included in the top causes of death, we used results 7 

published in the NHGRI-EBI GWAS Catalog (37) to identify SNPs associated with the disease. 8 

We downloaded the GWAS Catalog results on March 15, 2019, and selected autosomal 9 

genome-wide significant SNPs (p-value £ 5 x 10-8). For each disease, we identified one or more 10 

search terms based on the trait names used by the GWAS Catalog, and selected the SNPs 11 

corresponding to these search terms. We then checked several fields of the GWAS Catalog, 12 

such as the source of the data, the study title, and the description of the trait studied, to ensure 13 

that we retained relevant SNPs; in particular, we sought to include results from analyses of 14 

Europeans (or multi-ethnic populations including Europeans) and to exclude studies of 15 

pleiotropic or composite outcomes, studies not of disease susceptibility, studies of children or 16 

pregnant women, studies of a secondary condition in individuals with a primary condition (e.g., 17 

myocardial infarction in individuals with coronary heart disease), studies of haplotypes or multi-18 

SNP analyses, and studies of subpopulations (e.g., carriers of a specific genetic mutation; the 19 

only exceptions to this were studies of cirrhosis among alcohol drinkers and studies of COPD 20 

among smokers) or SNP-environment interactions. Importantly, these exclusions mean we 21 

included only GWAS of disease status, rather than GWAS of particular outcomes among 22 

individuals with a given disease, e.g., disease-associated mortality. In the resulting list of SNPs, 23 

there were several cases where the same SNP appeared multiple times for the same disease 24 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2020. .https://doi.org/10.1101/2020.03.13.20035527doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.13.20035527
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

trait. In these situations, we kept the result from the largest study (in terms of the number of 1 

cases). The same SNP may appear for multiple traits. 2 

 3 

For our analysis, it was important to extract the effect allele, effect size, and effect allele 4 

frequency for each SNP. The effect allele and effect size were used to construct the PRS in the 5 

UK Biobank, and the effect allele and effect allele frequency were used to check whether the 6 

SNP in the UK Biobank was the same as the SNP reported on the GWAS Catalog. For many 7 

SNPs on the list we created, some or all of this information was missing in the GWAS Catalog. 8 

We sought to fill in this information by consulting the original paper and its supplementary 9 

materials, as well as the Ensembl database (38). In situations where we were not able to 10 

discern the effect allele, the effect allele frequency, or the effect size of a particular SNP, the 11 

SNP was removed from our list.  12 

 13 

We applied the same approach for identifying SNPs for each cause of death except for stroke. 14 

This is because there are several types of stroke and different studies included in the GWAS 15 

Catalog employed definitions of stroke with varying specificity. Thus, we used a recently 16 

published stroke PRS (39) instead of using the results available from the GWAS Catalog.  17 

 18 

Our approach to identifying SNPs for inclusion in the mortality risk factor PRS differed from the 19 

approach described above. In particular, we found that the risk factor phenotypes were typically 20 

defined and/or analyzed differently across studies. For instance, smoking behavior could be 21 

defined as ever-use of cigarettes (never vs. former/current) or more granularly, incorporating 22 

cigarettes per day and duration among ever smokers. As another example, body mass index 23 

could be analyzed as a raw measurement, or it could first be rank-transformed. In light of these 24 

complications, instead of using the results included in the GWAS Catalog, we used the results 25 
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 8 

from the most recent, largest trait-specific GWAS for which summary data were available (40–1 

45). As above, we selected autosomal genome-wide significant SNPs (p ≤ 5 x 10-8) and 2 

removed SNPs for which the effect allele, effect size, or effect allele frequency were 3 

unavailable. In addition, as variant identifiers (RS IDs) were the primary way of querying the UK 4 

Biobank genotype data (described below), SNPs without RS IDs were removed (this was not an 5 

issue for the GWAS Catalog results).  6 

 7 

UK Biobank: Disease and Mortality Data 8 

 9 

The UK Biobank is a large cohort study of over 500,000 individuals in the UK (46). The study 10 

enrolled individuals aged 40-69 years between 2006 and 2010 and has followed them since 11 

enrollment. A vast array of information has been collected from these individuals, including 12 

genotype data, anthropometric measurements, and information on lifestyle factors and personal 13 

and family history of disease. Additionally, data from national death and cancer registries are 14 

linked to the UK Biobank data.  15 

 16 

We retrieved data on mortality, incident and prevalent disease for the top causes of death, and 17 

mortality risk factor measurements at baseline. The death registry data were available through 18 

November 30, 2016, for the centers in Scotland and January 31, 2018, for the centers in 19 

England and Wales. We determined whether an individual died of a particular disease by 20 

considering the ICD-10 code listed as the primary cause of death (see Supplementary Table 1 21 

for the codes used). We used several sources of data to identify incident and prevalent cases of 22 

disease for the top causes of death. In particular, we used cancer registry data (available 23 

through October 31, 2015, in Scotland and March 31, 2016, in England and Wales) to determine 24 

whether participants had or experienced the cancers in our list of diseases before (prevalent 25 
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 9 

case) or after (incident case) study baseline on the basis of ICD-9 and ICD-10 codes 1 

(Supplementary Table 2). For the non-cancer diseases, we used questionnaire/interview data, 2 

hospital episode data (available through March 31, 2017, in England, October 31, 2016, in 3 

Scotland, and February 29, 2016, in Wales), and death registry data to identify prevalent and 4 

incident cases of disease (Supplementary Table 2). The exception to this was incident and 5 

prevalent diabetes, which were defined based on the algorithm presented in (47). For SBP and 6 

DBP at baseline, two measurements were made for each; when both of these were non-7 

missing, the average was used. Self-reported intake of different forms of alcohol was converted 8 

into grams of alcohol per day (Supplementary Table 3).  9 

 10 

In all analyses, unless otherwise specified, we adjusted for the first ten genetic principal 11 

components, which were provided by the UK Biobank, in order to account for population 12 

stratification. In addition, all survival models accounted for left truncation by starting the follow-13 

up interval at study entry. Throughout, we restricted our attention to unrelated participants (third 14 

degree relatives or closer were removed) of white British ancestry, in order to minimize the 15 

influence of population stratification and avoid issues related to clustering of individuals in 16 

families. We further removed individuals who had withdrawn their consent to participate. 17 

Unrelated participants were identified as those who were used by the UK Biobank to compute 18 

the principal components and ancestry was determined by the UK Biobank based on self-report 19 

and principal component analysis. The UK Biobank was approved by the North West Multi-20 

centre Research Ethics Committee. This research was conducted using the UK Biobank 21 

Resource under Application Number 17712.  22 

 23 

Evaluating PRS in the UK Biobank 24 

 25 
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 10 

Imputed genotype data (in the form of allele dosage, i.e., between 0 and 2) for the SNPs 1 

identified above were extracted from the UK Biobank, matching on RS ID if possible and on 2 

chromosome and position otherwise. Non-biallelic SNPs and ambiguous palindromic SNPs (A/T 3 

or C/G SNPs with allele frequencies between 0.4 and 0.6) were removed. To ensure the SNPs 4 

from the UK Biobank were the same as those on our curated list of trait-associated SNPs, the 5 

alleles and allele frequencies were compared (allowing for the possibility of strand flips). SNPs 6 

that did not match the UK Biobank data, i.e., SNPs for which the reported allele frequency and 7 

the allele frequency in the UK Biobank differed by more than 0.15, were removed. Finally, SNPs 8 

in LD were removed via LD clumping, implemented using PLINK with an r2 cutoff of 0.1 and 9 

based on the reported p-values (from the GWAS Catalog or the publicly available summary 10 

statistics) and the 1000 Genomes European reference panel (48,49). This was done separately 11 

for each disease and risk factor, yielding a list of independent SNPs for each trait. The one 12 

exception was stroke: the SNP list was not pruned because the estimated association 13 

coefficients provided were based on a joint SNP model. The number of SNPs included in each 14 

PRS varied widely, between two SNPs for cirrhosis and 1,458 for BMI (Supplementary Table 4). 15 

In total, our analysis included 3,941 unique SNPs. 16 

 17 

Next, a PRS for each trait was constructed for each participant by weighting the SNP dosage by 18 

the reported log odds ratio (for binary traits) or linear regression coefficient (for continuous 19 

traits):  20 

𝑃𝑅𝑆%,' = )𝑔%,+𝛽+,'

-.

+/0

, 21 
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 11 

where 𝑃𝑅𝑆%,' is the PRS value for the ith individual and the jth trait, 𝑚' is the number of SNPs 1 

included in the PRS for the jth trait, 𝑔%,+ is the genotype dosage for the ith individual and the kth 2 

SNP, and 𝛽+,' is the log odds ratio or linear regression coefficient for the kth SNP and the jth trait. 3 

 4 

Statistical Analysis 5 

 6 

All analyses were sex-specific and the PRS were standardized to have unit variance. We first 7 

evaluated the association between each derived PRS and the corresponding trait (i.e., prevalent 8 

disease and incident disease for the disease trait, and measurement at baseline for the mortality 9 

risk factors). For the disease traits, we evaluated the association with incident and prevalent 10 

disease status separately. To evaluate the relationship between each disease PRS and 11 

prevalent disease, we fit a logistic regression model for each disease. We used Poisson models 12 

with robust variance estimation (50) to evaluate the association between each disease PRS and 13 

incident disease among individuals without prevalent disease. For the mortality risk factors, we 14 

used linear regression with robust variance estimation to model the relationship between each 15 

mortality risk factor PRS and the risk factor measurement at baseline. The one exception was 16 

smoking status; since the smoking status PRS was developed based on a GWAS of ever-use of 17 

cigarettes, we defined the smoking status risk factor as ever-use of cigarettes. As this is a 18 

binary variable, we used logistic regression to model the relationship between the smoking 19 

status PRS and ever-use of cigarettes. Since eGFR was not directly available in the UK 20 

Biobank, we calculated eGFR at baseline using the Modification of Diet in Renal 21 

Disease (MDRD) Study equation (51); this mirrors the definition of eGFR used in the GWAS 22 

upon which our eGFR PRS was based (45). All models included adjustment for age at entry, in 23 

addition to the first ten principal components. 24 
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 1 

We also investigated cause-specific mortality for the diseases included in our top causes of 2 

death. We used Cox proportional hazards models to study the relationship between each 3 

disease PRS and age at death from that disease. Deaths from other causes were treated as 4 

censoring events. We performed these analyses in the full cohort and also among individuals 5 

with and without the disease corresponding to the cause of death being modeled at baseline. 6 

We also evaluated the relationship between each mortality risk factor PRS and mortality due to 7 

each of the causes of death. For all of the analyses related to cause-specific mortality, when 8 

there were not enough deaths to yield stable estimates, estimates are not provided. 9 

 10 

Our main analysis involved studying the joint relationship between the 25 PRS and all-cause 11 

mortality. First, we split the data into training (2/3) and test (1/3) sets. Then, in the training data, 12 

all PRS (with the exception of prostate cancer and breast cancer for the female- and male-13 

specific models, respectively) were included in Cox proportional hazards models of age at 14 

death: 15 

𝜆(𝑡|𝑃𝑅𝑆0, … , 𝑃𝑅𝑆78, 𝒁) = 𝜆;(𝑡) exp(𝜃0𝑃𝑅𝑆0 +⋯+ 𝜃78𝑃𝑅𝑆78 + 𝜷C𝒁). 16 

In this formula, 𝜆(𝑡|𝑃𝑅𝑆0, … , 𝑃𝑅𝑆78) denotes the hazard at age 𝑡 given 𝑃𝑅𝑆0,… , 𝑃𝑅𝑆78, 𝜆;(𝑡) 17 

denotes the baseline hazard at age 𝑡, and 𝒁 is a vector of the first ten principal components. 18 

Each model yielded a weighted combination of the individual PRS where the weights were the 19 

estimated log HRs from the Cox model, 𝜃E0𝑃𝑅𝑆0 + ⋯+ 𝜃E78𝑃𝑅𝑆78; we refer to these sex-specific 20 

weighted combinations as the “composite PRS” (cPRS). These cPRS were then applied to the 21 

test data. In particular, we used a Cox model to evaluate the HR for all-cause mortality per 22 

standard deviation of the cPRS. In addition, we estimated the HR comparing individuals in the 23 

top 5% of the cPRS distribution to those in the middle 20% and the HR comparing individuals in 24 

the bottom 5% to those in the middle 20% in the test data. This was based on quantiles 25 
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estimated in the training data. To aid in the interpretation of these results, the estimated HRs 1 

were converted into approximate years of life difference, as done in other studies of survival 2 

(26,33). In addition, we used Harrell’s C-index to quantify the discriminatory ability of the cPRS 3 

(52); note that this evaluation did not adjust for principal components. 4 

 5 

We undertook a series of additional analyses. First, we evaluated the association between the 6 

cPRS and all-cause mortality in the “healthy” subset of the test data, that is, the test set after 7 

removing individuals with any of the diseases included as a top cause of death at baseline (i.e., 8 

prevalent cases). We also re-evaluated the association between the cPRS and all-cause 9 

mortality in the test data, adjusting for the mortality risk factors measured at baseline (that is, 10 

BMI, smoking status, alcohol consumption, SBP, DBP, eGFR, total cholesterol, LDL cholesterol, 11 

HDL cholesterol, triglycerides, blood glucose, and sleep duration), removing individuals in the 12 

test data that were missing any of these measurements. All risk factors were included as 13 

continuous variables, with the exception of smoking status, which was included as a binary 14 

variable (ever vs. never use).  15 

 16 

Finally, we evaluated the relationship between two major modifiable risk factors, BMI and 17 

smoking status, and absolute risk of mortality for individuals at different levels of polygenic risk. 18 

We estimated the mortality risk for obese individuals (BMI > 30 kg/m2) and normal weight 19 

individuals (BMI of 18.5-25 kg/m2) based on Cox proportional hazards models with quintiles of 20 

the cPRS and BMI categories (≤ 18.5 kg/m2, (18.5-25 kg/m2], (25-30 km/m2], > 30 kg/m2), both 21 

modeled as categorical variables, fit in the test data. Estimates of risk for never smokers and 22 

ever smokers are based on Cox proportional hazards models with quintiles of the cPRS, 23 

modeled as a categorical variable, and an indicator of ever-use of cigarettes, fit in the test data. 24 

These models did not include adjustment for principal components. 25 
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 1 

All analyses were conducted using R (53), including the rms (54), survival (55), ggplot2 (56), 2 

and sandwich (57,58) packages. We report 95% confidence intervals throughout.   3 

 4 

RESULTS 5 

 6 

UK Biobank: Disease, Mortality, and Genotype Data 7 

 8 

After removing individuals who were related, were not of British ancestry, or had withdrawn their 9 

consent to participate, our dataset included 337,138 participants, including 181,027 women and 10 

156,111 men (Table 1 and Supplementary Table 5). There were 13,610 deaths (4.0%) with 11 

5,250 among women (2.9%) and 8,360 among men (5.4%). The diseases included in the top 12 

causes of death accounted for 45.9% of the deaths in women and 45.5% of the deaths in men 13 

in the UK Biobank. Notably, very few deaths in the UK Biobank were attributed to type 2 14 

diabetes, which appears to be due to many more deaths in the UK Biobank having type 2 15 

diabetes listed as a secondary cause of death as opposed to the primary cause.  16 

 17 

Table 1: Descriptive statistics. Descriptive statistics for the full cohort used for the analysis 18 
(after removing individuals who were related, were not of British ancestry, or had withdrawn 19 
their consent to participate), the training data (2/3 of the full cohort), and the test data (1/3 of the 20 
full cohort).  21 
 Full cohort Training data Test data 

Women Men Women Men Women Men 
Sample size 181,027 156,111 120,719 104,037 60,308 52,074 
Age at study entry 
(years; mean (SD)) 

57.2 (7.9) 57.6 (8.1) 57.2 (7.9) 57.6 (8.1) 57.2 (7.9) 57.6 (8.1) 

Follow-up (years; 
mean (SD)) 

8.8 (1.1) 8.7 (1.3) 8.8 (1.1) 8.7 (1.3) 8.8 (1.0) 8.7 (1.3) 

Number of deaths 5,250 8,360 3,530 5,576 1,720 2,784 
SD: standard deviation. 22 
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 1 

Constructing and Evaluating the Trait-Specific PRS in the UK Biobank 2 

 3 

As anticipated, the trait-specific PRS tended to be moderately to strongly associated with the 4 

corresponding disease or risk factor (Supplementary Figure 1 and Supplementary Table 6). The 5 

strongest associations for the disease traits (odds ratios or relative risks of at least 1.5 per 6 

standard deviation (SD)) were observed for Alzheimer’s disease (incident disease only), type 2 7 

diabetes, breast cancer in women, prevalent CAD in men, cirrhosis in men, and prostate cancer 8 

in men.  9 

 10 

We observed that the PRS for each disease was generally at least moderately associated with 11 

death from that disease (Figure 1), with the association being strongest for Alzheimer’s disease 12 

(hazard ratio (HR) per SD: 1.86 (95% confidence interval: 1.42, 2.42) in women; 2.01 (1.52, 13 

2.65) in men), CAD (1.51 (1.34, 1.69) in women; 1.48 (1.40, 1.57) in men), breast cancer in 14 

women (1.51 (1.40, 1.63)), prostate cancer in men (1.68 (1.54, 1.84)), and cirrhosis in men 15 

(1.49 (1.03, 2.16)). In general, the PRS were stronger predictors of cause-specific mortality 16 

among individuals without prevalent disease than they were among individuals with prevalent 17 

disease (Supplementary Figure 2); this indicates the PRS were typically more strongly 18 

associated with disease onset than with prognosis.  19 
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 1 
Figure 1: Association of each disease PRS with cause-specific mortality in the full 2 
cohort. For each disease, we evaluated the association between the disease PRS and mortality 3 
from the disease based on sex-specific Cox proportional hazards models of age at death. 4 
Deaths from other causes were treated as censoring events. Some causes did not have enough 5 
deaths to yield stable estimates (< 6 deaths); in these cases, estimates are not provided. Each 6 
PRS was standardized to have unit variance so the estimates correspond to the HR per SD of 7 
the PRS. The horizontal lines indicate 95% confidence intervals. CAD: coronary artery disease; 8 
COPD: chronic obstructive pulmonary disease; HR: hazard ratio; SD: standard deviation; PRS: 9 
polygenic risk score.   10 
 11 

We found that the PRS for BMI was at least moderately associated with mortality related to CAD 12 

(primarily in men), COPD (among women), hypertension (among men), lung cancer (among 13 

women), pancreatic cancer (among women), Parkinson’s disease (among women), and stroke 14 

(among women) (Supplementary Figures 3 and 4). The PRS for smoking was weakly 15 

associated with mortality due to CAD (among men) and moderately associated with mortality 16 

due to COPD (primarily in men) and lung cancer. The PRS for LDL cholesterol was strongly 17 

associated with mortality related to Alzheimer’s disease (among men) and COPD (among 18 

women) and moderately associated with mortality due to CAD (primarily in men). The PRS for 19 

total cholesterol was strongly positively associated with mortality due to Alzheimer’s disease 20 
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(primarily in men) and COPD (among women), moderately positively associated with mortality 1 

related to CAD (among men), and moderately negatively associated with mortality due to 2 

pancreatic cancer (among men). The PRS for triglycerides was strongly negatively associated 3 

with mortality from stroke among men. The PRS for alcohol consumption was moderately 4 

positively associated with mortality due to CAD, primarily among men.  5 

 6 

We found that several PRS were modestly associated with all-cause mortality, with some 7 

differences between men and women (Figure 2). The PRS for BMI was modestly associated 8 

with risk of all-cause mortality for both women (HR per SD: 1.07 (1.04, 1.10)) and men (1.08 9 

(1.05, 1.10)). In addition, the PRS for smoking status, Alzheimer’s disease, LDL cholesterol, and 10 

lung cancer were modestly associated with all-cause mortality in both sexes. The PRS for 11 

breast cancer and prostate cancer were modestly associated with all-cause mortality in women 12 

and men, respectively. Among men, the PRS for CAD, cirrhosis, DBP, HDL cholesterol, SBP, 13 

stroke, total cholesterol, triglycerides, type 2 diabetes, and alcohol consumption were modestly 14 

associated with all-cause mortality; notably, the PRS for HDL cholesterol and triglycerides were 15 

both negatively associated with all-cause mortality. In general, the estimated associations 16 

tended to be stronger in men than in women.  17 

 18 
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 1 
Figure 2: Association of each trait-specific PRS with all-cause mortality in the full cohort. 2 
We evaluated the association between each PRS and all-cause mortality based on sex-specific 3 
Cox proportional hazards models of age at death in the full cohort. Each Cox model included 4 
one PRS. Each PRS was standardized to have unit variance so the estimates correspond to the 5 
HR per SD of the PRS. The horizontal lines indicate 95% confidence intervals. BMI: body mass 6 
index; CAD: coronary artery disease; COPD: chronic obstructive pulmonary disease; DBP: 7 
diastolic blood pressure; eGFR: estimated glomerular filtration rate; HDL: high-density 8 
lipoprotein; LDL: low-density lipoprotein; SBP: systolic blood pressure; HR: hazard ratio; SD: 9 
standard deviation; PRS: polygenic risk score.  10 
 11 

Constructing and Evaluating the Composite PRS in the UK Biobank 12 

 13 

The training data used the construct the cPRS included 224,756 participants, among them 14 

120,719 women and 104,037 men (Table 1). There were 9,106 deaths in the training data with 15 

3,530 in women and 5,576 in men. Correspondingly, the test data used to evaluate the cPRS 16 
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included 112,382 individuals (60,308 women and 52,074 men) and 4,504 deaths (1,720 among 1 

women and 2,784 among men).  2 

 3 

The cPRS were moderately associated with all-cause mortality in the test data (HR per SD: 1.10 4 

(1.05, 1.16) in women, 1.15 (1.10, 1.19) in men; see Table 2 and Supplementary Figure 5). 5 

However, the cPRS were able to identify substantial fractions of the population that have 6 

meaningfully elevated and reduced mortality risk, particularly among men (Table 2 and Figure 7 

3). The estimated difference in life expectancy between the top and bottom 5% of the cPRS 8 

distribution was 4.79 (1.76, 7.81) years in women and 6.75 (4.16, 9.35) years in men. The 9 

overall discriminatory capacity of the cPRS, measured by Harrell’s C-index (52), was small: 10 

0.525 in women and 0.536 in men. These are comparable to the values for several strong risk 11 

factors for mortality, including BMI (0.532 in women, 0.530 in men), smoking status (0.562 in 12 

women, 0.574 in men), and alcohol consumption (0.509 in women, 0.547 in men).  13 

 14 
Figure 3: Kaplan-Meier survival curves by quantile of the cPRS. These plots display the 15 
sex-specific Kaplan-Meier curves for all-cause mortality by quantile of the cPRS in the test data. 16 
The Kaplan-Meier curves do not include adjustment for principal components. cPRS: composite 17 
polygenic risk score.  18 
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Table 2: The results of the main analysis of all-cause mortality and the cPRS, with and 1 
without adjustment for mortality risk factors. The cPRS were constructed in the training data 2 
and evaluated by fitting sex-specific Cox proportional hazards models of the association 3 
between the cPRS and age at death from all causes in the test data. Both the continuous cPRS 4 
and categorical cPRS were modeled. The estimated HRs and CIs were converted to estimated 5 
years of life lost. The analysis adjusting for mortality risk factors included adjustment for the risk 6 
factors measured at baseline (BMI, smoking status, alcohol consumption, SBP, DBP, eGFR, 7 
total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, blood glucose, and sleep 8 
duration); individuals missing any of these measurements were excluded..  9 
 Women Men 
Without adjustment for mortality risk factors 
Population (deaths) in test data: N 
Total population 
Top 5% of cPRS 
Middle 20% of cPRS 
Bottom 5% of cPRS 

 
60,308 (1,720) 
3,060 (107) 
12,005 (342) 
3,096 (69) 

 
52,074 (2,784) 
2,454 (159) 
10,387 (539) 
2,526 (89) 

cPRS: HR (95% CI)   
Per SD of cPRS 1.10 (1.05, 1.16) 1.15 (1.10, 1.19) 
Top 5% vs. middle 20% of cPRS 1.24 (1.00, 1.54) 1.27 (1.07, 1.52) 
Bottom 5% vs. middle 20% of cPRS 0.77 (0.59, 1.00) 0.65 (0.52, 0.81) 
Top 5% vs. bottom 5% of cPRS 1.61 (1.19, 2.18) 1.96 (1.52, 2.55) 
cPRS: years of life lost (95% CI)   
Per SD of cPRS 0.97 (0.50, 1.44) 1.36 (0.98, 1.73) 
Top 5% vs. middle 20% of cPRS 2.17 (0.00, 4.34) 2.42 (0.65, 4.19) 
Bottom 5% vs. middle 20% of cPRS -2.61 (-5.20, -0.03) -4.33 (-6.58, -2.09) 
Top 5% vs. bottom 5% of cPRS 4.79 (1.76, 7.81) 6.75 (4.16, 9.35) 
With adjustment for mortality risk factors 
Population (deaths) in test data: N 
Total population 
Top 5% of cPRS 
Middle 20% of cPRS 
Bottom 5% of cPRS 

 
36,008 (855) 
1,799 (51) 
7,143 (168) 
1,907 (37) 

 
36,283 (1,730) 
1,689 (102) 
7,240 (329) 
1,804 (60) 

cPRS: HR (95% CI)   
Per SD of cPRS 1.06 (0.99, 1.13) 1.10 (1.04, 1.15) 
Top 5% vs. middle 20% of cPRS 1.19 (0.87, 1.63) 1.25 (1.00, 1.56) 
Bottom 5% vs. middle 20% of cPRS 0.88 (0.62, 1.26) 0.73 (0.55, 0.96) 
Top 5% vs. bottom 5% of cPRS 1.35 (0.88, 2.07) 1.71 (1.24, 2.36) 
cPRS: years of life lost (95% CI)   
Per SD of cPRS 0.58 (-0.11, 1.26) 0.92 (0.43, 1.40) 
Top 5% vs. middle 20% of cPRS 1.72 (-1.43, 4.86) 2.20 (-0.03, 4.43) 
Bottom 5% vs. middle 20% of cPRS -1.27 (-4.85, 2.30) -3.19 (-5.95, -0.43) 
Top 5% vs. bottom 5% of cPRS 2.99 (-1.28, 7.26) 5.39 (2.18, 8.60) 

BMI: body mass index; CI: confidence interval; cPRS: composite polygenic risk score; DBP: 10 
diastolic blood pressure; eGFR: estimated glomerular filtration rate; HDL: high-density 11 
lipoprotein; HR: hazard ratio; LDL: low-density lipoprotein; SBP: systolic blood pressure; SD: 12 
standard deviation 13 
 14 
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When we evaluated the cPRS in the “healthy” subset of the test data, the estimated 1 

associations between the cPRS and all-cause mortality were fairly similar to the results from the 2 

main analysis (Supplementary Table 7). Separately, when we adjusted for the mortality risk 3 

factors measured at baseline, the association between the cPRS and all-cause mortality was 4 

markedly attenuated for both sexes (Table 2). These results indicate that a substantial fraction 5 

(40.7% for women and 32.5% for men) of the association between the cPRS and all-cause 6 

mortality was accounted for by these risk factors, which are (to varying degrees) heritable traits. 7 

After controlling for the measured risk factors, the difference in life expectancy between the top 8 

5% and the bottom 5% of the cPRS distribution was estimated to be 2.99 (-1.28, 7.26) years in 9 

women and 5.39 (2.18, 8.60) years in men.  10 

 11 

Finally, we evaluated the relationship between BMI and smoking status and absolute risk of 12 

mortality for individuals at different levels of polygenic risk (Figure 4). We observe that the 13 

estimated 10-year absolute risk of mortality for a 60-year-old woman in the top 20% of the cPRS 14 

distribution who is obese is 0.044. This is 38% higher than the estimated risk for a woman in the 15 

top 20% of the cPRS distribution who is not obese. Similarly, the estimated risk for a 60-year-old 16 

woman in the top 20% of the cPRS distribution who is a current or former is 64% higher than for 17 

a woman who has never smoked (0.046 vs. 0.028). Likewise, for a 60-year-old man, the 18 

estimated 10-year risk of mortality is 24% higher if the man is obese as opposed to normal 19 

weight (0.087 vs. 0.070) and the estimated risk is 81% higher if the man is a current or former 20 

smoker relative to a man who has never smoked (0.087 vs. 0.048). These differences highlight 21 

the potential importance of lifestyle modification even among those at high genetic risk. 22 

Furthermore, in most of these examples, the estimated risk for an individual who is in the top 23 

20% of the cPRS distribution but who has a favorable risk factor profile is below the estimated 24 
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risk for an individual in the middle 20% of the cPRS distribution, i.e., someone at moderate 1 

genetic risk (0.032 in women and 0.059 in men).  2 

 3 
Figure 4: Estimates of absolute risk of mortality in different strata of the cPRS for 4 
specific categories of BMI and smoking status. We generated estimates of 10-year absolute 5 
risk of all-cause mortality for a 60-year-old in different strata of the cPRS for specific values of 6 
two mortality risk factors, BMI and smoking status, in women (panels A and B) and men (panels 7 
C and D). The horizontal line in each plot corresponds to an estimate of 10-year absolute risk of 8 
all-cause mortality for a 60-year-old in the middle quintile of the cPRS, based on sex-specific 9 
Cox proportional hazards models with quintiles of the cPRS, modeled as a categorical variable, 10 
fit in the test data. BMI: body mass index; cPRS: composite polygenic risk score.   11 
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DISCUSSION 1 

 2 

Analyses using a large dataset from the UK Biobank indicate that sex-specific composite PRS 3 

(cPRS) for all-cause mortality have fairly modest predictive capacity overall. However, there is 4 

evidence that the cPRS could identify substantial fractions of the population with notably 5 

elevated and reduced risk of all-cause mortality due to the genetic risk accumulated across 6 

many variants. Importantly, our results also show that a substantial proportion of the association 7 

between the cPRS and mortality was accounted for by mortality risk factors measured in middle 8 

age. These findings suggest that those individuals at high genetic risk of mortality may derive 9 

substantial benefit from modification of lifestyle factors; in particular, the cPRS could be useful in 10 

counseling individuals at high genetic risk on possible lifestyle choices that are associated with 11 

lower mortality risk.  12 

 13 

A previous study evaluated the utility of 707 SNPs identified from GWAS of 125 diseases and 14 

risk factors for estimating mortality risk (32). This study developed a PRS directly from the 15 

individual SNPs, counting only the number of detrimental or protective alleles across the 16 

variants (i.e., without weighting the SNPs by the strength of association). In a combined analysis 17 

of men and women from two studies of northern European populations, the study reported a 18 

10% higher risk of mortality between individuals in the 4th versus 1st quartile of the resulting 19 

PRS. In contrast, in the current study, we focus on a limited number of the most important 20 

causes of and risk factors for mortality, and build cPRS for mortality based on the underlying 21 

PRS. Our cPRS, although evaluated in a different population, appears to provide greater 22 

mortality risk stratification (HR for 4th vs. 1st quartile = 1.29 (1.13, 1.48) in women; 1.38 (1.24, 23 

1.53) in men). These differences may be due to the incorporation of a larger number of SNPs 24 
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emerging from more recent GWAS as well as the weighting of individual SNPs to account for 1 

their association with the individual diseases and risk factors in our analysis.  2 

 3 

Several recent studies (26,59–62) have investigated the association of individual genetic 4 

variants and PRS with parental lifespans due to the increased power of these analyses relative 5 

to analyses of lifespan in genotyped individuals. Two large GWAS of parental lifespan, both 6 

including data from the UK Biobank, identified a total of only 18 loci (26–28), highlighting major 7 

challenges in finding individual variants related to lifespan. We constructed a lifespan PRS 8 

based on 17 of these variants (one was excluded as it was a palindromic SNP whose direction 9 

could not be resolved) and found modest associations with all-cause mortality (HR per SD: 1.02 10 

(0.99, 1.05) in women and 1.04 (1.02, 1.06) in men). We further constructed a new cPRS, which 11 

included the 25 disease and risk factor PRS constructed for our analysis as well as the lifespan 12 

PRS; the associations of this new cPRS with all-cause mortality were nearly identical to that of 13 

the original cPRS (HR per SD of the new cPRS: 1.10 (1.05, 1.15) in women and 1.14 (1.10, 14 

1.19) in men).  15 

 16 

An important limitation of previous studies is the lack of adjustment for known mortality risk 17 

factors in characterizing the potential utility of PRS for estimating mortality risk. In our analysis, 18 

the association between the cPRS and mortality was attenuated by over 30% after adjusting for 19 

the mortality risk factors under study. These results suggest that while genetic variants 20 

associated with complex traits in GWAS could provide some mortality risk stratification early in 21 

life, their utility later in life, when other risk factors for mortality can be measured, is diminished.  22 

 23 

Most GWAS are case-control studies of disease risk as opposed to prognosis, i.e., 24 

aggressiveness and/or progression of the disease leading to death. When we examined the 25 
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association of the disease PRS with the corresponding cause-specific mortality among 1 

individuals with prevalent disease in the UK Biobank (Supplementary Figure 2), only the PRS 2 

for CAD and COPD were (at least moderately) associated; in other words, for most PRS, there 3 

was little to no evidence of an association with prognosis or disease survival. Although such 4 

analyses may be influenced by selection associated with survivorship and poor health, in 5 

general, there is little evidence of association between disease risk SNPs (and thus disease 6 

PRS) and survival following disease onset. While future GWAS focusing on genetic 7 

determinants of aggressiveness and disease progression are needed, finding associations may 8 

be challenging due to available sample sizes and heterogeneity as a result of various factors 9 

such as treatment. 10 

 11 

Our analysis of the relationship between the individual PRS and all-cause mortality revealed 12 

some important patterns (Figure 2). The strongest positive associations (HR per SD of 1.05 or 13 

greater) were seen for the PRS for BMI, breast cancer (in women), CAD (in men), smoking 14 

status (particularly in men), and alcohol consumption (in men). In addition, weaker associations 15 

with all-cause mortality were seen for the PRS for Alzheimer’s disease, lung cancer, and LDL 16 

cholesterol in both sexes and, among men, associations were seen for the PRS for stroke, 17 

cirrhosis, total and HDL cholesterol, prostate cancer, triglycerides, SBP, DBP, and type 2 18 

diabetes. The negative association observed among men for the triglycerides PRS appears to 19 

be driven by a strong negative association between the triglycerides PRS and stroke-specific 20 

mortality (Supplementary Figure 4), which is consistent with the “triglycerides paradox” reported 21 

by others (63–66).  22 

 23 

Given that the associations of the CAD PRS with CAD-specific mortality were similar for men 24 

and women, the differences in the associations with all-cause mortality may be due to lower 25 
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rates of CAD in women during the relatively short follow-up period of the UK Biobank. 1 

Differential event rates for some diseases for which alcohol consumption is a risk factor (e.g., 2 

CAD) could also partially explain the differences observed in the association of the alcohol 3 

consumption PRS with all-cause mortality by sex. We note that the sex differences observed in 4 

our results more generally are supported by other studies, which have similarly found 5 

indications of differences between men and women in the mechanisms governing lifespan and 6 

longevity (26,27,33,60,61,67,68).   7 

 8 

Our results are generally consistent with a recent paper looking at PRS for many clinical risk 9 

factors and mortality across the UK Biobank, a Finnish biobank (FinnGen), and Biobank Japan 10 

(69). In this multi-ethnic study, several modest associations were observed, including for the 11 

PRS for SBP, DBP, and BMI (HRs of around 1.03-1.04 per SD in the trans-ethnic meta-12 

analysis). Interestingly, the results from this analysis varied by ethnicity: for instance, within the 13 

UK Biobank, the association between the PRS for BMI and mortality reported in Sakaue et al. 14 

(69) was stronger than was observed in the trans-ethnic meta-analysis (HR of approximately 15 

1.07 per SD in the UK Biobank versus 1.04 in the meta-analysis). This highlights the importance 16 

of multi-ethnic analyses.  17 

 18 

We evaluated the broad utility of PRS in terms of their combined ability to predict mortality. In 19 

the future, other broad measures of health outcomes and expenditures, such as disability-20 

adjusted life years (DALYs), should also be considered. The framework we have created for 21 

combining individual PRS could be used to a create composite PRS for DALYs or other 22 

measures. Given that PRS are known to be strongly associated with incidence of many 23 

debilitating diseases, one would anticipate such a composite PRS will have greater utility for 24 
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predicting DALYs than for mortality. However, analysis of DALYs in a cohort study with limited 1 

follow-up, like the UK Biobank, is challenging. 2 

 3 

Our analysis has several strengths. We used data from the UK Biobank, a large cohort study, to 4 

carry out a comprehensive analysis of PRS for complex traits and mortality, both overall and 5 

cause-specific. We used a novel approach to derive composite PRS across many diseases and 6 

risk factors to evaluate their combined utility for predicting overall mortality. Under the 7 

assumption that common genetic variants identified through recent GWAS influence mortality 8 

risk through the outcomes underlying the GWAS, the composite PRS approach provides a more 9 

parsimonious and powerful approach to building models for predicting composite outcomes than 10 

building models based on individual SNPs. The weights of individual SNPs in a PRS account for 11 

the strength and direction of association of each SNP with the corresponding outcome and the 12 

weights for the individual PRS in the cPRS reflect (in part) the relative contribution of the 13 

individual diseases and risk factors to mortality. Further, we conducted an unbiased evaluation 14 

of the performance of the cPRS for predicting mortality by building it in a training dataset and 15 

evaluating it in an independent test dataset.    16 

 17 

As the UK Biobank participants are volunteers, there is evidence that this cohort differs from the 18 

general UK population in important ways, including being less likely to be obese, smoke, or 19 

drink alcohol (70). Selection bias (70), which contributes to such differences, could influence the 20 

generalizability of our results (71). Additionally, while our cPRS include germline mutations and 21 

so could potentially be evaluated at birth, the UK Biobank is comprised of individuals who have 22 

survived to at least middle age. Consequently, the results may not be fully generalizable to 23 

younger individuals and must be validated in other populations. Furthermore, the analysis of the 24 

cPRS with adjustment for the mortality risk factors required excluding observations in the test 25 
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data with missing values for any of these risk factors. These observations constituted a 1 

substantial portion of the test data (40.3% in women, 30.3% in men). However, as the 2 

missingness mechanism for at least some risk factors is expected to be not random (e.g., 3 

individuals choosing not to answer questions regarding smoking status or alcohol consumption 4 

due to the social stigma surrounding these behaviors), imputation is not appropriate. Thus, 5 

some caution is warranted in interpreting these results.  6 

 7 

As our analysis involved the evaluation of a large number of associations, issues related to 8 

multiple comparisons are a potential concern. However, our main analysis of the cPRS was 9 

carefully defined a priori and performed in independent test data. The other analyses we 10 

performed were intended to check the validity of the PRS we developed and to better 11 

understand the results of the main analysis of the cPRS. Additionally, we emphasize the 12 

strength of association rather than statistical significance in interpreting the results throughout. 13 

Another potential limitation of this analysis was our use of the GWAS Catalog to identify SNPs 14 

for inclusion in the disease PRS. As the GWAS Catalog is not an exhaustive listing of SNPs 15 

associated with every trait, we may have missed some associated SNPs. However, we believe 16 

that our approach, which allowed us to apply a uniform procedure for SNP selection to all 17 

diseases, captured most of the genetic susceptibility for each disease, and any differences in 18 

the PRS would be minor. Even if our PRS included all susceptibility SNPs identified by GWAS, 19 

the ability of the trait-specific PRS to predict all-cause mortality is related to both the power of 20 

the GWAS as well as the genetic correlation between the trait studied in the GWAS and all-21 

cause mortality (72). Consequently, as GWAS continue to increase in power, we may find that 22 

trait-specific PRS are more strongly associated with all-cause mortality. In addition, further 23 

research on the genetic determinants of disease prognosis and survival may increase the utility 24 

of PRS in understanding mortality risk. 25 
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 1 

In conclusion, our results suggest that by combining knowledge gained from GWAS of complex 2 

traits, it may be possible to identify individuals who are expected to live substantially longer or 3 

shorter. In light of the ethical repercussions of using genetics to make predictions regarding an 4 

individual’s life course at birth, we argue that the cPRS may be most useful for counselling 5 

individuals about their genetic risk. In particular, the results of our analysis highlight the 6 

importance of considering genetic risk in the context of clinical risk factors measured in 7 

adulthood; thus, the cPRS may be useful in advising patients on the importance of certain 8 

lifestyle choices associated with mortality risk. Using the cPRS in this way would require 9 

validation of the cPRS outside of the UK Biobank.   10 
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Supplementary Table 1: ICD-10 codes for the top causes of death. The top causes of death 1 
(“CDC Definition”) based on the CDC WONDER database and the corresponding specific cause 2 
of death included in the analysis (“Our Definition”) are both presented. Ranking in the US based 3 
on data for 2017 from CDC WONDER for non-Hispanic whites aged 40 and over; ranking in the 4 
UK based on data for 2017 from the Office of National Statistics for individuals aged 40 and 5 
over. 6 

CDC Definition Our Definition 
Ranking in US (UK) Cause ICD-10 codes Cause ICD-10 

codes Women Men 
1 (2) 1 (2) Diseases of heart I00-I09, I11, 

I13, I20-I51 
CAD I20-I25 

2 (1) 2 (1) Malignant 
neoplasms 

C00-C97 Pancreatic C25 
Colorectal C18-C20 
Breast C50 
Lung C33-C34 
Prostate C61 

3 (4) 3 (3) Chronic lower 
respiratory diseases 

J40-J47 Chronic obstructive 
pulmonary disease 

J41-J44 

4 (5) 5 (5) Alzheimer’s disease G30 Alzheimer’s 
disease 

G30 

5 (3) 4 (4) Cerebrovascular 
diseases 

I60-I69 Stroke I60, I61, I63, 
I64 

6 (6) 6 (9) Diabetes mellitus E10-E14 Type 2 diabetes E11 
7 (10) 8 (10) Nephritis, nephrotic 

syndrome and 
nephrosis 

N00-N07, N17-
N19, N25-N27 

Chronic kidney 
disease 

N18 

8 (11) 10 (11)  Essential 
hypertension and 
hypertensive renal 
disease 

I10, I12, I15 Hypertension I10 

9 (7) 7 (6) Chronic liver 
disease and 
cirrhosis 

K70, K73-K74 Alcoholic liver 
cirrhosis 

K70.3 

10 (8) 9 (7) Parkinson’s disease G20-G21 Parkinson’s 
disease 

G20 

CAD: Coronary artery disease; CDC: Centers for Disease Control; ICD: International 7 
Classification of Diseases; WONDER: Wide-ranging ONline Data for Epidemiologic Research.  8 
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Supplementary Table 2: Methods for identifying prevalent and incident cases of each 1 
disease included in the analysis. 2 

Cause of death ICD Codes Prevalent Definition Incident Definition 
ICD9 ICD10 

Coronary artery 
disease  

410-414 I20-I25 (a) HES: one of the ICD (9/10) 
codes in HES in the primary or 
secondary position with an initial 
code date prior to the date of 
baseline assessment 
(b) Self-report: self-reported CAD at 
baseline 

(a) HES: one of the ICD (9/10) codes 
in HES in the primary or secondary 
position with an initial code date after 
the date of baseline assessment 
(b) Mortality data: one of the ICD10 
codes listed as a primary or 
secondary cause of death 

Pancreatic 
cancer 

157 C25 Cancer registry: one of the ICD 
(9/10) codes in the cancer registry 
with an initial date prior to the date 
of baseline assessment 

Cancer registry: one of the ICD (9/10) 
codes in the cancer registry with an 
initial date after date of baseline 
assessment 
 

Colorectal cancer 153, 154.0, 
154.1, 154.8 

C18-C20 

Breast cancer 174 C50 
Lung cancer 162 C33-C34 
Prostate cancer 185 C61 
COPD  491, 492, 496 J41-J44 (a) HES: one of the ICD (9/10) 

codes in HES in the primary or 
secondary position with an initial 
code date prior to the date of 
baseline assessment 
(b) Self-report: self-reported COPD, 
emphysema, or chronic bronchitis 
at baseline 

(a) HES: one of the ICD (9/10) codes 
in HES in the primary or secondary 
position with an initial code date after 
the date of baseline assessment 
(b) Mortality data: one of the ICD10 
codes listed as a primary or 
secondary cause of death 

Alzheimer’s 
disease 

331.0 
 

G30 and F00 
 

(a) HES: one of the ICD (9/10) 
codes in the primary or any 
secondary position with an initial 
code date is prior to the date of 
baseline assessment. 
 

(a) HES: one of the ICD (9/10) codes 
in HES in the primary or secondary 
position with an initial code date after 
the date of baseline assessment 
(b) Mortality data: one of the ICD10 
codes listed as a primary or 
secondary cause of death 

Stroke 430, 431, 434, 
436 

I60, I61, I63, 
I64 

(a) HES: one of the ICD (9/10) 
codes in HES in the primary or 
secondary position with an initial 
code date prior to the date of 
baseline assessment 
(b) Self-report: self-reported stroke 
at baseline 

(a) HES: one of the ICD (9/10) codes 
in HES in the primary or secondary 
position with an initial code date after 
the date of baseline assessment 
(b) Mortality data: one of the ICD10 
codes listed as a primary or 
secondary cause of death 

Type 2 diabetes  Defined based on algorithms in Eastwood et al. (1) 
Chronic kidney 
disease 

585 N18 (a) HES: one of the ICD (9/10) 
codes in HES in the primary or 
secondary position with an initial 
code date prior to the date of 
baseline assessment 
 

(a) HES: one of the ICD (9/10) codes 
in HES in the primary or secondary 
position with an initial code date after 
the date of baseline assessment 
(b) Mortality data: one of the ICD10 
codes listed as a primary or 
secondary cause of death 

Hypertension  401 I10 (a) HES: one of the ICD (9/10) 
codes in HES in the primary or 
secondary position with an initial 
code date prior to the date of 
baseline assessment 
(b) Self-report: (i) self-reported 
essential hypertension or “any 
hypertension” but not “gestational 
hypertension/pre-eclampsia” at 

(a) HES: one of the ICD (9/10) codes 
in HES in the primary or secondary 
position with an initial code date after 
the date of baseline assessment 
(b) Mortality data: one of the ICD10 
codes listed as a primary or 
secondary cause of death 
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baseline or (ii) hypertension 
medication usage at baseline 
(c) SBP/DBP measures: systolic 
blood pressure ≥140 mmHg, or 
diastolic blood pressure ≥90 mmHg 
at baseline 

Alcoholic liver 
cirrhosis 

571.2 K70.3 (a) HES: one of the ICD (9/10) 
codes in HES in the primary or 
secondary position with an initial 
code date prior to the date of 
baseline assessment 
 

(a) HES: one of the ICD (9/10) codes 
in HES in the primary or secondary 
position with an initial code date after 
the date of baseline assessment 
(b) Mortality data: one of the ICD10 
codes listed as a primary or 
secondary cause of death 

Parkinson’s 
disease 

332.0 G20 (a) HES: ICD (9/10) codes in HES 
in the primary or secondary position 
with an initial code date prior to the 
date of baseline assessment 
(b) Self-report: self-reported 
Parkinson’s disease at baseline 

(a) HES: one of the ICD (9/10) codes 
in HES in the primary or secondary 
position with an initial code date after 
the date of baseline assessment 
(b) Mortality data: one of the ICD10 
codes listed as a primary or 
secondary cause of death 

COPD: chronic obstructive pulmonary disease; HES: hospital episode statistics data; ICD: 1 
International Classification of Diseases.  2 
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Supplementary Table 3: Conversion of self-reported alcohol intake to grams of alcohol 1 
per day. To compute grams of alcohol per day: (1) for each source of alcohol, multiply by the 2 
given factor and divide by 7 (if input is weekly intake) or 30 (if input is monthly intake) to get 3 
units/day; (2) multiply units/day by 8 to obtain grams/day; (3) sum grams/day intake of each 4 
source of alcohol to get total grams of alcohol per day.  5 
Source Factor 
Red wine intake 1.5 
Champagne/white wine 1.5 
Beer/cider 2.5 
Spirits 1 
Fortified wine 1 
Other alcoholic drinks 1.5 

  6 
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Supplementary Table 4: The number of SNPs included in each PRS after removing SNPs 1 
in linkage disequilibrium via clumping.  2 
Trait # SNPs 
Alcohol consumption  58 
Alzheimer’s disease 31 
BMI 1,458 
Breast cancer 153 
CAD 207 
Chronic kidney disease 4 
Cirrhosis 2 
Colorectal cancer 34 
COPD 20 
DBP 352 
eGFR 31 
Fasting blood glucose  24 
HDL cholesterol  223 
Hypertension 7 
LDL cholesterol  195 
Lung cancer 17 
Pancreatic cancer 18 
Parkinson’s disease 44 
Prostate cancer 123 
SBP 390 
Sleep duration 95 
Smoking status  127 
Stroke 79 
Total cholesterol  240 
Triglycerides 138 
Type 2 diabetes 175 
Total number of unique SNPs 3,941 

BMI: body mass index; CAD: coronary artery disease; COPD: chronic obstructive pulmonary 3 
disease; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; HDL: high-4 
density lipoprotein; LDL: low-density lipoprotein; SBP: systolic blood pressure; SNP: single 5 
nucleotide polymorphism; PRS: polygenic risk score.   6 
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Supplementary Table 5: Summary statistics for the full cohort. Individuals who were related, 1 
were not of British ancestry, or had withdrawn their consent to participate were removed.  2 

  Women Men 
Deaths by cause (n)     
Alzheimer's disease 43 38 
   with prevalent disease 0 1 
   without prevalent disease 43 37 
Breast cancer 609 0 
   with prevalent disease 384 0 
   without prevalent disease 225 0 
CAD 264 1,267 
   with prevalent disease 68 486 
   without prevalent disease 196 781 
Chronic kidney disease 2 6 
   with prevalent disease 1 1 
   without prevalent disease 1 5 
Cirrhosis 4 21 
   with prevalent disease 0 2 
   without prevalent disease 4 19 
Colorectal cancer 295 445 
   with prevalent disease 35 94 
   without prevalent disease 260 351 
COPD 119 218 
   with prevalent disease 74 126 
   without prevalent disease 45 92 
Hypertension 4 9 
   with prevalent disease 4 9 
   without prevalent disease 0 0 
Lung cancer 592 753 
   with prevalent disease 26 31 
   without prevalent disease 566 722 
Pancreatic cancer 249 301 
   with prevalent disease 4 12 
   without prevalent disease 245 289 
Parkinson's disease 18 64 
   with prevalent disease 9 41 
   without prevalent disease 9 23 
Prostate cancer 0 436 
   with prevalent disease 0 183 
   without prevalent disease 0 253 
Stroke 199 229 
   with prevalent disease 13 32 
   without prevalent disease 186 197 
Type 2 diabetes 10 19 
   with prevalent disease 4 10 
   without prevalent disease 6 9 
Prevalent disease (n)     
Alzheimer's disease 4 7 
Breast cancer 6,323 0 
CAD 5,445 12,530 
Chronic kidney disease 170 311 
Cirrhosis 27 70 
Colorectal cancer 736 1,009 
COPD 3,115 3,450 
Hypertension 85,464 95,002 
Lung cancer 107 122 
Pancreatic cancer 15 26 
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Parkinson's disease 230 405 
Prostate cancer 0 2,382 
Stroke 2,126 3,092 
Type 2 diabetes 4,072 7,576 
Incident disease (n)     
Alzheimer's disease 314 345 
Breast cancer 4,082 0 
CAD 4,966 9,070 
Chronic kidney disease 2,512 2,912 
Cirrhosis 48 235 
Colorectal cancer 1,036 1,437 
COPD 2,740 3,576 
Hypertension 3,154 3,371 
Lung cancer 790 907 
Pancreatic cancer 230 266 
Parkinson's disease 299 493 
Prostate cancer 0 4,542 
Stroke 1,491 2,140 
Type 2 diabetes 3,080 4,392 
Mortality risk factors (mean (SD))     
Alcohol consumption (grams/day) 13.55 (12.34) 27.19 (23.39) 
BMI (kg/m^2) 27.03 (5.14) 27.82 (4.21) 
DBP (mmHg) 80.63 (9.93) 84.14 (9.99) 
eGFR (mL/min/1.73 m^2) 85.57 (16.23) 87.61 (16.63) 
Blood glucose (mmol/L) 5.07 (1.04) 5.18 (1.37) 
HDL cholesterol (mmol/L) 1.60 (0.38) 1.28 (0.31) 
LDL cholesterol (mmol/L) 3.64 (0.87) 3.49 (0.86) 
SBP (mmHg) 135.60 (19.21) 141.30 (17.44) 
Sleep duration (hours/day) 7.19 (1.10) 7.15 (1.07) 
Smoking status (# ever smokers 
(%)) 73,159 (40.5%) 79,226 (50.9%) 
Total cholesterol (mmol/L) 5.90 (1.13) 5.50 (1.13) 
Triglycerides (mmol/L) 1.56 (0.86) 1.98 (1.14) 

CAD: coronary artery disease; COPD: chronic obstructive pulmonary disease; BMI: body mass 1 
index; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; HDL: high-2 
density lipoprotein; LDL: low-density lipoprotein; SBP: systolic blood pressure; SD: standard 3 
deviation  4 
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Supplementary Table 6: The estimated association between each mortality risk factor 1 
PRS and the risk factor measured at study baseline in women and men. Estimates are 2 
based on sex-specific linear regression models with robust standard error estimates, with the 3 
exception of smoking status, which was modeled using sex-specific logistic regression models. 4 
All models included adjustment for age at entry. Estimates are reported per standard deviation 5 
of the PRS. 6 

Mortality risk factor Women Men 
Alcohol consumption (grams/day) 0.90 (0.83, 0.96) 1.90 (1.79, 2.02) 
BMI (kg/m2) 1.46 (1.44, 1.49) 1.26 (1.24, 1.28) 
DBP (mm Hg) 1.90 (1.85, 1.95) 1.63 (1.58, 1.68) 
eGFR (mL/min/1.73 m2) 2.54 (2.47, 2.61) 2.36 (2.28, 2.44) 
Blood glucose (mmol/L) 0.065 (0.060, 0.070) 0.077 (0.069, 0.084) 
HDL cholesterol (mmol/L) 0.118 (0.117, 0.120) 0.095 (0.094, 0.097) 
LDL cholesterol (mmol/L) 0.234 (0.230, 0.238) 0.194 (0.190, 0.198) 
SBP (mm Hg) 3.82 (3.74, 3.90) 3.06 (2.98, 3.14) 
Sleep duration (hour) 0.092 (0.087, 0.097) 0.082 (0.077, 0.087) 
Smoking status (odds ratio for ever smoking) 1.20 (1.19, 1.22) 1.22 (1.21, 1.23) 
Total cholesterol (mmol/L) 0.300 (0.295, 0.305) 0.257 (0.251, 0.262) 
Triglycerides (mmol/L) 0.187 (0.183, 0.191) 0.269 (0.263, 0.275) 

BMI: body mass index; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration 7 
rate; HDL: high-density lipoprotein; LDL: low-density lipoprotein; SBP: systolic blood pressure; 8 
PRS: polygenic risk score.  9 
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Supplementary Table 7: The results of the analysis of all-cause mortality and the cPRS 1 
fitted in the training data and evaluated in the healthy subset of the test data. The cPRS 2 
were evaluated by fitting sex-specific Cox proportional hazards models of the association 3 
between age at death from all causes and the cPRS in the healthy subset of the test data. The 4 
healthy subset of the test data was defined as the test data with individuals with any of the 5 
diseases included as a top cause of death at baseline (prevalent cases). Both the continuous 6 
cPRS and categorical cPRS were modeled. The estimated HRs and CIs were converted to 7 
estimated years of life lost. 8 
 Women Men 
Population (deaths) in test data: N 
Total 
Top 5% of cPRS 
Middle 20% of cPRS 
Bottom 5% of cPRS 

 
29,379 (444) 
1,371 (27) 
5,843 (80) 
1,647 (21) 

 
18,249 (531) 
588 (21) 
3,680 (107) 
1,145 (28) 

Summary statistics for test data   
Age at entry (years; mean (SD)) 54.4 (7.9) 54.3 (8.2) 
Follow-up (years; mean (SD)) 8.9 (0.9) 8.8 (1.1) 
cPRS: HR (95% CI)   
Per SD of cPRS 1.07 (0.98, 1.18) 1.15 (1.06, 1.26) 
Top 5% vs. middle 20% of cPRS 1.46 (0.94, 2.25) 1.28 (0.80, 2.04) 
Bottom 5% vs. middle 20% of cPRS 0.89 (0.55, 1.44) 0.78 (0.51, 1.18) 
cPRS: years of life lost (95% CI)   
Per SD of cPRS 0.71 (-0.21, 1.63) 1.43 (0.56, 2.31) 
Top 5% vs. middle 20% of cPRS 3.75 (-0.61, 8.12) 2.45 (-2.23, 7.13) 
Bottom 5% vs. middle 20% of cPRS -1.16 (-5.97, 3.64) -2.50 (-6.67, 1.66) 

HR: hazard ratio; CI: confidence interval; cPRS: composite PRS; PRS: polygenic risk score; SD: 9 
standard deviation.  10 
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 1 
Supplementary Figure 1: The estimated association between each disease PRS and 2 
prevalent and incident disease. The results are presented for women (left panel) and men 3 
(right panel) separately. For prevalent disease (open triangles in the plot), sex-specific logistic 4 
regression models were fit in the full cohort. For incident disease (closed circles in the plot), sex-5 
specific modified Poisson regression models with robust standard error estimates were fit to the 6 
full cohort, excluding individuals with the disease at baseline (prevalent cases). All models 7 
included adjustment for age at entry. The estimates are presented as the estimated OR or RR 8 
per standard deviation of the PRS. The horizontal lines indicate 95% confidence intervals. As 9 
the number of prevalent cases of Alzheimer’s disease was quite low for both men and women, 10 
these estimates are not presented. CAD: coronary artery disease; COPD: chronic obstructive 11 
pulmonary disease; OR: odds ratio; RR: relative risk; SD: standard deviation; PRS: polygenic 12 
risk score.   13 
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 1 
Supplementary Figure 2: Cause-specific mortality results, stratified by the presence of 2 
disease at study baseline. For each disease, we used the data from the full cohort to evaluate 3 
the association between the disease PRS and mortality from the disease based on sex-specific 4 
Cox proportional hazards models of age at death in individuals with the disease at baseline 5 
(open triangles in the plot) and in individuals without the disease at baseline (closed circles in 6 
the plot). Deaths from other causes were treated as censoring events. Some causes did not 7 
have enough observations or deaths to yield stable estimates (< 30 observations or < 6 deaths); 8 
in these cases, estimates are not provided. Each PRS was standardized to have unit variance 9 
so the estimates correspond to the HR per SD of the PRS. The horizontal lines indicate 95% 10 
confidence intervals. CAD: coronary artery disease; COPD: chronic obstructive pulmonary 11 
disease; HR: hazard ratio; SD: standard deviation; PRS: polygenic risk score.  12 
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 1 

 2 
Supplementary Figure 3: The estimated association between each mortality risk factor 3 
PRS and mortality due to each of the top causes of death among women. For each 4 
disease, we evaluated the association between each of the risk factor PRS and mortality from 5 
the disease based on Cox proportional hazards models of age at death in women in the full 6 
cohort. Deaths from other causes were treated as censoring events. Some causes did not have 7 
enough deaths to yield stable estimates (< 6 deaths); in these cases, estimates are not 8 
provided. Each PRS was standardized to have unit variance so the estimates correspond to the 9 
HR per SD of the PRS.  The horizontal lines indicate 95% confidence intervals. BMI: body mass 10 
index; CAD: coronary artery disease; COPD: chronic obstructive pulmonary disease; DBP: 11 
diastolic blood pressure; eGFR: estimated glomerular filtration rate; HDL: high-density 12 
lipoprotein; LDL: low-density lipoprotein; SBP: systolic blood pressure; HR: hazard ratio; SD: 13 
standard deviation; PRS: polygenic risk score. 14 
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 1 
Supplementary Figure 4: The estimated association between each mortality risk factor 2 
PRS and mortality due to each of the top causes of death among men. For each disease, 3 
we evaluated the association between each of the risk factor PRS and mortality from the 4 
disease based on Cox proportional hazards models of age at death in men in the full cohort. 5 
Deaths from other causes were treated as censoring events. Each PRS was standardized to 6 
have unit variance so the estimates correspond to the HR per SD of the PRS. The horizontal 7 
lines indicate 95% confidence intervals. BMI: body mass index; CAD: coronary artery disease; 8 
COPD: chronic obstructive pulmonary disease; DBP: diastolic blood pressure; eGFR: estimated 9 
glomerular filtration rate; HDL: high-density lipoprotein; LDL: low-density lipoprotein; SBP: 10 
systolic blood pressure; HR: hazard ratio; SD: standard deviation; PRS: polygenic risk score.  11 
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 1 
Supplementary Figure 5: Association of trait-specific PRS with all-cause mortality in the 2 
training data based on models with all 25 PRS. The estimates are based on sex-specific Cox 3 
proportional hazards models of age at death with all 25 PRS, fit in the training data. These 4 
association estimates were used to weight each PRS to form the cPRS. Each PRS was 5 
standardized to have unit variance so the estimates correspond to the HR per SD of the PRS. 6 
The horizontal lines indicate 95% confidence intervals. BMI: body mass index; CAD: coronary 7 
artery disease; COPD: chronic obstructive pulmonary disease; DBP: diastolic blood pressure; 8 
eGFR: estimated glomerular filtration rate; HDL: high-density lipoprotein; LDL: low-density 9 
lipoprotein; SBP: systolic blood pressure; HR: hazard ratio; SD: standard deviation; PRS: 10 
polygenic risk score.  11 
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