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The emerging of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is 

associated with high morbidity and mortality rates globally. One of the most prominent 

characteristics of coronavirus disease-19 (COVID-19) is lymphopenia which is in contrast to other 

viral infections. This controversy might be explained by the evaluation of impaired innate and 

adaptive immune responses during the SARS-CoV-2 infection. During the innate immune 

response, poly-ADP-ribose polymerase (PARP) hyperactivated due to virus entry and extensive 

DNA damage sequentially leading to NAD+ depletion, ATP depletion and finally cell death. In 

contrast to the immune response against viral infections, cytotoxic T lymphocytes decline sharply 

in SARS-CoV-2 infection which might be due to infiltration and trapping in the lower respiratory 

tract. In addition, there are more factors proposed to involve in lymphopenia in COVID-19 

infection like the role of CD38 which functions as NADase and intensifies NAD depletion which 

in turn affects NAD+ dependent Sirtuin proteins, as the regulators of cell death and viability. Lung 

tissue sequestration following cytokine storm supposed to be another reason for lymphopenia in 

COVID-19 patients. Protein 7a as one of the virus-encoded proteins induces apoptosis in various 

organ-derived cell lines. These mechanisms proposed to induce lymphopenia, although there are 

still more studies needed to clarify the underlying mechanisms for lymphopenia in COVID-19 

patients. 
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Introduction:  

The coronavirus disease 19 (COVID-19), a novel infectious disease, caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, has 

rapidly increased in pandemic scale with growing morbidity and mortality rate worldwide. In the 
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past decades, two coronavirus family members were responsible for severe respiratory disease 

outbreaks which have been previously characterized as a major concern of public health; severe 

acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) caused by 

SARS and MERS coronavirus, respectively (1). 

Coronaviruses spread broadly among humans leading to a spectrum of respiratory diseases ranging 

from flu-like symptoms or pneumonia to acute respiratory distress syndrome (ARDS) which 

caused high mortality in human populations (2). 

Although the pathogenesis of SARS-CoV-2 is not yet fully understood, there are apparent 

similarity between SARS-CoV-2 and the original SARS-CoV. Extensive lung damage in COVID-

19 patients appears to be associated with high initial viral load, increased monocyte, macrophage 

and neutrophil infiltration in the lungs concomitant with elevated levels of serum pro-

inflammatory cytokines and chemokines and a rapid decrease of peripheral T cell subsets (3). 

Therefore, the clinical deterioration and tissue damage during SARS-CoV-2 infection may result 

from a combination of direct virus-induced cytopathic effects and maladjusted immune responses. 

As described earlier, one of the clinical features of SARS-CoV-2 infection is the global reduction 

of peripheral T cell subsets as a unique characteristic in COVID-19 patients during acute infection 

(4). Recent data shed new light on the role of impaired immune response and eventual lymphopenia 

in SARS-CoV-2 pathogenesis (5). Here, we provide a brief introduction to immune response 

against SARS-CoV-2 and possible mechanisms underlying reduced peripheral T cell subsets in 

COVID-19 patients.   

The innate immune response  

The SARS-CoV-2 spike protein has a strong binding affinity for human angiotensin II receptor 

(ATR1) which considered essential for host cell entry and subsequent viral progeny. During an 
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acute respiratory infection, the innate immune response is the first line of defense against the virus 

leading to initiation of a rapid immune response following virus‐cell interaction (6). 

In the conventional cell biology, ADP-ribosylation is a common reversible posttranslational 

modification with proposed antiviral properties and impact on innate immunity. ADP-ribosylation 

is mediated by poly-ADP-ribose polymerase (PARP) gene family encoded proteins. Transfer of 

one or more ADP-ribose (ADPr) groups from nicotinamide adenine dinucleotide (NAD+) to target 

protein is catalyzed within eukaryotic cells by members of the PARP, now called as Diphtheria 

toxin-like ADP-Ribosyltransferases (ARTDs) (7, 8). PARP-1 hub role is sensing cellular 

metabolic stress including oxidative stress, DNA repair, and pathogen infection which lead to 

activation and ultimately determination of cell fate. The PARPs activity is mainly correlated with 

the regulation of the mammalian innate antiviral response (9-11). Since the NAD+ level is critical 

for regulation of energy metabolism and maintenance of redox homeostasis, PARP hyper-

activation following extensive DNA damage upon viral infection results in rapid depletion of 

cellular NAD+ and reduced ATP production and ultimately cell death (12, 13). 

 

The adaptive immune response: 

 

Adaptive immune response against viral infections started to develop a precise and powerful 

protector immunity against viruses. The adaptive immune response to viral infections exerts 

through the effector function of cytotoxic T lymphocyte (CTL) response (14). CTLs are generated 

in response to intracellular invading pathogens, and they specifically recognize and kill virus-

infected cells and/or release inhibitory antiviral soluble factors. Thus, a sharp increase in CTL 

count is highly expected in CTL patients with SARS-CoV-2 infection. 
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However, unlike the conventional immune responses against viruses, in SARS-CoV-2 infection a 

different response shaped which is accompanied with particular T cell lymphopenia, with a rapid 

decrease in both CD4 and CD8 T cell subsets (4-6). 

The latest report, indicated the reduced number of CD4+ and CD8+ T cells in the peripheral blood 

of SARS-CoV-2-infected patients, similar to patients with SARS-CoV, with concomitant hyper-

activated T cells shown by high proportions of CD4-restricted HLA-DR (3.47%) and CD38 (CD8 

39.4%) double-positive populations(15) . 

The possible explanation of CTL reduction in COVID-19 patients might be an adverse outcome 

which need further investigations. Infiltration of T cells and subsequent trapping in the lower 

respiratory tract as well as immune cell death could also participate in the underlying mechanisms 

of the acute decrease of peripheral T cell subsets observed in SARS-CoV-2 infection.  

Here, the possible factors which might be involved in general reduction of peripheral T 

lymphocytes during SARS-CoV-2, are further discussed in details.  

 

 

1. CD38 expression: 

Expression of CD38 on immune system cells seems to play an important role in the context of host 

defense to infection (16). 

Apart from being a cell surface receptor, CD38 is a transmembrane glycoprotein with bifunctional 

activity of both ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase CD38 utilizes NAD(P) as 

a substrate to produce the second messengers, Nicotinic acid adenine dinucleotide phosphate 

(NAADP) and Cyclic adenosine diphosphate ribose (cADPR) by mean of ADP-ribosyl cyclase 

activity. It has been postulated that CD38 is the major NADase in cells and NAD levels 
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significantly increased upon CD38 knock down (17). Thus, it was hypothesized that NAD 

depletion upon CD38 overexpression is associated with disturbed metabolic regulation and cell 

viability. NAD+ known as one of the energy currencies required for vital cellular processes 

mediating bio- energetic processes, metabolic homeostasis, response to damages and immune 

reactions. Moreover, emerging evidences demonstrated NAD+ is released during the early phase 

of inflammation and exerts the immunoregulatory role in vivo (18, 19). 

As part of the innate immune response, PARP hyper-activation, subsequent to viral mediated-

oxidative and/or nitrosative stress, consumes large amounts of NAD+ and CD38 overexpression 

during adaptive immunity, culminates in NAD+ depletion. The NAD+ depletion linked with a 

reduced glycolytic activity which may, in turn, affect ATP levels, since cells consume ATP for 

NAD+ replenishment. On the other hand, NAD+ depletion leads to increased production and 

release of pro-inflammatory cytokines, reactive oxygen species, and macrophage infiltration via 

Sirtuin-1 (SIRT1) inhibition (8, 20). 

Proteins of the SIRT family (sirtuins) are NAD+-dependent histone deacetylases (HDAC) which 

govern the balance between cellular durability and death. SIRT proteins are thought to exert their 

function through the control of genomic stability, DNA repair and transcriptional regulation. In 

addition to SIRT proteins, PARP operates convergent with SIRT proteins for maintenance of the 

balance that determines cell fate in response to stress (21). 

The functional cross-talk between SIRT proteins and PARP is suggested following the 

consumption of the common intracellular NAD+ pool by both of them.  The previous results 

showed over-activation of PARP subsequent to DNA damage leads to AIF (Apoptosis Inducing 

Factor)-mediated cell death in the absence of SIRT1 (20, 22).  
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2. Pro-inflammatory cytokines and chemokines: 

Patients infected with COVID-19 showed significantly increased levels of plasma pro-

inflammatory cytokines including MCP1, MIP1α, MIP1β, IL1-β, IL1RA, IL7, IL8, IL9, IL10, 

IP10, PDGFB basic FGF2, GCSF, GMCSF, IFNγ, TNFα, and VEGFA (3, 15). 

This cytokine profile indicates a rapid recruitment and increased trafficking of the monocyte-

macrophage lineage into the lung very early in the infection process. The immune cell infiltration 

into the lower respiratory tract, leading to uncontrolled immune responses with subsequent hyper-

inflammation and cytokine storm results in organ failure, pulmonary tissue damage, and reduce 

lung capacity (14, 23). Thus, tissue sequestration might play the major role in reduction of 

peripheral blood lymphocyte count of SARS-CoV-2 infected patients. 

 

3. Protein 7a induced apoptosis:  

The lack of angiotensin converting enzyme II receptor as the SARS-CoV-2 specific receptor, in T 

and B lymphocytes and macrophages of all haemato-lymphoid organs proposes that direct viral 

infection is not the reason of acute lymphopenia in SARS-CoV-2 infection (24). 

Among the virus-encoded proteins, protein 7a, a structural protein specifically encoded by SARS-

CoV-2, combine to mature virions and plays an essential role in the pathogenesis of SARS-CoV-

2 (25). This protein induces apoptosis, arrests the cell cycle, and promotes the production of pro-

inflammatory cytokines. Overexpression of protein 7a, found to induce apoptosis via a caspase-

dependent pathway in cell lines derived from various organs, including lung, liver and kidney and 

could be considered as one of the mechanisms involved in lymphopenia (26). 

 

Conclusion:  
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In conclusion, the innate and adaptive immune responses against SARS-CoV-2 and possible 

mechanisms involved in reduction of peripheral lymphocyte subsets in patients with SARS-CoV-

2 was discussed. Although, the precise mechanism underlying the acute lymphopenia during 

SARS-CoV-2 infection remains unclear and further researches is vital for identification of 

molecular mechanisms responsible for the pathogenesis of SARS-CoV-2 infection.  
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