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Abstract:  27 
 28 
Early analysis of outbreaks of novel pathogens to evaluate their likely public health 29 
impact depends on fitting predictive models to data gathered and updated in real-time. 30 
Both transmission rates and the critical 0R  threshold (i.e. the pathogen’s ‘reproductive 31 
number’) are inferred by finding the values that provide the best model fit to reported 32 
case incidence. These models and inferred results are then the basic tools used for public 33 
health planning: how many people expected to be infected, at what scales of time and 34 
space, and whether potential intervention strategies impact disease transmission and 35 
spread. An underlying assumption, however, is that the ability to observe new cases is 36 
either constant, or at least constant relative to diagnostic test availability.  37 
We present a demonstration, discussion, and mathematical analysis of how this 38 
assumption of predictable observability in disease incidence can drastically impact model 39 
accuracy. We also demonstrate how to tailor estimations of these parameters to a few 40 
examples of different types of shifting influences acting on detection, depending on the 41 
likely sensitivity of surveillance systems to errors from sources such as clinical testing 42 
rates and differences in healthcare-seeking behavior from the public over time. Finally, 43 
we discuss the implications of these corrections for both historical and current outbreaks.  44 
 45 
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Introduction: 49 

 50 

Mathematical models of the progression of the spread of infectious disease provide the 51 

tools used for real-time decision making in public health planning and outbreak 52 

management. They allow us to predict the time course of spread within a 53 

population(Chowell et al. 2017; Perkins et al. 2016; van den Driessche and Watmough 54 

2002) , provide critical cost-benefit estimates (Dasbach et al. 2006; Hayman et al. 2017; 55 

Keeling et al. 2017; Purdy et al. 2004), and evaluate best practices for particular 56 

interventions (Andrews and Basu 2011; Andrews and Bauch 2016; Ferguson et al. 2003; 57 

Kretzschmar et al. 2004). When confronted with a novel, potentially virulent pathogen, 58 

there is a rush to parameterize models appropriately (Capaldi et al. 2012; Farah et al. 59 

2014; Sebrango-RodrÍGuez et al. 2017; Tizzoni et al. 2012), getting real-time case 60 

incidence data from surveillance sources and fitting the models to it to determine the 61 

likeliest estimates for probabilities of transmission (i.e. infectiousness) and the basic 62 

reproductive number, 0R , which provides a metric of epidemic potential (Anderson 1991; 63 

Chowell et al. 2006; Chowell et al. 2004). As a new outbreak unfolds, updated incidence 64 

data helps refine the parameter estimates, shifting our understanding of the nature of the 65 

threat in real time (Moore 2004; Sebrango-RodrÍGuez et al. 2017; Tizzoni et al. 2012). 66 

However, many of these models make an explicit assumption that detection of new 67 

disease incidence is a function of well-understood confounders that remain mostly 68 

invariant over the course of an outbreak, such as the probability of an infected person 69 

developing symptoms. There are known corrections for instances that violate this 70 

assumption of constant detectability, such as when clinical case definition criteria are 71 
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revised (Green 1998; Santermans et al. 2016; Thursky et al. 2003) or when new more 72 

sensitive and/or specific diagnostic tests become available (Nouvellet et al. 2015; Villela 73 

2017). These confounders, however, are features of the surveillance process itself, and 74 

may therefore be understood so long as there is sufficient incorporation of medical and 75 

public health practice in the interpretation of the models (Villela 2017). Critically, these 76 

surveillance-based step-function changes may not the be the only meaningful factors 77 

confounding our ability to accurately estimate incidence data over time, and therefore 78 

accurately model the progression of an outbreak. 79 

 80 

The importance of incorporating human behaviors into predictive epidemiological 81 

models has gained attention over the past decade (e.g. (Bansal et al. 2007; Del Valle et al. 82 

2005; Fenichel et al. 2011; Funk et al. 2010; Perra et al. 2011)). Many models have now 83 

explored the potential impact of behaviors that directly impact transmission (e.g. school 84 

closures (Earn et al. 2012; Ferguson et al. 2006; Gemmetto et al. 2014; Lofgren et al. 85 

2008), social distancing (Glass et al. 2006; Maharaj and Kleczkowski 2012; Reluga 2010; 86 

Valdez et al. 2012), use of personal protective equipment (PPE) (Anderson and Garnett 87 

2000; Duerr et al. 2007)), etc.). However, the impact of human behavior within the 88 

context of epidemic outbreaks is not limited only to those that affect the transmission 89 

patterns of the pathogen. Our functioning societies enter into an epidemiological observer 90 

effect (cf. (Dirac 1947)) in which various behaviors are likely to confound both the 91 

sensitivity and specificity of surveillance detection of disease incidence.  92 

 93 
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Media-fanned public apprehension can create an over-demand for clinical testing 94 

(Sharma et al. 2003), even in the absence of clinical signs or symptoms and when 95 

transmission from asymptomatic persons does not occur (Baxter 2010). Social 96 

stigmatization associated with illness can conversely cause many with symptoms to avoid 97 

healthcare providers, and hence diagnosis, for as long as possible in order to avoid social 98 

repercussions (e.g. as with HIV/AIDS patients (Chesney and Smith 1999; Kalichman and 99 

Simbayi 2003). Even with fully rational and cooperative behavior on the part of the 100 

general public, public health directives and media attention will affect physicians 101 

themselves, potentially drastically altering rates at which physicians order tests to provide 102 

clinical diagnosis rather than relying on palliative treatment without the need for 103 

diagnosis (Barras 2020; Cowie et al.). This effect has already been shown to scale 104 

disproportionately with the actual rate of incidence (though not the focus of the study, 105 

this can be inferred from Fig 2 in (Iowa 1998 Annual Report)). 106 

 107 

Further compounding the potential for these behavioral effects to mislead our models, the 108 

behaviors themselves are likely to depend on perceived epidemic status of the population. 109 

Individuals may shift their behaviors as reported prevalence rises and falls out of fear, or 110 

lack thereof, whether warranted by epidemiological truths or not. Case fatality rates are 111 

calculated based both on reported deaths and estimated case incidence, potentially 112 

amplifying the feedback since death may be considered an even greater motivator to 113 

action than illness. This implies that, not only do we may need to correct our predictive 114 

models for the pattern of surveillance sensitivity over time, but also to have sensitivity 115 

itself depend on the current perceived prevalence of the disease. This may be even more 116 
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critical in instances where estimated case incidence does not accurately reflect numbers 117 

of infections (i.e. when case fatality rates and infection fatality rates differ significantly). 118 

In effect, modeling efforts should be split into separate endeavors: one of curve fitting for 119 

observed incidence, and one of inferring from those curves the likely underlying, actual 120 

disease process.  121 

 122 

To capture this coupled process of disease dynamics and disease detection, we consider a 123 

standard, simple epidemiological model, but incorporate the potential for errors derived 124 

from a variety of sources that confound our estimates of case incidence. We use these 125 

models to demonstrate how these corrections would alter our understanding of historical 126 

outbreaks, and then discuss some evidence that modern outbreaks are affected by the 127 

types of behavioral shifts that we consider.  128 

 129 

 130 

Methods/ Model 131 

We begin with a standard Susceptible-Infected-Recovered (SIR) system, however, we 132 

will examine both “real” process of actual pathogen spread (denoted by the subscript a), 133 

and a “perceived” or “measured” process (denoted by the subscript m). For simplicity 134 

sake, we will assume that correct diagnosis and treatment has no bearing on the duration 135 

of illness/ recovery time, nor on the rates of transmission from infected to susceptible 136 

individuals. Although both of these are obviously false for most outbreaks, they allow us 137 

to highlight the processes and methods most relevant to our purpose here and are easily 138 

corrected in specific application to particular outbreaks in the future. We therefore 139 
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assume that the recovery rate, γ , is the same in both the perceived and real processes (i.e. 140 

γγγ == ma ).  141 

This therefore yields a “real” process of aaa
a is

dt

ds β−= , aaaa
a iis

dt

di γβ −= , and 142 

)()(1)( titstr aaa −−= , where )(tsa , )(tia , and )(tra are the fractions of the populations 143 

in the respective health categories at time t. To build the perceived disease process from 144 

this model, we then incorporate rates of testing for each fraction of the population, and 145 

the sensitivity and specificity of the test as follows. 146 

 147 

Importantly, we will define as susceptible any person one who is not infected with our the 148 

pathogen of concern, despite possible infection with another illness. It is therefore not 149 

only reasonable but probable that “susceptible people” will seek out health care services 150 

and be tested for infection under our surveillance process, especially if the symptoms of 151 

their infection closely match those of the pathogen causing our focal outbreak. We 152 

therefore define α  to be the rate at which susceptible people are tested for illness, call δ  153 

the rate at which infected people are tested for illness, and call λ  the rate at which 154 

recovered people are tested for illness. (For purposes of this paper, we will assume 155 

λα = , however this assumption may be relaxed in future work if memory of recently 156 

resolved symptoms affects health care seeking behavior). We define the false positive 157 

rate of the diagnostic test 1ε  and the false negative rate of the test 2ε  (these may apply 158 

either to clinical diagnostic sensitivity and specificity, or else to error rates stemming 159 

from differences in physician opinion during syndromic surveillance). 160 

 161 
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Assuming that, at least initially, our surveillance cannot determine whether an uninfected 162 

person is susceptible or recovered, and therefore 1)()( =+ tits mm , we can define 163 

)1()1()1()1()1( 121 ελλδεδεαα −+−++−+−+−= aaaaaam rriisss  and 164 

( ) ( ) 11211 λελεδεδλεαε +−−+−= aam isi . Defined in this way, if 1=== λδα , and 165 

021 == εε , and 0=ar , then am ii =  and am ss =  (i.e. when there are no errors and the 166 

surveillance is perfect, then the measured case incidence will be equal to the 167 

corresponding real case incidence, as we would hope).  168 

 169 

Using this definition, we then correct our understanding of any disease incidence curve 170 

once we have either measured or assumed appropriate functions/values for  α , δ , λ , 1ε , 171 

and 2ε . While this might at first seem straightforward, there arises the complication that 172 

our health care seeking behavior functions are likely to be problematic in at least three 173 

separate ways: (1) they are likely to be functions of the current perceived prevalence of 174 

infection in the population (i.e. some function of mi ), (2) they are likely to be functions of 175 

time since the beginning of the perception of the current outbreak, (3) they are likely to 176 

be non-linear and, in some cases, not even continuous. We therefore propose the 177 

following algorithm to produce a system of SIR curves which reflect the underlying 178 

disease dynamics without the influence of behavioral shifts and/or testing inaccuracy; we 179 

will denote this system as “Testing Neutral”, TN.  180 

 181 

We start from the most conservative assumption: that only the epidemiological rates of 182 

mβ  and γ  for the outbreak curve of interest are known (i.e. that the raw data to which an 183 
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SIR model was fit to obtain those parameters is currently unavailable). We make this 184 

assumption to provide a method by which analysis of previously published rates for 185 

historical outbreaks could be analyzed without having to reanalyze the original outbreak 186 

data (should that data in fact be accessible, the correction can naturally be applied 187 

directly to the mi  data directly rather than to *i  curve described below). We, therefore, 188 

begin with an initially reconstructed SIR system (denoted by *) using only our measured 189 

mβ  and γ : **
*

is
dt

ds
mβ−=  and ***

*

iis
dt

di
m γβ −= . We then compute the corrected curve 190 

for the infected population (which is no longer necessarily continuous) using the 191 

definition of mi  above and applying it to the *i  and cori  instead of mi  and ai  192 

(respectively), we obtain ( ) αεεδ
αε

12

1
*

1 −−
−

=
i

icor  so long as 1
)1( 2

1 ≠
− ε

αε
 (note: if it is equal 193 

to 1, then α=*i , which implies that the surveillance process cannot accurately capture 194 

the underlying real disease dynamics; derivation of this equality can be found in ESM 195 

Appendix 1). We are then able to generate the TN system by finding a new value of β  196 

which minimizes the square of the distance between the )(ticor  curve and a new, 197 

hypothetical, standard continuous SIR system’s infected curve, using the known value of 198 

γ . We call this new, corrected value the “Testing Neutral β ” which we denote TNβ . So 199 

long as our assumed rates and behavior adjustment functions are reasonable 200 

approximations of the associated real-world values and behaviors, aTN ββ = , and the TN 201 

system may reasonably approximate the real disease dynamics (i.e. aTN ss = , aTN ii = , 202 

using the rates TNβ  and γ ). These values of aβ  and γ  (and by extension, the 0R  203 

computed either by fitting aTN ii = , or else computed as the ratio of these corrected 204 
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etiological rates) may then be compared to similarly corrected values for other outbreaks 205 

without worry that differences in sensitivity or health-care seeking behavior will 206 

influence the comparison. 207 

 208 

Results 209 

 210 

Demonstration of Impact of Healthcare-Seeking Behavior, Clinical Testing Rates, and 211 

Diagnostic Error Rates on Estimation of Outbreak Dynamics and Severity 212 

 213 

To demonstrate the potential of these types of confounding factors in incidence 214 

estimation to influence our understanding of ongoing disease dynamics, we present the 215 

mi  and ai  curves under a variety of values for 1ε , and 2ε , and function choices for α  216 

and δ . Even under the simplest exploratory case, in which there are no ongoing 217 

dynamics affecting the ability to estimate incidence over time and where also the rates of 218 

testing for susceptible, infected, and recovered individuals are all held constant and 219 

identical, we see that asymmetry in error type rates alone can drastically alter our 220 

understanding of an ongoing outbreak (Fig. 1a). Extending this simple case to also 221 

include behavioral responses that shift over the course of an outbreak (i.e. non-constant 222 

testing rates), while still keeping all else the same, we see also that there can be drastic 223 

errors, even in the understood shape of the incidence curve to match the cases observed 224 

(Fig. 1b). (Again, for derivation of predictions for agreement/disagreement with real 225 

disease process based on the direction of the inequality between εA  and 1, and the 226 

derivation of this example, see ESM Appendix 1). 227 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2020. .https://doi.org/10.1101/2020.03.19.20038729doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.19.20038729
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

Note that these calculations presented in Figure 1 are meant to be extremes to highlight 228 

the potential for confusion – we show a full range of values for 1ε , and 2ε  ranging from 229 

potentially realistic ( εA =1) to dramatically inflated (both 1ε , and 2ε  are greater than 0.5, 230 

which would result in a more accurate test by simply negating the result). This is done to 231 

highlight the problem, though of course, real-world values are expected to be within a 232 

much narrower, more conservative range.  233 

 234 

Data-Driven Case Studies 235 

 236 

Historical Outbreaks of Pandemic Influenza 237 

Employing this now demonstrated potential for mismatch in understood dynamics to 238 

more realistic outbreak scenarios, we see that when health-care seeking behavior is 239 

dependent on the perceived prevalence of disease, shifting at a set threshold, there is also 240 

the potential for drastic misunderstanding of the disease dynamics, even if the error rates 241 

in testing are realistically low (Ai et al. 2020; Chu et al. 2012) (Fig 2a). Further departing 242 

from an idealized instructional case, when we incorporate both testing rate dependence 243 

on perceived prevalence and the amount of time since surpassing the threshold for 244 

increased behavioral demand for testing (e.g. gradual relaxation in public risk perception 245 

over time), the differences between the reality of the disease dynamics and the 246 

understanding that would be provided by fitting a model to case incidence data is even 247 

greater (Fig 2b).  248 

 249 
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To demonstrate how these effects might impact current understanding of modern 250 

analyses, we construct a hypothetical scenario using results from an excellent paper 251 

comparing the severity of pandemic and epidemic outbreaks of influenza: Viboud et al. 252 

2006 (Viboud et al. 2006). In this paper, the authors concluded (among other things) that 253 

the 0R  values for three pandemic years (1918, 1957, and 1968) were 2.1, 1.5 and 1.8 254 

(respectively). However, while all three pandemic years of data were analyzed using 255 

transmission estimates inferred from influenza-attributed mortality data, the data for the 256 

1957 and 1968 years were based upon WHO laboratory surveillance. For this reason, we 257 

can assume that the reported influenza attributed mortality was more accurate in 258 

representing only deaths from influenza (or associated pneumonia) than would have been 259 

possible for 1918. Entirely hypothetically, even if we assume that health care seeking 260 

behavior did not change at all between 1918 and 1957 (purely for demonstration, we 261 

assume 
05.0

05.0

8.0

01.0

>
≤

⎩
⎨
⎧=

m

m

i

i

if

if
α  and 

01.0

01.0

0.1

5.0

>
≤

⎩
⎨
⎧=

m

m

i

i

if

if
δ  for all of these analyses), if we posit 262 

that the syndromic surveillance of 1918 led to error rates of 1.01 =ε  and 005.02 =ε , 263 

whereas the laboratory based testing was able to increase the specificity of the diagnosis 264 

(leaving the sensitivity the same) to 01.01 =ε , we already see a drop in the perceived vs 265 

TN estimates of 0R  for 1918 from 2.1 to 1.9, but no change (after rounding to the same 266 

number of digits) in the 0R  estimates for either 1957 or 1968. This leads to a substantial 267 

mismatch in the observed incidence curve for the 1918 pandemic and an understanding of 268 

the same outbreak under a Testing Neutral assumption (Fig 3a) while both the 1957 and 269 

1958 outbreaks would already have been accurately understood (Fig 3b and 3c). 270 

 271 
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While we have no reason to suspect that our hypothetical error rates and assumed health 272 

care seeking behavioral functions reflect the reality of any of these three pandemics, they 273 

are clearly within realistic ranges and therefore demonstrate how dramatic the impact of 274 

even small differences in diagnostic sensitivity (whether due to changes in laboratory 275 

practice or to patient- or physician-driven behavior) can be on epidemiological estimates 276 

on which we base our public health strategies and policies.   277 

 278 

Outbreak of Influenza H1N1-09 279 

 280 

Whereas case studies of historical outbreaks of pandemic influenza allowed us to 281 

demonstrate the potential misestimate for 0R  and resulting disease dynamics in the 282 

absence of direct understanding of behavioral shifts in testing practices, the more recent 283 

“novel” (H1N1-09) provides instead real-world data on the shifting demand for clinical 284 

diagnostic testing. This pandemic was first brought to light by global media attention in 285 

advance of clinical diagnosis in many areas. This is made clear by considering a time-286 

series of both ordered clinical tests and confirmed cases of H1N1 in the UNC healthcare 287 

system in 2009 in which testing started immediately after media attention to the virus, but 288 

significantly before any actual circulation was detected (Fig. 4a).  289 

 290 

Using the actual sensitivity and specificity known for the H1N1 tests in use at the time 291 

(Ginocchio et al. 2009), and the UNC testing curve to parameterize demand, we see that 292 

the reported estimate of 58.10 =R  (Fraser et al. 2009), under correction, instead becomes 293 

and 64.10 =R  (Fig. 4b). Of potential note, if we restrict the window for curve fitting to 294 
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just the first weeks’ worth of data, we instead get an estimated 66.10 =R  (Fig. 4c), 295 

meaning that, for this scenario, earlier estimates and projections were likely to 296 

overestimate the progression of the outbreak slightly. Depending on whether or not the 297 

UNC data is actually representative of broader patterns of test-seeking or test-ordering 298 

behavior this provides evidence that our understanding of the global dynamics of novel 299 

H1N1 in 2009 may be flawed.  300 

 301 

Outbreak of COVID-19 302 

While we have no way of currently estimating the rate of susceptible individuals seeking 303 

testing, we can make some generalizations given that the demand for testing in the United 304 

States as of 17 March  well outstripped the supply of tests, and access to these tests was 305 

decidedly non-uniform (e.g. supplemental test availability from the Seattle Flu Study). 306 

 307 

Analytic Condition for Accuracy in Estimated Case Incidence from Surveillance 308 

 309 

In addition to these numerical examples, we provide a theoretical threshold condition, 310 

εA , for the ability of a surveillance system to reflect actual disease incidence based on 311 

assumed relationships among the behavioral functions and error rates  (much as 0R  312 

provides a threshold condition for epidemics). Assuming that the behavioral health care 313 

seeking functions are independent of time, the effective ratio of error rates in the 314 

diagnostic tests, defined as 
)()1( 2

1

mij
A

ε
ε

ε −
= , where α

δ=)( mij , can be used to define 315 
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⎪⎩

⎪
⎨

⎧

<−

>−
= 0)(')(,

1
;0)(')(,

mmm

mmm

iiiif
A

iiiifA
A φφ

φφ

ε

ε

ε  where αφ =)( mi . This εA  then provides a way to 316 

determine whether the perceived or measured disease process may accurately reflect the 317 

real, underlying disease process. In this case, when the ratio of the diagnosis test rates is 318 

constant, if there are no errors in the diagnosis tests then the surveillance accurately 319 

reflects the real disease process though it may overestimate or underestimate actual 320 

incidence. If there are errors, the surveillance system accurately reflects the increasing or 321 

decreasing nature of the real disease if 1<εA , but can indicate increasing (resp. 322 

decreasing) incidence while the actual incidence is decreasing (resp. increasing) when 323 

1>εA . When the ratio of the diagnosis tests is non-constant the results are more 324 

complicated, but some results are still accessible: without errors in diagnostic tests, a 325 

surveillance system can wrongly report no disease incidence while actual case incidence 326 

is either increasing or decreasing. Further, with small errors in the diagnostic tests it is 327 

possible for a surveillance system to report decreasing incidence while the actual 328 

incidence is increasing. (Proofs and characterizations of these relationships are provided 329 

in ESM Appendix 1.) 330 

 331 

Discussion 332 

 333 

The ability to accurately infer epidemiological rates from outbreak data is critical to a 334 

majority of our public health planning efforts. As our models demonstrate, the accuracy 335 

of our estimates may be significantly compromised by our implicit assumption that 336 

diagnostic error rates and health care seeking behavior remain constant over the course of 337 
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single, and even multiple, outbreaks, even as we know this assumption to be untrue. 338 

Regardless of the particular mechanism through which we attempt to characterize the 339 

changes in diagnostic sensitivity and specificity, our results demonstrate (in both theory 340 

and practice) how these dynamics may be incorporated into epidemiological modeling 341 

efforts and how the results may translate into a more accurate understanding of infectious 342 

disease dynamics. 343 

 344 

Some studies have been able to assess the impact of public health announcement- or 345 

media-driven behavioral change with regard to disease risk and diagnosis (e.g. (Sharma et 346 

al. 2003)). It is clear that we will need to develop better models that explicitly capture the 347 

major factors that can effect change in public behavior regarding health care and 348 

diagnosis. While it may be impossible to accurately assess the impact of behavioral 349 

changes in health care seeking behavior for past epidemics, one possible course of action 350 

going forwards would be to ask physicians, hospitals and laboratories to record and report 351 

the number of tests performed in addition to merely the number of cases positively 352 

diagnosed, regardless of acknowledge threat of outbreaks.  353 

 354 

These models and insights may also be of critical use our collective ongoing efforts to 355 

understand and predict the progression of COVID-19. Not only do we provide the 356 

obvious alternations to the standard epidemic predictions for error rates in testing, we 357 

also provide a mechanism by which to correct our understanding of 0R  based on changes 358 

in access to tests of various sensitivities and specificities over time. This is especially 359 

important given both the formulation of governmental responses to the pandemic (i.e. 360 
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“flattening the curve” or relying on community protection, i.e. ‘herd immunity’) and their 361 

subsequent evaluation hinge on accurate estimations of 0R . While presented here with 362 

constant rates to enable the analytic calculations, real-time estimations of 0R  are 363 

frequently based on numerical solutions, rather than analytic calculations. In this case, the 364 

expansion of precisely these equations to allow for α , δ , and λ to themselves be 365 

dynamic functions of public perception and disease prevalence will enable vastly more 366 

accurate understanding of real-time case incidence data. Work currently underway to try 367 

and capture the functional forms of these responses in observed behaviors in the US will 368 

hopefully allow us to extend these results very soon to the ongoing COVID-19 pandemic 369 

itself, but we provide this model in the meanwhile to allow others to work in parallel and 370 

improve our real-time decision-support capabilities.  371 

372 
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Figure Legends 521 
Figure 1: Example Perceived and Infected Curves Representing the Same Outbreak 522 

Under Different Testing Rates/Functions. All curves: 3=aβ , 1=γ , 523 

9.0)0( =as , 1.0)0( =ai . (a) Constant Behavioral Responses. Black solid curve: 524 

real disease dynamics; Black �: 65.0=α , 65.0=δ , 2.01 =ε , and 1.02 =ε ; 525 
Dashed curve: 65.0=α , 65.0=δ , 6.01 =ε , and 7.02 =ε ; Black �: when the 526 

effective ratio of errors in testing, εA =1 (for calculations, see Appendix 1). (b) 527 

Non-Constant Behavioral Responses: All curves: 3=aβ , 1=γ , 9.0)0( =as , 528 

1.0)0( =ai . Black curve: real disease dynamics; All other curves 65.0=α , 529 

( )
m

m

pi

qi+
=

165.0δ , 1== qp , ( 1ε and 2ε for each curve as labeled). 530 

 531 
Figure 2: Example Perceived and TN Infected Curves Representing the Same 532 

Outbreak. (a) Non-Constant Health Care Seeking Behavior Functions.  All 533 
curves: 1=γ , 999.0)0( =as , 001.0)0( =ai . Solid curve – Perceived Outbreak: 534 

15.1=mβ , 
003.0
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if
δ , 002.01 =ε , and 535 

005.02 =ε ; Dotted curve – Testing Neutral Outbreak: 13.1=TNβ  536 
(b) Healthcare Seeking Behavior Functions that Depend on Perceived Epidemic 537 
Severity and Time from first Outbreak Identification.  All curves: 1=γ , 538 

999.0)0( =as , 001.0)0( =ai . Solid curve – Perceived Outbreak: 15.1=mβ , 539 

=α {0.01 if mi  has never exceeded 0.003, and 0.7 when mi  first exceeds 0.003, 540 

decreasing exponentially (by a factor of ( )txe − ) over time to 0.3}, 541 

001.0

001.0
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if

if
δ , 01.01 =ε , and 005.02 =ε ; Dotted curve – Testing Neutral 542 

Outbreak: 10.1=TNβ  543 
 544 
Figure 3: Differences in Estimates of 0R  for Three Pandemic Years Using 545 

Hypothetical Correction Rates. (a) Analysis of Influenza Pandemic of 1918, 546 
(b) Analysis of Influenza Pandemic of 1957,  (c) Analysis of Influenza 547 
Pandemic of 1968.  548 
For all panels – Solid line: Perceived/Reported pandemic incidence curve, 549 
reconstructed from reported 0R . Dotted line: TN pandemic incidence curves 550 

(1918 TN 0R =1.9; TN 1957 0R =1.5; 1968 TN 0R =1.8). 551 
 552 

Figure 4: Testing Rates and Resulting Estimates of 0R  for Novel H1N1 2009. (a) 553 
Counts of influenza tests ordered and H1N1 positive tests from UNC, (b) 554 
Estimated epidemic curves from reported (solid line) and TN (dotted line) 555 
epidemic incidence curves using the full time series,  (c) Estimated epidemic 556 
curves from reported (solid line) and TN (dotted line) epidemic incidence using 557 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2020. .https://doi.org/10.1101/2020.03.19.20038729doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.19.20038729
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

only the first 7 days of data after the first reported case to approximate real-558 
time parameter estimation and resulting prediction.  559 
 560 
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