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Abstract

Background: Mounting evidence suggests that there is an undetected pool of COVID-19
asymptomatic but infectious cases. Estimating the number of asymptomatic infections has
been crucial to understand the virus and contain its spread, which is, however, hard to be
accurately counted.

Methods: We propose an approach of machine learning based fine-grained simulator (ML-
Sim), which integrates multiple practical factors including disease progress in the incubation
period, cross-region population movement, undetected asymptomatic patients, and prevention
and containment strength. The interactions among these factors are modeled by virtual trans-
mission dynamics with several undetermined parameters, which are determined from epidemic
data by machine learning techniques. When MLSim learns to match the real data closely, it
also models the number of asymptomatic patients. MLSim is learned from the open Chinese
global epidemic data.

Findings: MLSim showed better forecast accuracy than the SEIR and LSTM-based predic-
tion models. The MLSim learned from the data of China’s mainland reveals that there could
have been 150,408 (142,178-157,417) asymptomatic and had self-healed patients, which is
65% (64% – 65%) of the inferred total infections including undetected ones. The numbers of
asymptomatic but infectious patients on April 15, 2020, were inferred as, Italy: 41,387 (29,037
– 57,151), Germany: 21,118 (11,484 – 41,646), USA: 354,657 (277,641 – 495,128), France:
40,379 (10,807 – 186,878), and UK: 144,424 (127,215 – 171,930). To control the virus trans-
mission, the containment measures taken by the government were crucial. The learned MLSim
also reveals that if the date of containment measures in China’s mainland was postponed for 1,
3, 5, and 7 days later than Jan. 23, there would be 109,039 (129%), 183,930 (218%), 313,342
(371%), 537,555 (637%) confirmed cases on June 12.

Conclusions: Machine learning based fine-grained simulators can better model the com-
plex real-world disease transmission process, and thus can help decision-making of balanced
containment measures. The simulator also revealed the potential great number of undetected
asymptomatic infections, which poses a great risk to the virus containment.

Funding: National Natural Science Foundation of China.
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1 Introduction
The virus, named as COVID-19, which was identified in Wuhan city in December 2019, is a

coronavirus and belongs to the same family as the pathogen that causes severe acute respiratory
syndrome (ARDS), or SARS [Li et al., 2020; Zhou et al., 2020]. It causes a respiratory dominated
illness and can spread from person to person [Chan et al., 2020; Wang et al., 2020b; Xu et al.,
2020].

Asymptomatic cases refer to people who can be tested positive for the coronavirus but develop
limited or no symptoms such as fever, cough, or sore throat, noting that they are infectious and
pose a risk of spreading to others. Mounting evidence suggests that there is an undetected pool of
covert asymptomatic cases [Dong et al., 2020; Wang et al., 2020a]. A recent news [Qiu] published
by Nature on March 20, 2020, manifests that there could be 30% – 60% patients are asymptomatic
or mildly ill cases. Estimating the number of undetected asymptomatic cases has been crucial
to containing the spread of the coronavirus, which is, however, hard to be accurately counted.
Meanwhile, if we can model how the virus transmits, it is fully possible to make inference on the
unobserved number of asymptomatic patients from the observed epidemic data.

There are mainly two ways to model the virus transmission. One way is to employ transmis-
sion dynamics to describe how diseases spread. A classical transmission dynamics model is the
Susceptible Infected Recovered (SIR) model [Kermack and McKendrick, 1991] that consists of
susceptibles, infectives, and recovered individuals, and differential equations about how individ-
uals changes. Variants of SIR models have been studied, such as the SEIR model [Anderson et
al., 1992; Lekone and Finkenstädt, 2006] considering the incubation period, which is also signifi-
cant for COVID-19 infection, and other models considering temporary immunity [Wen and Yang,
2008], passive immunity [Bichara et al., 2014; Qureshi and Yusuf, 2019], etc. These models are
grounded in human knowledge about virus infection and immunity, which are good in general-
ization to long-period predictions. At the same time, these models commonly over-simply the
real-world and are hard to fit well the epidemic data, which results in large prediction errors. An-
other way is to rely on machine learning models. For epidemic data, a type of model that are
naturally suitable for the task is the recurrent neural networks (RNNs) [Elman, 1990], with long
short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997]. These models are very flexible
that can fit well the epidemic data, and thus can make accurate predictions for the very near future.
However, due to the lack of domain knowledge, these models are hard to generalize to long-term
futures, hard to incorporate different decisions, and hard to be interpretable.

Noticed that combination of human knowledge and learning from data has recently shown
powerful in solving sophisticated problems [Zhou, 2019]. To alleviate the above issues of the
two types of methods, we propose an approach of machine learning based fine-grained simulator
(MLSim), which can not only predict the virus transmission more accurately, but also help to
estimate the number of asymptomatic patients.

2 Method
We propose a machine learning based transmission simulator (MLSim) to estimate COVID-19

asymptomatic infections. MLSim is data-driven and integrates multiple crucial factors, including
disease progress in the incubation period, cross-region population movement, undetected asymp-
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tomatic patient numbers, and prevention and containment strength. The source code of MLSim is
publicly accessible at https://github.com/eyounx/MLSim .

2.1 Simulator structure

C. Explanations of the symbols

Symbol Meaning
𝑆[𝑡] number of susceptible individuals. 
𝐿[𝒕] number of latent patients 
𝑄[𝑡] number of quarantined patients. 
𝐶[𝑡] number of confirmed patients. 

𝐿𝑖𝑛[𝒕] number of inflowing patients. 
𝐿𝑜𝑢𝑡[𝒕] number of outflowing patients. 
𝐿𝑟𝑚[𝒕] the last number in the 𝐿 list. 
𝑄𝑟𝑚[𝒕] the last number in the 𝑄 list. 
𝐶𝑟𝑚[𝒕] the last number in the 𝐶 list. 

𝛽 Infection rate 
𝑘𝑡 average contacts in the region 
𝑘𝑡

′ average contacts across the regions. 
𝜎 quarantine rate per person per day. 
𝛾 diagnostic rate per person per day. 
𝜃 recovery rate. 
𝛿 mortality rate. 

A. Structure knowledge for virus transmission

Susceptible

Inflowing

Dead

Latent
| day 1 | day 2 | day 3 |…| day 14| 

Quarantined
| day 1 | day 2 | … | day 10 | 

Confirmed
| day 1 | day 2 | day 3 | day 4 |…| day 25 |

Recovered

Outflowing

Self-healed

!

!
"" #

B. Dynamic equations

𝑆[𝑡 + 1] = 𝑆[𝑡] − 𝛽𝑘𝑡𝑆[𝑡]𝐿[𝑡]
𝑁

 

𝐿[𝑡 + 1] = 𝐿[𝑡] +
𝛽𝑘𝑡𝑆[𝑡]𝐿[𝑡]

𝑁
+ 𝛽𝑘𝑡

′𝑆[𝑡]𝐿𝑖𝑛[𝑡]
𝑁

+ 𝐿𝑖𝑛[𝑡] − 𝐿𝑜𝑢𝑡[𝑡] − 𝜎𝐿[𝑡] − 𝐿𝑟𝑚[𝑡]

𝑄[𝑡 + 1] = 𝑄[𝑡] + 𝜎𝐼[𝑡] − 𝛾𝑄[𝑡] − 𝑄𝑟𝑚[𝑡] 

𝐶[𝑡 + 1] = 𝐶[𝑡] + 𝛾𝑄[𝑡] + 𝑄𝑟𝑚[𝑡] − (𝜃 + 𝛿)𝐶[𝑡] − 𝐶𝑟𝑚[𝑡] 

Figure 1: Model the virus transmission. MLSim is built based on the transmission characteristics
of COVID-19. The infections in MLSim are divided into latent, quarantined, and confirmed pa-
tients. Only latent patients have the ability to infect others. Each kind of patients can experience a
period of time to move to the next stage. Latent patients can show obvious symptoms and be quar-
antined with the probability of σ on any day of 14 days, which is the time of the incubation period.
The latent patients who have experienced the whole incubation period and are not quarantined are
usually mildly ill or asymptomatic. We assume these patients will self-heal. The self-healed pa-
tients were not recorded in the published data, and calculating their number can help to estimate
the number of asymptomatic patients. See Appendix A for more explanations of why self-healed
patients are essential. The parameters in MLSim are learned through derivative-free optimization
since the simulator is non-differential.

The simulator structure, which is designed according to the transmission characteristics of
COVID-19, is shown in Figure 1. The disease progress is divided into three stages: incubation
stage, quarantine stage, and confirmation stage. All three stages are represented as fixed-length
lists, whose length is determined by the clinical experience. Each number in the list indicates the
number of patients on that day. The patients in these stages are respectively called latent patients,
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quarantined patients, and confirmed patients. Latent patients are infectious and temporarily mildly
ill or asymptomatic. Once they show obvious symptoms, they will be quarantined and lose the
infectivity.

In each day, the susceptible populations can be infected and turned into latent patients. Mean-
while, the external latent patients can infect other passengers through the cross-region population
movement. The number of newly infected patients will be appended as the first day in the latent
patient list, and thus the number of patients each day in the list automatically moves to the next
day. Then, the number on the last day of the list will be removed, which means the patients that
the number represents have experienced the whole incubation stage, i.e., 14 days, without showing
obvious symptoms and being quarantined. They are assumed to be self-healed. The latent patients
can show obvious symptoms and be quarantined on any day of the incubation stage. The quar-
antined patients will be confirmed according to the diagnostic rate on any day of the quarantine
stage or when they are moved out of the list. It should be noticed that latent patients may not be
quarantined, but all quarantined patients will be confirmed. The mortality/recovery rate represents
the probability of death/recovery per day. If the confirmed patients have experienced the whole
confirmation stage, i.e., 25 days, they are assumed to have recovered.

2.2 Determining simulator parameters
To finalize the simulator, we need to determine the parameters. Our goal is to find the param-

eters that make the simulation outcome as similar as possible with the real epidemic data. In the
following parts, we introduce the parameters to be optimized, the loss function, and the optimiza-
tion process.

2.2.1 Parameters

We initialize the simulator by setting S[0] = N (N is the population of the region), Q[0] = 0
and C[0] = 0. We have 8 parameters to be optimized, respectively are β, k k′, σ, γ, θ, δ and
I(0). The start date of the simulator was 14 days before the date when the epidemic data was
first released. Because the real number of latent patients on that day is unavailable, we leave it
to be optimized (I[0]). We assume the average number of individual contacts per person per day
before containment is 15. k represents the average number of individual contacts within a region
after the containment. k′ represents the average number of individual contacts in the cross-region
population movement after the containment. 15/k and 15/k′ reflect the government’s containment
strength. A smaller k indicates a higher containment strength. The explanation of other parameters
is the same as that of Figure 1.C.

2.2.2 Loss function

Let the difference between the real number of newly confirmed cases on the tth day and its
simulated counterpart be ∆Nc[t]. Analogously, let the difference between the real number of new
deaths and its simulated counterpart on the tth day be ∆Nd[t] and the difference between the real
number of new recoveries and its simulated counterpart on the tth day be ∆Nr[t]. Then the loss
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function, which maximizes the utilization of all public data, is defined as:

J =

√√√√ 1

N

N∑
t=1

((∆Nc[t])2 + (∆Nd[t])2 + (∆Nr[t])2).

2.2.3 Optimization

Since the rules of the simulator are non-differentiable, the parameters can not be optimized
through derivative-based methods, e.g., stochastic gradient descent.

Derivative-free optimization, also termed as zeroth-order or black-box optimization, involves
a class of optimization algorithms that do not rely on gradient information. Typical derivative-
free optimization algorithms include evolutionary algorithms [Hansen et al., 2003; Larrañaga and
Lozano, 2001; Neumann and Wegener, 2007], Bayesian optimization [Kawaguchi et al., 2015;
Martinez-Cantin, 2014; Wang et al., 2016] and recently emerged classification-based optimization
methods [Hu et al., 2017; Liu et al., 2019; Yu et al., 2016]. ZOOpt [Liu et al., 2018] is a python
package for derivative-free optimization. It implements some state-of-the-art classification-based
derivative-free optimization methods and their parallel versions, which can quickly approximate
the optimal solution to the problem. We used ZOOpt to obtain the parameters that minimize the
loss function.

2.3 Role of funding source
The funder of the study had no role in method design, data collection, data analysis, data

interpretation, or writing of this article.

3 Experiments
This section evaluates the validation of the MLSim approach.

3.1 Data sources
The most recent epidemic data based on daily COVID-19 outbreak numbers were retrieved

from two open-source GitHub repositories, which respectively share the Chinese epidemic data 1

and the global epidemic data 2. The abrupt increase of confirmed cases in China on Feb. 13 is
exponentially averaged onto the numbers in the previous 32 days. The population movement data
in China’s mainland were sourced from baiduqianxi3, which gives the migration index based on
the daily number of inbound and outbound events by rail, air, and road traffic.
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G. Training loss

Hubei Guangdong Beijing Shanghai Zhejiang South Korea 
MLSim 282.47 9.45 4.05 5.68 22.14 126.76 
LSTM 191.27 7.56 4.69 5.15 8.61 158.05 
SEIR 989.80 17.37 4.90 5.74 25.72 92.45 

H. Validation loss

Hubei Guangdong Beijing Shanghai Zhejiang South Korea 
MLSim 1240.32 5.01 2.67 5.06 5.12 131.86 
LSTM 2682.45 31.84 13.19 12.12 8.65 1680.46 
SEIR 1338.96 36.60 8.00 5.85 23.21 520.46 

A. Hubei, China B. Guangdong, China C. Beijing, China

D. Shanghai, China E. Zhejiang, China F. South Korea

Figure 2: Evaluate the forecast accuracy. MLSim was compared with the LSTM model and the
SEIR model. The red vertical dash line denotes the date when the data was split into training and
validation data.

3.2 Evaluations
We first tested the prediction accuracy of MLSim and compared it with the SEIR and LSTM-

based model.
1https://github.com/BlankerL/DXY-COVID-19-Data
2https://github.com/CSSEGISandData/COVID-19
3http://qianxi.baidu.com
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The COVID-19 data of China was divided into two parts. The first part, the training data,
included the data before Feb. 10, 2020. And the second part, the validation data, included the rest.
The start date of the simulator was set to be Dec. 28, 2019. The number of inflowing (outflowing)
patients can be calculated as Nio

Nl

N
, where Nio is the inflowing (outflowing) population size, Nl is

the number of latent patients in the source region and N is the population of the source region.
We constructed a simulator for each China province. The simulator parameters of Hubei were

first optimized, where the inflowing patients from the remaining provinces were not considered.
Because k′ · Iin[t] was always equal to 0, the parameter k′, average individual contacts in the cross-
region population movement, was not optimized. Then we fixed the parameters of Hubei and
separately optimized the parameters of the remaining China provinces, which only considered the
inflowing patients from Hubei. The parameters of the SEIR and LSTM model were obtained by
fitting the training data, i.e., minimizing the mean square error between the predicted results and
the real data. Details of the training can be found in Appendix B and Appendix C.

Models were also trained on the data of South Korea. The training data included the data
before Mar. 5, and the validation data included the rest. The COVID-19 data of China was added
for training the LSTM model.

The results are shown in Figure 2. It can be observed that MLSim achieved the best validation
performance in all cases. Notice that the training data of Hubei has not shown an evident decline
yet. The LSTM model gave a constant prediction. In Figure 2-D, the curve generated by the LSTM
model shows a periodic characteristic. The curve generated by the LSTM model in Figure 2-F is
similar to the training data of China, which shows that a small increase of training data cannot
help LSTM learn something essential but only makes it remember more data. The generalization
performance of the SEIR model is worse than that of MLSim in all cases.

The above results demonstrate that MLSim can forecast virus transmission more accurately.
The SEIR model is much simpler, which leads to a comparatively weak representation ability.
Neural networks like LSTM have strong representation ability, but it can only predict the near
future for the lack of domain knowledge and suffers from the overfitting problems when the amount
of available data is limited.

4 Interpretations

4.1 Learning results
We obtained the simulator parameters of 31 China provinces and 6 other countries by fitting

the data. The optimization was repeated 10 times, and for each parameter, the median value and its
95% confidence interval are recorded. Here we discuss the results of Hubei. The results of other
provinces and countries can be found in Appendix F. For Hubei, the infection rate β, i.e. the rate
of transmission for the susceptible to be infected, is 0.023 (0.018-0.027) and the quarantine rate σ,
i.e. the rate by which the latent patients develops obvious symptoms and are quarantined per day,
is 0.030 (0.030-0.031). The initial number of infected patients on Dec. 28, 2019 is 106 (29-397).
The average individual contacts has decreased by 87% (83%-90%) (calculated by 1− k/15) since
Jan. 23, 2020, the start date of containment in China. The reproductive number, which means
the number of cases one case generates on average over the course of its infectious period, can
be calculated as

∑14
n=1 kβ(1 − σ)n, where k is the average number of individual contacts, 14 is
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the maximum length of incubation period set in our simulator. The reproductive number before
and after the containment are respectively equal to 3.850 (3.083-4.595) (R0) and 0.499 (0.489-
0.520) (R′0). Ignoring the self-healed patients, the epidemic doubling time in the early stage can
be calculated as 1/ log2(1 + kβ(1− σ)), which is equal to 2.625 (2.217-3.267) days. The obtained
doubling time is shorter than that estimated in some previous work [Kucharski et al., 2020; Wu et
al., 2020a,b] because we considered the undetected patients in this paper.

4.2 Estimate the number of undetected asymptomatic cases
MLSim assumes that latent infections are currently asymptomatic and if they don’t show ob-

vious symptoms and be quarantined in the whole incubation period, they will self-heal. Figure 3
shows the simulated results of MLSim. We found that only 35% (35%-36%) infections were de-
tected in China and 65% (64%-65%) infections were asymptomatic and had self-healed. The cur-
rent numbers of latent patients in South Korea, Italy, Germany, USA and UK respectively are 112
(40-262), 41,387 (29,037-57,151), 21,118 (11,484-41,646), 354,657 (277,641-495,128), 144,424
(127,215-171,930), posing a great risk to the virus containment.

4.3 Estimate the influence of containment
The Chinese government has carried out strict prevention and containment measures since Jan.

23, 2020 [Cao and Zhou; Paul Mozur and Krolik], which have effectively controlled the virus
spread but caused inevitable economical loss [The Economist]. What if the measures were not
taken? We use the optimized simulator to find the answer. We simulated the virus transmission
retrospectively with different containment start dates and containment-strengths.

We first postponed the start date of containment. The simulation results are shown in Figure
4 , which demonstrate that there would be 109,039 (129%), 183,930 (218%), 313,342 (371%),
537,555 (637%) confirmed cases on June 12 if the start date of containment was postponed by 1,
3, 5 or 7 days.

The prevention and containment measures will directly change the value of k, i.e. the average
number of individual contacts. A greater containment-strength causes a smaller k. Therefore,
the containment-strength can be relaxed by increasing k value while leaving other parameters
unchanged. We increased k by 30%, 60%, 90% on Jan. 23 and by 60%, 90%, 110% on March
1 respectively to investigate their influence. It can be observed that if k was increased by 30% on
Jan. 23, the cumulative number of confirmed cases would increased to 111,460 (132%) on June 12.
If k was increased by 60% on Jan. 23, the cumulative number of confirmed cases would increase
to 176,053 (209%). Compared with that, the influence of relaxing the containment after March 1 is
much less. An increase of k by 60% causes 3,296 (4%) more confirmed cases. While an increase
of k by 110% will cause a second outbreak.

Through this retrospective simulation, we conclude that the strict containment measures taken
after Jan. 23 are crucial for suppressing the virus spread and a postponement of few days or slight
relaxation of containment strength on that day may cause much more confirmed cases. Compar-
atively, an appropriate relaxation (60%) of the containment on March 1 can benefit the national
economy with few adverse effects. But a great relaxation (110%) on March 1 can still cause a
second outbreak.
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D. USA F. GermanyE. UK

G. The number of confirmed and undetected asymptomatic infections on April 15

Real confirmed MLSim confirmed Latent Self-healed 

Mainland, China 82,249 84,314 (82,485-86,920) 121 (94-174) 136k (126k-147k) 
South Korea 10,564 10,443 (9,950-11,508) 112 (40-262) 10,232 (3,356-20,455) 

Italy 162,488 151k (150k-152k) 41k (29k-57k) 295k (154k-297k) 
USA 607,670 658k(650k-663k) 355k (278k-495k) 978k (638k-1,311k) 
UK 93,873 103k(100k-107k) 144k (127k-172k) 48k (45k-59k) 

Germany 131,359 145k(140k-151k) 21k (11k-42k) 109k (56k-268k) 

C. ItalyB. South KoreaA. Mainland, China

Figure 3: Estimate the number of asymptomatic cases. MLSim assumes that latent infections are
currently mildly ill or asymptomatic. If they don’t develop obvious symptoms and be quarantined
in the whole incubation period, they will self-heal. The number of total infections is the sum of
the number of confirmed, quarantined, latent and self-healed cases. The abrupt decrease of the
number of new infections in countries except UK is due to the learned average individual contacts
after containment (k). For UK, k was not optimized because the data were not sufficient enough to
estimate the influence of containment accurately. Panel G shows the number of different kinds of
infections on April 15.

4.4 Forecast the global virus transmission
The COVID-19 infections data indicates the epidemic in China’s mainland is close to an end.

However, the trend in global is currently climbing. Here, we forecast the virus transmission in
some countries (the obtained simulator parameters are shown in Appendix F). Inflowing patients
were not considered in this experiment and its effect was transformed to the number of initial
infections on Jan. 9, 2020, due to the lack of the global population movement data.
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For countries except UK, the average individual contacts after the containment (k) can be
learned by fitting the data. We forecast the virus transmission in these countries by keeping simula-
tor parameters unchanged. While for UK, k cannot be learned accurately because the current data
is not sufficient enough. Instead, we assumed k = 15 all along and forecast the future by decreas-
ing k to different values. Results are shown in Figure 5. There could be 10,536 (10,051 – 11,601),
195,000 (183,770 – 247,865), 166,258 (163,497 – 171,316), 1,033,717 (994,147 – 1,120,326) and
478,117 (323,082 – 581,761) confirmed cases in South Korea, Italy, Germany, USA and France on
July 15. For UK, if the containment measures were not taken, there could be 30 millions (25m-
34m) confirmed cases on July 15, which means 44% (37% – 50%) populations will get infected.

A. Postpone containment start date B. Weaken the containment on Jan.23 C. Weaken the containment on Mar. 1

D. The number of infections on June 12 if the containment was postponed.
Jan. 23 Jan. 24 Jan. 26 Jan. 28 Jan. 30 

Confirmed 84k (83k-87k) 109k (106k-113k) 184k (161k-211k) 313k (244k-399k) 537k (374k-756k) 

Total 233k (222k-248k) 299k (293k-312k) 503k (441k-562k) 851k (666k-1.10m) 1.45m (1.01m-2.08m) 

E. The number of infections on June 12 if the containment was weaken January 23.
100% 130% 160% 190% 

Confirmed 84k (83k-87k) 111k (108k-118k) 176k (168k-199k) 401k (367k-526k) 

Total 233k (222k-248k) 310k (295k-337k) 498k (456k-579k) 1,218k (998k-1,676k) 

F. The number of infections on June 12 if the containment was weaken on March 1.
100% 160% 190% 210% 

Confirmed 84k (83k-87k) 88k (85k-92k) 94k (91k-102k) 105k (100k-120k) 

Total 233k (222k-248k) 243k (230k-263k) 264k (249k-299k) 309k (277k-381k) 

Figure 4: What if the containment was postponed or weakened in China? MLSim can be
useful to evaluate and facilitate containment decisions, by answering “what-if” questions. The
red vertical lines in panel B and C denote the date when the containment strength was changed.
Legends in panel A denote the start date of the containment. If the containment was weakened,
the average individual contacts after the containment (k) will increase. Legends in panel B and
C and percentages in the first line of table E and F denote how much k was increased to if the
containment was weakened on Jan. 23 and Mar. 1.
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G. Predicted number of confirmed cases on July 15
South Korea 10,536 (10,051-11,601) 

Italy 195,000 (183,770-247,865) 
Germany 166,258 (163,497-171,316) 

USA 1,033,717 (994,147-1,120,326) 
France 478,117 (323,082-581,761) 

100% 60% 35% 10% 
UK 15m (12m-18m) 99k (94k-123k) 72k (67k-88k) 57k (52k-68k) 

A. South Korea B. Italy C. Germany

D. USA E. France F. UK

H. Predicted total infections on July 15
South Korea 20,763 (13,553-31,905) 

Italy 554,792 (508,980-608,730) 
Germany 264,851 (220,298-437,498) 

USA 2,423,964 (2,227,989-3,111,505) 
France 1,295,625 (419,562-1,668,241) 

100% 60% 35% 10% 
UK 30m (25m-34m) 159k (151k-199k) 116k (10k-141k) 92k (83k-109k) 

Figure 5: Forecast the global virus transmission. The red vertical lines denote the start date of
containment. For South Korea, Italy, Germany, USA and France, the average individual contacts
(k) after the containment was learned by fitting the data. While for UK, k cannot be learned
accurately because the data was not sufficient enough. Instead, we assumed k = 15 all along and
forecast the future with different levels of containment. The legends in panel F indicate the value to
which k was decreased. For example, 35% means k was decreased to 35% after the containment.
For reference, after containment, k was decreased to 13% (10% – 17%) in Hubei, China. Panel G
and H demonstrate the number of confirmed cases and total infections on July 15.
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5 Discussion
Traditional virus transmission models usually make more assumptions than MLSim and left

only few parameters to be determined. For example, SEIR model had to assume the number
of initial patients, incubation period and the change of average contacts after the containment in
advance to determine the infection rate or R0. Although these assumptions are mostly based on
clinical experience, fixing these parameters to a certain value can still be very subjective. Instead
of fixing these parameters, MLSim only assumed the maximum length of each disease stage and
moderately limited the search space of the parameters, rather than fixing these parameters to a
certain value. Having more parameters to be optimized enables MLSim a better representation
ability than traditional models. However, it also causes a side effect: there could be a multi-solution
problem, in another word, there could be more than one set of simulator parameters that can fit the
data and some parameters might be unreasonable. There is actually a trade-off here: the more strict
the assumptions, e.g. fixing parameters to one value, the less likely the multi-solution problems
could happen and the poorer representation ability the model has. An appropriate limitation on the
search space of parameters can benefit the model with sufficient representation ability and fewer
unreasonable solutions. Appendix D shows the settings of the search space of parameters in all
experiments. In general, the multi-solution problem exists but can be eliminated by introducing
more domain knowledge, i.e. more strict assumptions.

There are other potentially important factors we did not consider in our simulator, mainly due
to the lack of data. The factors can include the capacity of daily tests of infections, which upper
bounds the daily maximum confirmation number, and the ICU capacity, which directly affects the
death rate.

6 Conclusion
In this paper, we proposed a machine learning based fine-grained simulator (MLSim), which

built a simulator from expert domain knowledge together with learning from data. We applied
MLSim to COVID-19 data and the obtained parameters can reflect its transmission characteris-
tics. The empirical studies showed that MLSim not only can have a better long-term prediction
accuracy, but can also help to estimate the number of asymptomatic infections. This kind of hybrid
knowledge and data learning approach was not widely recognized in machine learning community.
But we found it very useful when the data is scarce while knowledge is rich but inaccurate, such
as the situation of a new contagion outbreak.
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exponential convergence. In Advances in Neural Information Processing Systems 28, pages
2809–2817, Montreal, Canada, 2015.

W. O. Kermack and A. G. McKendrick. Contributions to the mathematical theory of epidemics—I.
Bulletin of Mathematical Biology, 53(1):33–55, 1991.

Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, John Edmunds, Sebastian
Funk, Rosalind M Eggo, Fiona Sun, Mark Jit, James D Munday, Nicholas Davies, Amy Gimma,
Kevin [van Zandvoort], Hamish Gibbs, Joel Hellewell, Christopher I Jarvis, Sam Clifford, Billy J

13

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2020. .https://doi.org/10.1101/2020.04.19.20068072doi: medRxiv preprint 

http://www.chinadaily.com.cn/a/202002/13/WS5e44ba07a310128217277470.html
http://www.chinadaily.com.cn/a/202002/13/WS5e44ba07a310128217277470.html
https://doi.org/10.1101/2020.04.19.20068072
http://creativecommons.org/licenses/by-nc/4.0/


Quilty, Nikos I Bosse, Sam Abbott, Petra Klepac, and Stefan Flasche. Early dynamics of trans-
mission and control of COVID-19: a mathematical modelling study. The lancet infectious dis-
eases, 2020.
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A The impact of asymptomatic patients to the model
In this section, we try to find out if the setting of undetected asymptomatic patients is necessary.

MLSim can estimate the ratio of undetected asymptomatic patients by computing (1 − σ)14, i.e.,
the number of self-healed patients, where σ is the quarantine rate. Theoretically, if the learned σ
is large, the asymptomatic ratio will be low. For example, when σ is respectively equal to 0.1,
0.2 and 0.3, the asymptomatic ratio will be 23%, 4% and 0%. We limited the lower bound of the
search space of σ to be 0.1, 0.2, 0.3 to see whether MLSim can still well fit the published data.
The results are shown in Table 1. Note that the obtained parameters for Hubei (0.1, 0.2, 0.3) are
inaccurate because the quarantine rate is overestimated. It can be observed that the RMSE values
of these optimizations are worse than those without lower bound limitations. The results indicate
that undetected asymptomatic patients are necessary to fit the real data.

β k γ δ
Hubei 0.023 (0.018-0.027) 1.950 (1.572-2.533) 0.000 (0.000-0.000) 0.005 (0.005-0.005)

Hubei (0.1) 0.021 (0.021-0.029) 3.988 (2.727-4.085) 0.000 (0.000-0.000) 0.004 (0.004-0.004)
Hubei (0.2) 0.025 (0.024-0.025) 6.503 (6.432-6.740) 0.000 (0.000-0.000) 0.004 (0.004-0.004)
Hubei (0.3) 0.029 (0.029-0.034) 8.871 (7.706-8.990) 0.000 (0.000-0.000) 0.003 (0.003-0.004)

I(0) σ k′ θ
Hubei 106 (29-397) 0.030 (0.030-0.031) 4.246 (1.430-12.966) 0.049 (0.042-0.054)

Hubei (0.1) 96 (10-113) 0.100 (0.100-0.100) 5.148 (1.690-9.625) 0.034 (0.033-0.046)
Hubei (0.2) 42 (41-52) 0.200 (0.200-0.200) 8.593 (5.221-9.625) 0.026 (0.023-0.026)
Hubei (0.3) 23 (7-24) 0.300 (0.300-0.343) 5.635 (0.510-12.356) 0.018 (0.017-0.028)

RMSE R0 DT R′0
Hubei 405.544 (389.821-448.441) 3.850 (3.083-4.595) 2.625 (2.217-3.267) 0.499 (0.489-0.520)

Hubei (0.1) 558.091 (490.407-564.010) 2.204 (2.164-3.040) 4.069 (2.688-4.174) 0.586 (0.556-0.590)
Hubei (0.2) 673.229 (670.861-687.861) 1.438 (1.392-1.444) 7.217 (7.124-7.937) 0.623 (0.621-0.626)
Hubei (0.3) 750.531 (681.687-758.662) 1.010 (0.996-1.143) 134.995 (7.051-408.040) 0.597 (0.565-0.599)

Table 1: The obtained parameters when limiting the number of asymptomatic patients. We
limited the lower bound of the search space of σ, the quarantine rate, to be 0.1, 0.2, 0.3 to see
whether MLSim can still well fit the published data. When σ is respectively equal to 0.1, 0.2 and
0.3, the asymptomatic ratio will be at most 23%, 4% and 0%. Note that the obtained parameters
are inaccurate for Hubei (0.1, 0.2, 0.3) because the quarantine rate is overestimated.
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B Details of the SEIR model
The SEIR model consists of four compartments: S for the number of susceptible, E for the

number of exposed, I for the number of infectious, and R for the number recovered (or immune)
individuals. The dynamics is described by the following differential equations:

dS(t)

dt
= −βS(t)I(t)

N
dE(t)

dt
=
βS(t)I(t)

N
− σE(t)

dI(t)

dt
= σE(t)− γI(t)

dR(t)

dt
= γI(t)

where β represents the rate of transmission for the susceptible to be infected; σ is the rate by which
the exposed individual develops symptoms; γ is the probability of recovery or death; and N is the
total population.

In order to apply the SEIR model, we need to estimate the parameters β, σ, and γ. Because
the incubation period of the COVID-19 has been reported to be between 2 to 14 days, we chose
the midpoint of 7 days, and σ is set to be 1

7
. γ is the average rate of recovery or death in infected

populations (i.e., γ = 1
D

, where D is the average duration of the infection). According to the
published clinical experience, we set D to be 14 and γ = 1

14
. The parameter β and the number

of initial infections can be learned to fit the daily COVID-19 outbreak data. We assume that the
value of β is reduced by 80% after Jan. 23 because of the containment. We assume the diagnostic
period is 10 days, which means the number of new infections corresponds to the number of newly
confirmed cases 10 days later.

C LSTM Training Details
The LSTM model implemented in this paper takes the number of newly confirmed cases in the

previous three days as input, and output the number of newly confirmed cases in the next day. The
architecture of the neural network is: Input(3)→ FC(3,15)→ Tanh→ LSTM(15,15)→ FC(15,1)
→ Tanh→ output(1), where FC means a fully connected layer, tanh means tanh activation function
and LSTM means an LSTM module.

An example was made by taking the previous three days’ number of confirmed cases as the
feature and this day’s number as the label. All examples consisted the training set. The values in
a feature were rescaled to [0, 1] by min-max normalization. In each training iteration, an episode
of features was inputted, and the mean square error between the outputs and the labels were cal-
culated. We used Adam to optimize the neural network parameters. The learning rate was set to
be 0.001, and the neural network was optimized for 500 iterations. In the test phase, the current
output of the model was used as the future input for the lack of real data.
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D Parameter settings for the optimization.
Here, we list the parameter settings for the optimization in all experiments. We set the range of

the parameter’s search space to a reasonable range according to the prior knowledge. γ, the diag-
nostic rate per day, was upper bounded by 0.3. Considering the overall mortality rate of COVID-19
was no more than 20%, we upper-bounded δ, the mortality rate per day, by 1%. k′, the average
contacts per person per day after the containment, was bounded by 15, which is the average con-
tacts before the containment. θ, the recovery rate per day of the confirmed cases, was bounded by
10% for China or 15% for other countries. I(0), the number of initial infections 14 days before the
date when the epidemic data was first released, was bounded by 400 for Hubei, China, and other
countries. I(0) was set to be 0 for other provinces in China because the initial infections in these
provinces were from Hubei. If β is 0.1, the value of R0 will be 9.16, which is far from the R0 value
determined by current literature. Thus, β of Hubei was upper bounded by 0.1. Budget, the number
of evaluations the optimization algorithm can use, was set to be 200,000 for the optimization of
parameters in Hubei. For other provinces and countries, the budget was set to be 80,000 to reduce
the total training time.

For the remaining parameters, we first set their search space to a large and reasonable range.
The range of σ, the quarantine rate per day, is set to be [0, 0.24]. The average contacts k after
the containment was upper bounded by 15. We first optimized the parameters of Hubei. Then we
further narrow down the search space according to the obtained parameters. For example, β was
limited to [0, 0.5], and k was limited to [0, 5]. The ultimate search space of all parameters was
shown in Table 2.

Experiment Options β k γ δ I(0) σ k′ θ budget

Comparision
Hubei [0, 0.1] [0, 5] [0.0, 0.3] [0.0, 0.01] [0, 400] [0.03, 0.12] [0, 15] [0.0, 0.1] 200000

Exclude Hubei [0, 0.05] [0, 5] [0.0, 0.3] [0.0, 0.01] 0 [0.03, 0.12] [0, 15] [0.0, 0.1] 80000
South Korea [0, 0.05] [0, 5] [0.0, 0.3] [0.0, 0.01] [0, 400] [0.03, 0.12] [0, 15] [0.0, 0.15] 80000

Forcast China’s mainland
Hubei [0, 0.1] [0, 5] [0.0, 0.3] [0.0, 0.01] [0, 400] [0.03, 0.24] [0, 15] [0.0, 0.1] 200000

Exclude Hubei [0, 0.05] [0, 5] [0.0, 0.3] [0.0, 0.01] 0 [0.03, 0.12] [0, 15] [0.0, 0.1] 80000

Forecast Other countries
Obtain k [0, 0.05] [0, 5] [0.0, 0.3] [0.0, 0.01] [0, 400] [0.03, 0.12] [0, 15] [0.0, 0.15] 80000

Fix k [0, 0.05] 15 [0.0, 0.3] [0.0, 0.01] [0, 400] [0.03, 0.12] [0, 15] [0.0, 0.15] 80000

Table 2: Parameter settings for the optimization.
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E The simulated results of the number of infections on April 8.

Real confirmed MLSim confirmed Total infections Latent Self-healed
China’s mainland 82,249 84,314 (82,485-86,920) 233,047 (221,551-248,305) 121 (94-174) 135,993 (126,287-146,838)

Beijing 589 400 (394-417) 596 (545-670) 0 (0-0) 104 (78-185)
Tianjin 185 133 (128-152) 198 (184-267) 0 (0-0) 42 (27-91)
Hebei 327 359 (351-382) 702 (556-1,032) 0 (0-1) 215 (137-480)
Shanxi 173 135 (129-146) 208 (182-223) 0 (0-0) 45 (29-67)

InnerMongoria 190 81 (78-89) 118 (109-137) 0 (0-0) 26 (19-47)
Liaoning 145 134 (127-146) 285 (232-339) 0 (0-0) 80 (45-112)

Jilin 100 98 (93-104) 123 (117-163) 0 (0-0) 22 (20-53)
Heilongjiang 819 513 (500-524) 713 (643-894) 0 (0-0) 182 (102-318)

Shanghai 618 356 (347-375) 546 (477-808) 0 (0-0) 147 (90-372)
Jiangsu 653 704 (678-722) 1,326 (1,045-1,810) 0 (0-1) 450 (200-836)

Zhejiang 1,267 1,256 (1,233-1,288) 2,033 (1,604-2,547) 0 (0-0) 702 (251-1,152)
Anhui 991 1,082 (1,055-1,114) 1,621 (1,518-2,002) 0 (0-0) 401 (335-729)
Fujian 353 323 (302-327) 472 (411-576) 0 (0-0) 141 (66-219)
Jiangxi 937 1,070 (1,040-1,086) 1,462 (1,342-2,346) 0 (0-0) 319 (213-1,191)

Shandong 784 730 (716-750) 1,150 (1,076-1,264) 1 (1-1) 296 (219-373)
Henan 1,276 1,483 (1,465-1,515) 2,911 (2,275-3,446) 1 (1-1) 1,249 (623-1,753)
Hubei 67,803 70,316 (68,858-72,492) 208,793 (200,417-218,028) 116 (90-165) 127,815 (120,864-133,428)
Hunan 1,019 1,235 (1,216-1,261) 3,655 (3,521-3,745) 2 (2-3) 2,168 (2,061-2,226)

Guangdong 1,564 1,384 (1,348-1,409) 1,924 (1,772-2,276) 0 (0-0) 378 (253-705)
Guangxi 254 264 (246-270) 354 (335-412) 0 (0-0) 85 (61-142)
Hainan 168 177 (157-186) 292 (247-457) 0 (0-0) 87 (55-254)

Chongqing 579 649 (635-661) 1,087 (947-1,663) 0 (0-1) 334 (212-821)
Sichuan 560 573 (566-594) 943 (784-1,167) 0 (0-1) 232 (111-415)
Guizhou 146 151 (148-155) 245 (205-311) 0 (0-0) 70 (40-134)
Yunnan 184 175 (168-194) 326 (238-453) 0 (0-0) 80 (26-165)
Tibet 1 8 (7-8) 10 (9-14) 0 (0-0) 2 (2-6)

Shanxi 256 261 (257-274) 532 (435-691) 0 (0-0) 177 (94-291)
Gansu 139 90 (86-99) 145 (123-185) 0 (0-0) 48 (20-88)

Qinghai 18 15 (15-16) 23 (20-27) 0 (0-0) 6 (4-10)
Ningxia 75 76 (68-85) 125 (89-193) 0 (0-0) 41 (15-94)
Xinjiang 76 76 (74-79) 123 (93-159) 0 (0-0) 42 (15-81)

SouthKorea 10,564 10,443 (9,950-11,508) 20,708 (13,529-31,790) 112 (40-262) 10,232 (3,356-20,455)
USA 607,670 658,177 (650,044-663,172) 2,136,228 (1,807,158-2,622,230) 354,657 (277,641-495,128) 977,795 (637,699-1,311,312)
Italy 162,488 150,623 (150,167-151,686) 501,153 (389,010-522,253) 41,387 (29,037-57,151) 294,992 (154,536-297,085)
UK 93,873 103,068 (99,525-107,401) 320,425 (304,455-394,350) 144,424 (127,215-171,930) 48,518 (45,303-59,118)

France 130,253 371,852 (266,108-533,929) 1,259,440 (408,079-1,668,240) 40,379 (10,807-186,878) 679,208 (81,067-802,794)
Germany 131,359 145,306 (140,573-151,058) 253,951 (208,341-419,828) 21,118 (11,484-41,646) 87,570 (44,031-226,567)

Table 3: The simulated results of the number of all kinds of infections on April 15. The number
of infections in China’s mainland is the sum of infections in 31 provinces. The optimization was
repeated for 10 times and the median and its confidence interval was recorded.
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F Obtained simulator parameters by fitting the COVID-10 data

β k γ δ
Beijing 0.031 (0.026-0.036) 1.728 (0.778-2.289) 0.129 (0.096-0.172) 0.005 (0.005-0.006)
Tianjin 0.042 (0.035-0.049) 1.070 (0.551-1.913) 0.065 (0.048-0.110) 0.003 (0.000-0.004)
Hebei 0.034 (0.025-0.039) 0.285 (0.119-0.769) 0.108 (0.084-0.132) 0.001 (0.001-0.002)
Shanxi 0.029 (0.023-0.034) 0.757 (0.239-2.020) 0.098 (0.077-0.128) 0.004 (0.002-0.005)

InnerMongoria 0.042 (0.035-0.049) 1.205 (0.723-2.148) 0.120 (0.109-0.145) 0.002 (0.000-0.004)
Liaoning 0.030 (0.030-0.030) 0.023 (0.000-0.144) 0.299 (0.298-0.300) 0.004 (0.000-0.007)

Jilin 0.048 (0.038-0.049) 0.933 (0.122-1.452) 0.039 (0.029-0.054) 0.004 (0.001-0.006)
Heilongjiang 0.048 (0.043-0.050) 1.249 (0.918-1.435) 0.026 (0.020-0.035) 0.003 (0.002-0.004)

Shanghai 0.035 (0.028-0.041) 0.333 (0.134-0.616) 0.152 (0.116-0.248) 0.002 (0.001-0.002)
Jiangsu 0.030 (0.024-0.036) 0.268 (0.090-0.431) 0.087 (0.080-0.112) 0.001 (0.001-0.003)

Zhejiang 0.031 (0.029-0.037) 0.704 (0.251-1.189) 0.154 (0.124-0.158) 0.004 (0.003-0.005)
Anhui 0.023 (0.020-0.030) 0.386 (0.309-0.566) 0.051 (0.045-0.075) 0.000 (0.000-0.001)
Fujian 0.025 (0.019-0.029) 0.335 (0.051-0.886) 0.159 (0.132-0.190) 0.001 (0.000-0.001)
Jiangxi 0.019 (0.011-0.028) 0.051 (0.024-0.154) 0.063 (0.038-0.082) 0.002 (0.001-0.002)

Shandong 0.032 (0.027-0.038) 1.439 (1.090-2.069) 0.163 (0.126-0.188) 0.001 (0.000-0.001)
Henan 0.016 (0.014-0.019) 0.051 (0.005-0.134) 0.145 (0.111-0.164) 0.002 (0.001-0.002)
Hubei 0.023 (0.018-0.027) 1.950 (1.572-2.533) 0.000 (0.000-0.000) 0.005 (0.005-0.005)
Hunan 0.006 (0.001-0.011) 0.025 (0.006-0.149) 0.300 (0.299-0.300) 0.005 (0.004-0.006)

Guangdong 0.020 (0.017-0.029) 0.795 (0.652-1.598) 0.121 (0.090-0.140) 0.004 (0.004-0.005)
Guangxi 0.029 (0.020-0.033) 1.644 (0.840-2.347) 0.125 (0.108-0.170) 0.002 (0.001-0.002)
Hainan 0.040 (0.034-0.048) 0.842 (0.096-1.288) 0.119 (0.090-0.151) 0.002 (0.001-0.003)

Chongqing 0.007 (0.003-0.013) 0.414 (0.089-1.328) 0.269 (0.203-0.289) 0.003 (0.002-0.004)
Sichuan 0.012 (0.007-0.015) 1.336 (0.497-2.321) 0.135 (0.110-0.165) 0.003 (0.001-0.004)
Guizhou 0.022 (0.016-0.028) 0.516 (0.311-1.026) 0.038 (0.018-0.048) 0.004 (0.003-0.004)
Yunnan 0.031 (0.029-0.033) 0.910 (0.128-1.747) 0.227 (0.168-0.271) 0.001 (0.001-0.003)
Tibet 0.034 (0.031-0.037) 0.465 (0.242-1.349) 0.096 (0.007-0.132) 0.004 (0.002-0.008)

Shanxi 0.014 (0.008-0.022) 0.304 (0.142-0.671) 0.140 (0.121-0.161) 0.002 (0.000-0.003)
Gansu 0.028 (0.023-0.032) 0.150 (0.070-0.821) 0.167 (0.116-0.204) 0.004 (0.003-0.007)

Qinghai 0.031 (0.026-0.038) 0.261 (0.037-1.027) 0.247 (0.233-0.296) 0.007 (0.004-0.009)
Ningxia 0.043 (0.034-0.049) 1.227 (0.470-1.990) 0.148 (0.110-0.178) 0.007 (0.001-0.009)
Xinjiang 0.040 (0.036-0.045) 1.026 (0.564-1.445) 0.062 (0.031-0.072) 0.002 (0.000-0.004)

SouthKorea 0.015 (0.011-0.022) 3.228 (2.721-4.733) 0.299 (0.256-0.300) 0.005 (0.004-0.006)
USA 0.011 (0.011-0.012) 5.000 (4.971-5.000) 0.027 (0.008-0.065) 0.005 (0.004-0.005)
Italy 0.012 (0.012-0.016) 5.000 (5.000-5.000) 0.000 (0.000-0.012) 0.010 (0.010-0.010)
UK 0.011 (0.010-0.011) 14.985 (14.985-14.986) 0.214 (0.058-0.283) 0.010 (0.010-0.010)

France 0.016 (0.014-0.020) 2.335 (0.559-2.871) 0.016 (0.001-0.088) 0.004 (0.004-0.005)
Germany 0.012 (0.010-0.014) 4.385 (4.013-5.000) 0.299 (0.192-0.300) 0.003 (0.003-0.003)

Table 4: Obtained parameters by fitting the COVID-19 data. For Chinese provinces, data
before March 13 was used for training and for other countries, data before April 8 was used.
Optimization were repeated for 10 times and the median and its confidence interval was recorded.
β is the infection rate. k is the average number of contacts after containment. The average number
of contacts is 15 before containment. γ is diagnostic rate per day. δ is the mortality rate per day.
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I(0) σ k′ θ
Beijing 0 (0-0) 0.102 (0.074-0.115) 12.652 (5.712-14.701) 0.079 (0.070-0.088)
Tianjin 0 (0-0) 0.095 (0.065-0.114) 2.164 (0.124-10.539) 0.099 (0.090-0.100)
Hebei 0 (0-0) 0.061 (0.034-0.076) 2.223 (0.405-8.912) 0.100 (0.100-0.100)
Shanxi 0 (0-0) 0.090 (0.068-0.101) 7.359 (4.039-13.992) 0.089 (0.082-0.100)

InnerMongoria 0 (0-0) 0.093 (0.064-0.109) 6.107 (1.617-12.561) 0.002 (0.000-0.013)
Liaoning 0 (0-0) 0.054 (0.046-0.077) 1.953 (0.038-4.112) 0.098 (0.096-0.100)

Jilin 0 (0-0) 0.112 (0.073-0.120) 11.678 (5.002-14.971) 0.088 (0.063-0.099)
Heilongjiang 0 (0-0) 0.088 (0.066-0.115) 132.513 (66.229-144.317) 0.099 (0.091-0.100)

Shanghai 0 (0-0) 0.080 (0.045-0.103) 5.794 (1.594-9.703) 0.099 (0.095-0.100)
Jiangsu 0 (0-0) 0.057 (0.037-0.094) 10.358 (8.274-13.620) 0.100 (0.100-0.100)

Zhejiang 0 (0-0) 0.068 (0.050-0.119) 9.806 (5.861-13.524) 0.077 (0.074-0.083)
Anhui 0 (0-0) 0.087 (0.062-0.094) 10.221 (5.699-14.317) 0.099 (0.098-0.100)
Fujian 0 (0-0) 0.077 (0.060-0.113) 4.522 (0.418-8.211) 0.045 (0.041-0.055)
Jiangxi 0 (0-0) 0.101 (0.042-0.118) 9.639 (4.971-14.514) 0.100 (0.100-0.100)

Shandong 0 (0-0) 0.077 (0.069-0.094) 9.343 (4.101-13.511) 0.051 (0.045-0.057)
Henan 0 (0-0) 0.053 (0.041-0.081) 1.759 (0.599-7.308) 0.100 (0.100-0.100)
Hubei 106 (29-397) 0.030 (0.030-0.031) 4.246 (1.430-12.966) 0.049 (0.042-0.054)
Hunan 0 (0-0) 0.031 (0.030-0.032) 0.359 (0.049-14.544) 0.100 (0.100-0.100)

Guangdong 0 (0-0) 0.100 (0.070-0.119) 6.689 (3.523-11.827) 0.093 (0.091-0.099)
Guangxi 0 (0-0) 0.095 (0.067-0.110) 5.966 (0.774-13.292) 0.043 (0.032-0.051)
Hainan 0 (0-0) 0.076 (0.036-0.094) 7.558 (3.220-14.396) 0.096 (0.088-0.099)

Chongqing 0 (0-0) 0.070 (0.039-0.091) 8.459 (1.168-12.931) 0.097 (0.094-0.100)
Sichuan 0 (0-0) 0.077 (0.053-0.112) 8.040 (3.396-12.182) 0.064 (0.055-0.072)
Guizhou 0 (0-0) 0.080 (0.049-0.101) 12.469 (1.861-13.923) 0.099 (0.097-0.100)
Yunnan 0 (0-0) 0.068 (0.039-0.115) 6.090 (1.678-10.838) 0.037 (0.027-0.040)
Tibet 0 (0-0) 0.101 (0.055-0.116) 4.143 (1.403-10.461) 0.035 (0.013-0.086)

Shanxi 0 (0-0) 0.054 (0.038-0.082) 6.702 (3.025-12.939) 0.086 (0.075-0.092)
Gansu 0 (0-0) 0.070 (0.047-0.119) 4.849 (0.140-12.051) 0.099 (0.098-0.100)

Qinghai 0 (0-0) 0.083 (0.061-0.107) 9.237 (0.246-14.057) 0.099 (0.093-0.100)
Ningxia 0 (0-0) 0.070 (0.043-0.113) 6.160 (0.994-12.243) 0.095 (0.081-0.100)
Xinjiang 0 (0-0) 0.070 (0.044-0.119) 7.138 (2.773-13.084) 0.025 (0.011-0.043)

SouthKorea 5 (0-80) 0.052 (0.031-0.094) 3.911 (0.615-12.778) 0.016 (0.002-0.023)
USA 205 (72-235) 0.038 (0.030-0.048) 7.670 (0.065-13.656) 0.000 (0.000-0.000)
Italy 68 (6-122) 0.030 (0.030-0.049) 7.410 (0.310-11.794) 0.000 (0.000-0.003)
UK 94 (59-130) 0.067 (0.067-0.068) 7.190 (2.711-8.759) 0.000 (0.000-0.000)

France 1 (0-4) 0.030 (0.030-0.100) 4.204 (0.834-12.302) 0.000 (0.000-0.000)
Germany 53 (11-132) 0.064 (0.034-0.099) 7.773 (2.450-10.517) 0.150 (0.150-0.150)

Table 5: Obtained parameters by fitting the COVID-19 data. Follow Table 4. For Chinese
provinces, I(0) is the number of initial infections on Dec. 28, 2019. For other countries, I(0) is
the number of initial infections on Jan. 9, 2020. σ is the quarantine rate per day. k′ is the average
number of contacts in the cross-region population movement. γ is diagnostic rate per day. θ is the
recovery rate per day.
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RMSE R0 DT R′0
Beijing 3.479 (3.416-3.575) 3.147 (2.698-4.146) 2.543 (2.119-3.036) 0.390 (0.237-0.417)
Tianjin 1.837 (1.777-1.923) 4.507 (3.339-6.105) 1.789 (1.465-2.344) 0.317 (0.180-0.490)
Hebei 3.853 (3.720-3.954) 4.886 (3.185-5.869) 1.929 (1.753-2.773) 0.105 (0.027-0.261)
Shanxi 1.244 (1.222-1.369) 3.557 (2.531-4.128) 2.409 (2.049-3.381) 0.211 (0.060-0.353)

InnerMongoria 1.098 (1.069-1.155) 4.864 (3.404-6.170) 1.732 (1.486-2.283) 0.353 (0.287-0.473)
Liaoning 2.489 (2.211-2.679) 4.249 (3.631-4.493) 2.198 (2.139-2.382) 0.006 (0.000-0.043)

Jilin 1.447 (1.420-1.507) 4.521 (3.619-5.220) 1.645 (1.590-2.089) 0.263 (0.061-0.336)
Heilongjiang 5.083 (5.014-5.258) 5.066 (4.550-6.059) 1.610 (1.446-1.699) 0.399 (0.371-0.465)

Shanghai 3.814 (3.740-3.958) 4.004 (3.081-5.954) 2.112 (1.596-2.803) 0.101 (0.030-0.236)
Jiangsu 4.108 (3.934-4.665) 4.377 (2.563-5.741) 2.179 (1.767-3.383) 0.077 (0.020-0.156)

Zhejiang 15.787 (15.463-15.904) 4.202 (2.789-5.265) 2.199 (1.772-2.792) 0.187 (0.075-0.221)
Anhui 7.281 (7.077-7.394) 2.693 (2.088-3.870) 3.273 (2.315-4.533) 0.075 (0.057-0.104)
Fujian 2.810 (2.746-2.867) 2.824 (2.030-4.196) 3.176 (2.195-4.585) 0.055 (0.015-0.130)
Jiangxi 7.749 (7.525-8.022) 2.064 (1.042-4.351) 4.486 (2.238-23.097) 0.008 (0.002-0.029)

Shandong 5.965 (5.598-6.461) 3.763 (3.028-4.387) 2.338 (1.923-2.716) 0.370 (0.265-0.411)
Henan 9.901 (9.238-10.228) 2.271 (1.949-2.664) 4.017 (2.599-5.068) 0.006 (0.001-0.017)
Hubei 405.544 (389.821-448.441) 3.850 (3.083-4.595) 2.625 (2.217-3.267) 0.499 (0.489-0.520)
Hunan 8.955 (8.720-9.437) 1.035 (0.086-1.857) 7.608 (-24.491-32.180) 0.001 (0.000-0.004)

Guangdong 8.288 (7.791-8.811) 1.978 (1.737-3.702) 4.686 (2.391-5.832) 0.173 (0.077-0.213)
Guangxi 2.823 (2.795-2.845) 3.207 (1.984-4.757) 2.536 (1.992-4.635) 0.346 (0.199-0.423)
Hainan 2.191 (2.142-2.225) 5.250 (4.017-6.706) 1.753 (1.471-2.093) 0.323 (0.041-0.365)

Chongqing 4.896 (4.816-5.000) 0.878 (0.324-1.986) -1.501 (-31.704-8.640) 0.020 (0.001-0.035)
Sichuan 3.647 (3.588-3.742) 1.266 (0.628-2.083) 5.364 (-19.439-14.843) 0.135 (0.039-0.203)
Guizhou 2.365 (2.303-2.407) 2.687 (1.644-4.359) 3.461 (2.236-6.452) 0.110 (0.054-0.139)
Yunnan 2.486 (2.462-2.548) 3.845 (3.017-4.682) 2.320 (1.894-2.654) 0.203 (0.034-0.355)
Tibet 0.000 (0.000-0.000) 3.628 (2.878-4.609) 2.161 (2.027-2.721) 0.123 (0.066-0.330)

Shanxi 2.446 (2.350-2.488) 1.880 (1.095-3.553) 5.415 (2.765-13.693) 0.042 (0.017-0.066)
Gansu 3.117 (3.065-3.135) 3.509 (2.417-4.562) 2.627 (2.097-3.386) 0.038 (0.018-0.159)

Qinghai 0.471 (0.471-0.471) 3.347 (2.776-4.845) 2.489 (1.830-2.996) 0.056 (0.013-0.228)
Ningxia 1.225 (1.208-1.247) 5.430 (4.044-6.317) 1.638 (1.543-2.187) 0.419 (0.165-0.529)
Xinjiang 1.257 (1.168-1.285) 5.316 (3.713-6.220) 1.745 (1.606-2.011) 0.356 (0.234-0.408)

SouthKorea 98.208 (93.090-117.351) 2.129 (1.655-2.393) 4.539 (3.862-6.473) 0.482 (0.439-0.496)
USA 1933.981 (1626.672-2128.964) 1.798 (1.699-2.000) 5.876 (5.188-6.314) 0.599 (0.566-0.660)
Italy 568.740 (435.673-678.736) 2.046 (1.961-2.379) 5.003 (4.285-5.308) 0.682 (0.654-0.793)
UK 698.713 (695.328-709.456) 1.385 (1.344-1.417) 8.764 (8.427-9.241) 1.383 (1.342-1.416)

France 6516.358 (3754.157-10637.327) 2.420 (2.012-2.684) 4.207 (3.660-4.651) 0.323 (0.091-0.459)
Germany 669.210 (631.233-728.894) 1.583 (1.349-1.675) 6.949 (6.398-9.585) 0.456 (0.445-0.489)

Table 6: Obtained parameters by fitting the COVID-19 data. Follow Table 5. RMSE is the root
mean square error between the real data and the simulated results. R0 and R′0 is the reproductive
number before and after the containment. DT is the epidemic doubling time in the early stage,
which ignores the self-healed patients.
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G Simulation of the virus transmission in Chinese provinces
with the obtained parameters
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Figure 6: The comparison between the real (red) number of newly confirmed cases and the
simulated (blue) results. It can be observed that MLSim can fit the real data well.
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